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Abstract 

High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolu-
tion (AR) in precise positioning. However, traditional real-time precise positioning frameworks (i.e., NRTK and PPP-
RTK) depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed 
CORS network. This results in limited public appeal. With the mass production of autonomous driving vehicles, 
more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric 
maps. In this study, we propose a new GNSS positioning framework that relies on dual base stations, massive vehicle 
GNSS data, and crowdsourced atmospheric delay correction maps (CAM). The map is easily produced and updated 
by vehicles equipped with GNSS receivers in a crowd-sourced way. Specifically, the map consists of between-station 
single-differenced ionospheric and tropospheric delays. We introduce the whole framework of CAM initialization 
for individual vehicles, on-cloud CAM maintenance, and CAM-augmented user-end positioning. The map data are col-
lected and preprocessed in vehicles. Then, the crowdsourced data are uploaded to a cloud server. The massive data 
from multiple vehicles are merged in the cloud to update the CAM in time. Finally, the CAM will augment the user 
positioning performance. This framework forms a beneficial cycle where the CAM’s spatial resolution and the user 
positioning performance mutually improve each other. We validate the performance of the proposed framework 
in real-world experiments and the applied potency at different spatial scales. We highlight that this framework is a reli-
able and practical positioning solution that meets the requirements of ubiquitous high-precision positioning.

Keywords  New GNSS positioning framework, Spatial high-resolution atmospheric delay correction, Crowdsourced 
atmospheric delay correction maps, Crowdsourced ionosphere, Crowdsourced troposphere, Ubiquitous

Introduction
Precise positioning services using Global Navigation 
Satellite Systems (GNSS) have become an indispensable 
part of our daily lives. This technology is widely used in 
various fields, such as disaster monitoring, autonomous 
driving, the Internet of Things, and public pedestrian 
navigation. It provides users with graded positioning ser-
vices with accuracies ranging from millimeters to meters 
(Li & Chen, 2022; Liu et  al., 2020; Leick et  al., 2015; Li 
et al., 2022; Qin et al., 2022; Yang et al., 2021).
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Currently, two methods are predominantly used to pro-
vide real-time dynamic centimeter-level GNSS position-
ing services—traditional network RTK (Dingfa et al. Han, 
1997; Hu et  al., 2003; Vollath et  al., 2000; Huang et  al. 
2022) and the recently developed PPP-RTK (Li et  al., 
2023; Teunissen & Khodabandeh, 2015; Wabbena et  al., 
2005; Zhang et  al., 2022a, 2022b) technology. Both of 
these methods rely on Continuous Operational Reference 
System (CORS) base stations for high-precision posi-
tioning, which come with high construction and main-
tenance costs and are mainly funded by national or local 
governments. Moreover, the distribution of CORS base 
stations is relatively sparse, which means that both posi-
tioning methods require interpolation to obtain atmos-
pheric delay correction data, which can be affected by the 
accuracy of the ionosphere during its active period. As 
a result, the interpolation accuracy can decline sharply, 
leading to poor positioning performance. These issues 
collectively lead to high costs and low user experience 
when using these services.

Autonomous vehicles have become more common and 
are now being mass-produced. These vehicles are often 
equipped with GNSS receivers to provide timing services 
and centimeter-level GNSS positioning services (Cao 
et  al., 2022; Li et  al., 2021; Qin et  al., 2021; Tang et  al., 
2022), which provide more potential data sources for 
precise GNSS positioning. It is noted that the density of 
the road network is much greater than that of the CORS 
network. There is a clear imbalance in the effective use 
of on-board GNSS data on roads. For example, the city 
of Wuhan has more than 4 million privately owned cars 
(Security, 2022). During low and peak periods of vehicle 
travel, approximately 0.8–3.2 million vehicles drive on 
the road. The density of CORS stations is much less than 
one ten thousandth of the density of these vehicles. This 
imbalance shows that we urgently need more intelligent 
methods to improve the quality and coverage of precise 
GNSS positioning services while reducing related costs 
to meet the growing demand for mass precise positioning 
applications.

Crowdsourcing is a collaborative model that has proven 
highly effective in various domains, such as autonomous 
driving (Qin et  al., 2021), map creation (Haklay, 2010; 
Wang et  al., 2023), and earthquake warning (Minson 
et  al., 2015). This approach is an innovative way to sig-
nificantly reduce the expenses associated with gathering 
professional surveying data by leveraging nonprofes-
sional crowdsourced surveying data. It provides real-time 
information that is both reliable and cost-effective (Liu 
et al., 2020).

The purpose of this study is to improve the cost-
effectiveness and efficiency of positioning services by 
overcoming the high cost and sparse distribution of 

traditional CORS base stations and the imbalanced 
effective utilization of onboard GNSS data on roads. 
To achieve this goal, we propose a new GNSS position-
ing framework that uses public GNSS observables to 
establish a spatial high-resolution atmospheric delay 
correction map. We also propose the Crowdsourced 
Atmospheric delay correction Map (CAM), which 
includes Crowdsourced Ionospheric and Tropospheric 
delay correction Maps (CIM and CTM). This position-
ing framework has several unique characteristics. First, 
it only requires two base stations. Based on this, a set 
of quality control methods is designed to obtain high-
precision atmospheric information at specific times and 
places. Second, it gathers atmospheric information from 
the general public and constructs the CAM. Finally, the 
CAM will further augment the user positioning perfor-
mance. With the application of this positioning frame-
work, the accuracy of the CAM and the user location 
performance will mutually improve each other, forming 
a virtuous cycle that will meet the real-time precise posi-
tioning needs of autonomous driving users.

System overview
As illustrated in Fig. 1, our framework relies on collabora-
tion among users as well as between users and the cloud, 
primarily comprising the following three parts. The first 
part involves the initialization of atmospheric informa-
tion on the user end, where high-precision and reliable 
ionospheric and tropospheric delay correction is gener-
ated. The users solve three baseline parameters and vali-
date their position and ambiguity closure using dual base 
stations. Subsequently, they upload the validated position 
along with atmospheric information to the cloud-server 
end.

In the second part, the cloud gathers atmospheric 
information uploaded by the general users, creates the 
CAM, and initializes the on-cloud atmospheric map.

In the third part, the CAM augments user positioning 
and is subsequently refined. A new positioning request 
is made by the user, and the cloud-server end provides 
the atmospheric information within the grid correspond-
ing to the approximate position of the user. Based on 
this precise atmospheric delay correction information, 
the user end utilizes an ionosphere- and troposphere-
weighted model to achieve rapid and precise positioning. 
After the atmospheric information is validated through 
the ambiguity closure test, it is sent back to the cloud-
server end for real-time updating of the CAM.

This iterative process creates a positive feedback mech-
anism that continuously improves the accuracy and 
spatial resolution of the CAM, maintaining the high pre-
cision of user positioning.
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Atmospheric delay initialization for individual 
vehicles
Single‑baseline RTK functional model
In our positioning framework, we add tropospheric 
constraints to the traditional long-baseline ionosphere-
weighted single-differenced (SD) RTK function model 
(Odolinski et  al., 2015) to solve the three baselines (two 
base stations and one user) separately. The specific form is 
given as:

(1)

Ps∗ru,j = −κs∗Tu �pru +ms∗u Tru + dt∗ru,Pj + µj∗ I
s∗ru

Ls∗ru,j = −κ
s∗Tu �pru +ms∗u Tru + dt∗ru,Lj − µj∗ I

s∗ru + �j∗N
1s∗
ru,j∗

Is∗ru =

(
Is∗ru

)
prior

Tru = (Tru)prior

where Ps∗
ru,j and Ls∗ru,j represent the SD code and phase 

observables, respectively. s∗ = 1∗, 2∗, . . . ,m∗ denotes the 
tracked satellites; ∗ represents the tracked systems, with 
G for GPS, E for Galileo, and B for BDS; u and r represent 
the receivers of the baseline; j∗ = 1∗, . . . , f∗ denotes the 
tracked frequencies; κs∗u  is the line-of-sight unit vector; 
and �pru denotes the coordinate increment of receiver r. 
dt∗ru,Pj and dt∗ru,Lj represent receiver clock error terms that 
absorb pseudorange hardware and phase hardware 
delays, respectively. I s∗ru represents the relative slant iono-
spheric delay, with a corresponding coefficient 
µj∗ = �

2
j /�

2
1 ; �j is the wavelength for frequency j∗ ; and Tru 

and ms∗
u  represent the relative wet Zenith Tropospheric 

Delay (ZTD) and corresponding mapping function, 
respectively. N 1s∗

ru,j∗
 represents double-differenced integer 

Fig. 1  Illustration of the system structure. The system consists of three parts. The first part is the atmosphere initialization for individual vehicles. The 
second part is the atmosphere initialization for the cloud-sever end. The third part is the CAM augmenting user positioning and CAM refinement
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ambiguities, and (I s∗ru )prior and (Tru)prior represent the pri-
ors of I s∗ru and Tru , respectively.

Single‑baseline RTK stochastic models
The variance‒covariance (VCV) matrix for the com-
bined GPS/Galileo/BDS ionosphere-weighted and tropo-
sphere-weighted model is given as

where σ 2
Tru

 is the variance of (Tru)prior and Q∗
Iru

 represents 
the single-system VCV matrix of (I s∗ru )prior . Q∗

yy represents 
the single-system VCV matrix of the SD code and phase 
observables and is given as

where the code and phase observable a priori variance 
factors are given by submatrices 
C∗
P = diag(σ 2

P,1∗
, . . . , σ 2

P,f∗
) and C∗

L = diag(σ 2
L,1∗

, . . . , σ 2
L,f∗

) , 
respectively, and blkdiag and diag denote the block diag-
onal and diagonal matrix, respectively. Here, we assume 
no cross-correlation between the code and phase or 
between frequencies. Furthermore, ⊗ is the Kronecker 
product, DT

n  is the between-station SD operator and W−1
m∗

 
is the elevation-dependent weighting function.

This subsection describes the stochastic models for the 
SD code and phase observables, and later subsections 
describe the stochastic models for the SD ionospheric 
and tropospheric delays under different conditions.

Generating atmospheric information 
with an ambiguity‑fixed solution for individual vehicles
During the initialization process, no prior atmospheric 
information is provided by the cloud server. For individ-
ual vehicles,

The corresponding stochastic model is given as

where σ 2

I
s∗
ru

 is the SD variance factor of the slant iono-
spheric delays that can be modeled as a function of the 
baseline length. σ 2

Tru
 is a larger constant, which is equiva-

lent to white noise estimation.

(2)
Qyy = blkdiag

(
QG
yy,Q

G
Iru
,QE

yy,Q
E
Iru
,QB

yy,Q
B
Iru
, σ 2

Tru

)

(3)Q∗
yy = blkdiag

(
C∗
p ,C

∗
φ

)
⊗

(
DT
n Dn ⊗W−1

m∗

)

(4)

(
I
s∗
ru

)
prior

= 0

(Tru)prior = 0

(5)
Q∗
Iru

= diag
(
σ 2

I
s∗
ru
⊗W−1

m∗

)

σ 2
Tru

= const

We utilize (1)–(5) to obtain the three baseline solutions 
constructed by the two base stations and the user and 
attempt to fix the ambiguity.

Atmospheric quality control based on the ambiguity 
closure test
Once the ambiguities are fixed, the mutual difference 
between the user’s positions calculated by the dual base 
stations and the ambiguity closure of the three base-
lines are tested. The expression of the ambiguity closure 
test is given as

where r1 , r2 , and u represent the dual base stations and 
the user, respectively.

If the test is passed, the user’s position, along with 
ionospheric and tropospheric information (includ-
ing the adjustment value and posterior variance), is 
uploaded to the cloud server end.

Positioning after individual vehicle initialization
After the initialization for individual users, two meth-
ods for accessing atmospheric information to augment 
positioning are available. The first method is to employ 
the user’s own historical atmospheric information 
weighting via random walk estimation,

where tk−1 represents the previous epoch, and the corre-
sponding stochastic model is given as

where (σ 2

I
s∗
ru
)tk−1

 and (σ 2
Tru

)tk−1
 represent the posterior SD 

slant ionospheric delays and relative wet ZTD of the pre-
vious epoch, prn

I
s∗
ru

 and prnTru
 are the corresponding pro-

cess noises, and �t is the time interval between epochs.
The second method utilizes atmospheric information 

downloaded from the cloud-sever end to weight:

(6)�∇N
1s∗
r1u,j

+�∇N
1s∗
ur2,j

+�∇N
1s∗
r2r1,j

= 0

(7)

(
I
s∗
ru

)
prior

=
(
I
s∗
ru

)
tk−1

(Tru)prior = (Tru)tk−1

(8)

Q∗
Iru

= diag
(
σ 2

I
s∗
ru

)

σ 2

I
s∗
ru

=

(
σ 2

I
s∗
ru

)
tk−1

+ prn2
I
s∗
ru

·�t

σ 2
Tru

=

(
σ 2
Tru

)
tk−1

+ prn2Tru
·�t

(9)

(
I
s∗
ru

)
prior

=
(
I
s∗
ru

)cloud
tk−1

(Tru)prior = (Tru)
cloud
tk−1
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where (I s∗ru )cloudtk−1

 and (Tru)
cloud
tk−1

 represent the SD slant ion-

ospheric delays and relative wet ZTD returned from the 

cloud, respectively. The corresponding random model is:

where (σ 2

I
s∗
ru
)cloudtk−1

 and (σ 2
Tru

)cloudtk−1
 represent the posterior 

SD slant ionospheric delays and relative wet ZTD 
returned from the cloud server end, respectively.

Users can achieve a single-epoch ambiguity-fixed solu-
tion and obtain centimeter-level positioning accuracy by 
using (1)–(3) and (7)–(8) or (1)–(3) and (9)–(10).

CAM initialization for the cloud‑sever end
Grid division and interpolation
As shown in Fig. 2, to create an atmospheric map for a 
certain period, we divide the service area into grids of a 
certain size, such as 1 km × 1 km, which can be adjusted 
according to the actual requirements. The atmospheric 
information provided by the user is comprehensively 
processed, and the information within each grid is 

(10)

Q∗
Iru

= diag
(
σ 2

I
1∗
ru

, . . . , σ 2

I
s∗
ru

)

σ 2

I
s∗
ru

=

(
σ 2

I
s∗
ru

)cloud
tk−1

+ prn2
I
s∗
ru

·�t

σ 2
Tru

=

(
σ 2
Tru

)cloud
tk−1

+ prn2Tru
·�t

obtained. However, we may not be able to obtain all the 
atmospheric delay information within the grid initially. 
Therefore, we use interpolation algorithms such as LIM 
(Han, 1997) to fill in the gaps and interpolate all the 
atmospheric information within each grid based on the 
existing data. This helps us create the initial CAM and 
complete the initialization process.

Storage and communication of the CAM
Taking Wuhan city as an example, the city spans 
132.12 km from east to west and 153.97 km from north 
to south. It can be roughly divided into a grid of 
133× 154 (1 km× 1 km) squares, each of which has 
four float attributes: the values and variances of the 
single-differenced ionospheric delay and single-dif-
ferenced tropospheric delay. The storage requirement 
for individual grid data is 16 bytes. At the same time, 
approximately 20 observable satellites contribute to the 
creation of the CAM, with a data size of approximately 
12 MB. These data are stored on the cloud-server end.

The user end and the cloud-server end communi-
cate bidirectionally to exchange information, enabling 
the server to provide the atmospheric delay correction 
information as real-time feedback to the users at the 
grid’s approximate location.

Fig. 2  Initialization of cloud atmospheric information



Page 6 of 18Xu et al. Satellite Navigation            (2024) 5:13 

Initialization time
The initialization process can be completed rapidly in 
practice. First, in terms of spatial distribution, users near 
the base station can easily obtain an ambiguity-fixed 
solution (Zhu et al., 2023). This means that atmospheric 
information in that area can be readily initialized and 
then extrapolated to provide priors for other newly added 
users. As the system iteration proceeds, a dense atmos-
pheric map can quickly be constructed.

Second, in terms of temporal distribution, for vehicle 
users, low-traffic periods typically occur in the morn-
ing when ionospheric activity tends to be stable, and the 
ground truth of the SD ionospheric delay is often near 
zero, making it easier to perform AR and generate reli-
able atmospheric delay information.

CAM‑augmented user positioning and CAM 
refinement
New users download atmospheric delay correction infor-
mation corresponding to their approximate positions 
within the grid from the cloud-server end. By utilizing 
Eqs. (1)–(3), (9) and (10) to solve the long-baseline RTK 
equations with atmospheric constraints, a single-epoch 
ambiguity-fixed solution can be obtained. Subsequently, 
the atmospheric information, validated through ambigu-
ity closure checks, is uploaded back to the cloud.

During system iteration, the crowdsourced ionospheric 
map and crowdsourced tropospheric map will undergo 
stepwise refinement, leading to the establishment of a 
more detailed atmospheric delay correction map. Fig-
ure 3 illustrates this process.

Fig. 3  CAM refinement and user positioning with CAM augmentation
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Experimental results and discussion
We first describe the experimental setup in “Experimen-
tal setup” section. Then, “Quality of vehicle GNSS data” 
and “Assessment of the atmospheric quality generated by 
long-baseline dynamic users” sections evaluate the vari-
ous stages of the initialization process, including the data 
quality, position accuracy, AR, and atmospheric solution 
accuracy. In “Dynamic baseline (40–300 km) generation 
of the CAM” section, we extend the baseline to 300 km 
to explore the spatial applicability of the framework. In 
the “Simulation experiment based on CAM-augmented 
positioning” and “Multi-vehicle based augmentation in 
a real environment” sections, we conduct simulation and 
multi-vehicle based experiments on CAM-based locali-
zation after initialization.

Experimental setup
The data were gathered on May 12th, 2023, in Wuhan, 
covering the urban area from the Second to the Fourth 
Ring Road. The vehicle test lasted approximately 6  h, 
and the test trajectory and base station distribution are 
displayed in Fig.  4. The distance between base stations 
ranged from 40 to 50 km, and the distance between the 
base stations and the test trajectory ranged between 
0–60  km. We used the traditional network RTK algo-
rithm to calculate the trajectory and obtain the ground 
truth. During the experiment, we selected dual base 
stations to create a dynamic triangulation network 
with onboard users for dynamic long-baseline RTK 

positioning experiments. Specifically, we chose UBAS 
and UBHH as the dual base stations for the new position-
ing framework as the basis for further experiments.

The specific configuration of the test equipment and 
scenarios is shown in Fig. 5. During the test, we used two 
GNSS receivers of varying cost—the geodetic receiver 
Trimble Net-R9 (R9) and the low-cost receiver Septentrio 
Mosaic X5 (MSX5). The data sampling rate was set to 1 
Hz, and we validated the new GNSS positioning frame-
work proposed in this paper using dual-frequency GPS 
and Galileo data. The test covered multiple typical sce-
narios, such as elevated roads with broad views, urban 
roads, and road sections obstructed by trees, tall build-
ings, and elevated bridges.

The strategies for primary data processing are listed in 
Table  1. During the initialization process of the system, 
the study considered only the continuity of ambiguity 
between epochs, which was estimated as a random walk 
process. The atmospheric parameters were given a zero 
mean a priori and were estimated as white noise due to 
the poor quality of dynamic data compared to static data. 
This strategy resets the atmospheric information at each 
epoch. Once the ambiguity closure test, based on dual 
base stations, is passed, the atmospheric delay at that 
location is uploaded to the cloud server end to complete 
the initialization of the CAM. Afterward, users within 
the service area use the atmospheric delay from the cloud 
as a prior for localization. If the initialization is not com-
pleted and the atmospheric parameters are estimated as 

Fig. 4  Vehicle experiment test trajectory and base station distribution
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a random walk process, the atmospheric delay calculated 
from the subsequent-epoch solutions will become less 
accurate if the estimation of the atmospheric delay in the 
first epoch deviates significantly from the actual value.

Quality of vehicle GNSS data
This subsection elaborates on satellite visibility, PDOP, 
and multipath error to assess the feasibility of creating a 
crowdsourced atmospheric map.

The number of satellites that are available and their 
corresponding PDOP values have a significant impact 
on the position and AR performance. During a test 
conducted with elevation cutoff angles of 15° and 40°, 
97.67% and 95% of the periods, respectively, had 10 or 
more visible satellites, as shown in the first row of Fig. 6. 
In cases where fewer satellites are visible, there may be 
severe GNSS electromagnetic signal occlusion under the 

elevated bridge, but at the same time, there will be a wide 
field of view on the elevated bridge. The city’s ring roads, 
elevated roads, and other wide roads provide a good spa-
tial distribution of road networks and GNSS observation 
conditions. This means that in most cases, we will have 
sufficient satellites for positioning, which creates favora-
ble conditions for establishing a CAM.

Based on the first two rows of Fig.  6, as the elevation 
cutoff angle increases, the number of available satellites 
decreases gradually, while the corresponding PDOP 
increases. Table 2 also shows the HDOP and VDOP val-
ues of multiple GNSSs at elevation cutoff angles rang-
ing from 15° to 40°. Notably, as the satellite elevation 
increases, the DOP value gradually increases. At an 
elevation cutoff angle of 40°, the HDOP is still only 1.07, 
whereas the VDOP is 2.85. Thus, at higher elevation cut-
off angles, the positioning accuracy of the GNSS in the 

Fig. 5  Test equipment (top) and typical test scenarios (bottom)

Table 1  Data processing strategies used in this study

Item Initialization Initialized

Baseline length  < 100 km  > 100 km  < 100 km  > 100 km

Precise ephemeris No Yes No Yes

Ionospheric prior �I = 0 �I = �Icloud

Tropospheric prior �T = 0 �T = �Tcloud

Frequency GPS L1&L2; GAL E1&E5b

Estimator Kalman filter

Constraints between epochs Ambiguity Ambiguity and atmosphere

Elevation mask 15°

SNR mask 35 dBHz
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horizontal direction is less affected, and the impact in the 
vertical direction is more significant.

In Fig.  6, the third row displays the multipath errors 
of the R9 and MSX5 receivers and two base stations. 
The data suggest that the multipath error of static base 
stations is much lower than that of dynamic users. In 
dynamic environments, the multipath errors for R9 and 
MSX5 are approximately the same. This indicates that 
both R9 and MSX5 can be used to establish a CAM.

It is important to understand that in  situations where 
the availability of GNSS signals is limited, such as in tun-
nels or in areas with high multipath effects such as urban 
canyons, even short-baseline RTK positioning can be dif-
ficult to achieve. The new GNSS positioning framework 
that we propose is an exclusive satellite navigation system 
positioning method, and its highest positioning perfor-
mance is that of short-baseline RTK positioning. There-
fore, the discussion of this study is limited to scenarios 
where GNSS signals are available and of good quality and 
where short-baseline RTK positioning can be performed. 
Situations in which GNSS signals are completely blocked, 

the signal quality is low, or short-baseline RTK position-
ing cannot be completed are not within the scope of this 
study.

Performance analysis of dynamic long‑baseline 
positioning
In this section, we first focus on position accuracy, which 
is of utmost concern to the general public. We plot two 
types of receivers to show the difference in position 
between epochs 442,500 and 444,500, with a sequence 
of 2000s. Figure 7 shows the epochs that match well; the 
position difference calculated near epoch 443,100 is rela-
tively large and is not shown. We evaluated the positions 
of two receivers under long-baseline dynamic positioning 
and found that both types of receivers, which have dif-
ferent costs, exhibited slight errors compared with the 
ground truth. Taking the dynamic long baselines con-
structed by R9, MSX5, and UBAS as examples, the posi-
tioning accuracies (STDs) in the three ENU directions 
are (1.1, 1.18, 4.84) cm and (0.91, 1.06, 4.74) cm, respec-
tively, as shown in the first row of Fig. 7. The third row of 

Fig. 6  The first and second lines show the numbers of visible satellites and PDOP at an elevation cutoff angle of 15° to 40° for the rover station, 
respectively. The third line is the multipath error of the base station and the rover station

Table 2  Percentage of visible satellites (NSat ≥ 10) and average DOP at elevation cutoff angles of 15° to 40° for rover stations

Elevation mask 15° 20° 25° 30° 35° 40°

Ratio (NSat ≥ 10) 97.67% 97.32% 97.12% 96.74% 95.85% 95.00%

PDOP 1.45 1.58 1.82 2.21 2.58 3.03

HDOP 0.69 0.72 0.77 0.87 0.95 1.07

VDOP 1.27 1.41 1.66 2.03 2.41 2.85
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Fig. 7 shows that for a single user, the position difference 
of the baseline solutions of the dual base stations is rela-
tively small. The mutual difference accuracies of the two 
types of receivers are (0.89, 0.83, 2.18) cm and (1.02, 1.07, 
3.19) cm, respectively. The difference in the single-base-
line solutions between R9 and MSX5 is also small, indi-
cating that both types of receivers perform consistently 
in long-baseline dynamic positioning.

In addition, by comparing the first and third lines of 
Fig.  7, we observe that the dynamic long-baseline solu-
tion provides better consistency in the vertical direc-
tion than does the traditional network RTK solution. 
Although the network RTK user-end model has fewer 
parameters to estimate, its redundancy is the same as 
that of the atmosphere-weighted long baseline model. 
Moreover, its user-end model loses accuracy informa-
tion when utilizing atmospheric information provided by 
the server, and the interpolation error of the atmospheric 
delay is absorbed by the position, resulting in slightly 
poorer consistency compared to the long baseline atmos-
phere-weighted model.

This experiment verified the reliability of the dynamic 
long-baseline positioning of dual base stations. The 
results further support the potential of using massive 

vehicle user data to generate atmospheric information. 
It is reasonable for us to use the mutual difference in the 
same user’s position calculated by dual base stations as 
the basis for establishing a dynamic reference network. 
This process will aid in AR and the creation of high-qual-
ity atmospheric maps.

Performance of dynamic long‑baseline AR
Correct AR is a prerequisite for achieving high-preci-
sion positioning at the centimeter level for the GNSS. 
We plotted the position difference, ADOP, and ratio 
sequences of the two types of receivers between epochs 
442,500 and 442,800 with a sequence of 300 s in Fig. 8. 
The graph shows that there are three significant fluc-
tuations in the position differences. The ADOP and 
ratio indicators show significant changes in the first two 
areas, while the fluctuations are insignificant in the third 
area. This makes it challenging for dynamic positioning 
users to determine whether the ambiguity is correctly 
fixed based on the theoretical indicators of the ADOP 
and ratio. For this reason, we introduced dual base sta-
tions. This allows us to test the user positioning accuracy 
directly through mutual position differences. Addition-
ally, the ambiguity parameter in the equation of the phase 

Fig. 7  Differences in dynamic long-baseline positioning. The first two lines show differences between the long-baseline solutions and network RTK 
of two rover stations and dual base stations. The third line calculates the mutual differences between the same rover stations from the baselines 
of the dual base stations
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observables is closely correlated with the ionospheric 
parameters. Incorrect AR will result in correspond-
ing errors in the ionospheric parameters. Therefore, we 
examine the ambiguity closure of the dynamic triangu-
lation network to determine whether the AR is correct 
and then identify and eliminate erroneous ionospheric 
parameter estimations.

In traditional network RTK or PPP-RTK, the server 
side relies on the correlation between ambiguity and 
ionospheric delay to refine ionospheric information for 
initialization. Additionally, the user end uses interpo-
lated atmospheric delay correction to achieve fast integer 
ambiguity resolution without contributing to the serv-
er’s atmospheric delay refinement. In contrast, the new 
GNSS positioning framework enables the user to use the 
server’s atmospheric delay information to achieve instan-
taneous integer ambiguity resolution while also contrib-
uting to the refinement of the server’s atmospheric delay. 
This approach allows us to provide users with atmos-
pheric correction services that offer higher spatial resolu-
tion and greater accuracy than interpolated atmospheric 
correction by CORS stations.

Assessment of the atmospheric quality generated 
by long‑baseline dynamic users
We chose UBAS as the base station, while R9 and MSX5 
were selected as rover stations. We then calculated 

ambiguity-fixed baseline solutions for UBAS-R9 and 
UBAS-MSX5 separately. Afterward, we differenced the 
baseline solutions for UBAS-R9 and UBAS-MSX5, which 
included the position, single-differenced ionospheric 
delay, and single-differenced tropospheric delay. The 
results are shown in Fig. 9.

First, the position estimation of dynamic long baselines 
can converge steadily with centimeter-level accuracy. 
Second, the ionospheric mutual differences correspond-
ing to most satellites are within 2 cm, but there are still 
a few cases that exceed this range. This is because the 
current criterion used to determine the fixed solution 
of the ionospheric delay relies only on the theoretical 
index (ratio), which is not entirely reliable. We will fur-
ther provide more accurate criteria to determine whether 
the ionospheric delay was correctly estimated. Finally, 
the mutual differences in the tropospheric delay show 
a relatively stable trend, which is maintained at the mil-
limeter level. This is due to the correlation between the 
troposphere and each observed satellite, which has good 
observability and high redundancy.

In addition, in the static scenario of nearly 200  s 
between epochs 43,500 and 43,700, there is a smaller dif-
ference between the position and atmospheric param-
eters, which can be effectively attributed to typical 
vehicle scenarios: users are waiting at traffic lights or 
experiencing traffic congestion, which provides favorable 

Fig. 8  Theoretical indicators of the AR and position differences
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observation conditions for obtaining high-precision posi-
tion and atmospheric delay information.

Figure  10 further illustrates the agreement in the sin-
gle-differenced ionosphere delay between R9 and MSX5 
under different judgment criteria. It can be observed that 
position constraints do not have a significant effect on 
the localization and removal of ionospheric gross errors, 
but ambiguity closure can effectively eliminate satellites 
with ionospheric solution errors. Taking satellite G08 
as an example, combined with the data in Table  3, the 

percentage of epochs that passed the ambiguity closure 
test (i.e., the success rate of ambiguity resolution, calcu-
lated as the number of epochs that passed the ambigu-
ity closure test divided by the fixed number of epochs) 
between MSX5 and the dual base stations is 66.42%; in 
contrast, the percentage for R9 is only 20.83%, which is 
almost not closed around 443,500 epochs. Therefore, 
there is a significant difference in the estimated iono-
spheric delay values around this period. After screening 
for ambiguity closure, the standard deviation (STD) of 

Fig. 9  Consistency between the single-differenced ionosphere and troposphere under various dynamic conditions

Fig. 10  Single-differenced ionospheric mutual differences calculated by UBAS-R9 and UBAS-MSX5, with only AR (left), the constraint of dual base 
stations obtaining user position mutual differences (middle), and the ambiguity closure constraint formed by dual base stations and users (right)
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the single-differenced ionospheric parameters calculated 
by R9 and MSX5 is 0.74 cm.

To demonstrate how the single-differenced iono-
sphere delay affects ambiguity resolution, additional 
simulation experiments are included. An ultrashort 
baseline comprising CUTA and CUT0, which was col-
lected at Curtin University on January 2, 2023 (with an 
ionospheric ground truth of 0), was chosen as an exam-
ple. Figure  11 illustrates the impact of different levels 
of single-differenced ionospheric noise on the ADOP. 
Based on prior experience, an ADOP of less than 0.12 

cycles corresponds to a success rate of ambiguity reso-
lution greater than 99.9% (Odijk & Teunissen, 2008). A 
single-differenced ionospheric error of 5 cm is required 
for ambiguity resolution, while the ionospheric accu-
racy generated by our dynamic long baseline reaches 
0.74 cm. Such high-precision ionospheric information 
can assist in instantaneous ambiguity resolution for 
almost any long baseline.

Thus far, we have generated a centimeter-level between-
station single-differenced ionospheric delay and a 

Table 3  Percentage passed the ambiguity closure test within 2000 epochs

Satellite
PRN

MSX5
L1/E1

MSX5
L2/E5b

Success Rate R9
L1/E1

R9
L2/E5b

Success rate

G01 – – – – – –

G03 1323/1770 1341/1765 75.36% 1257/1803 1204/1803 68.25%

G07 1135/1765 1123/1765 63.97% 1481/1803 1470/1803 81.84%

G08 755/1142 754/1130 66.42% 167/1253 355/1253 20.83%

G14 1601/1808 1577/1765 88.95% 1704/1817 1684/1803 93.59%

G17 1219/1765 1210/1765 68.81% 1076/1803 1083/1803 59.87%

G19 93/788 77/746 11.06% 53/752 51/671 7.32%

G21 1315/1765 1318/1765 74.59% 1521/1803 1480/1803 83.22%

G30 1170/1765 1144/1765 65.55% 1428/1803 1376/1803 77.76%

E13 – – – – – –

E21 1579/1609 1574/1609 97.98% 1679/1779 1540/1754 91.09%

E26 1574/1609 1569/1609 97.67% 1608/1754 1499/1754 88.57%

E27 1251/1619 1250/1609 77.48% 1094/1754 1072/1754 61.74%

E33 348/1114 344/1091 31.38% 209/1097 233/1072 20.39%

Fig. 11  Effect of different single-differenced ionospheric noise on ambiguity resolution
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millimeter-level between-station single-differenced tropo-
spheric delay using vehicle dynamic data.

Dynamic baseline (40–300 km) generation of the CAM
This section investigates the feasibility of generating a 
CAM using dynamic long baseline data of over 100 km. We 
achieved this by increasing the distance between base sta-
tions and dynamic users. We selected base station data that 
were collected at distances of 200 km and 300 km from the 
motion trajectory and used precise ephemeris data for long-
baseline solutions. We evaluated the most crucial factor of 
correct AR, as illustrated in Fig. 12 and Table 4.

The data presented in Fig.  12 reveal two clear trends. 
First, as the satellite elevation increases, the visibility 

of the satellite improves significantly, resulting in an 
increase in the success rate of ambiguity resolution. Sec-
ond, as the baseline length increases, the success rate 
generally decreases, although there are some exceptions 
for the G19 and E33 satellites at low elevations. These two 
trends suggest that while fixing the dynamic long baseline 
ambiguities, it is essential to prioritize selecting data with 
high satellite elevations. This would increase the accuracy 
and stability of atmospheric parameter solutions.

When the baseline distances are set at 40 km and 200 
km and the elevation is 25 degrees or greater, the success 
rate is greater than 50%. In contrast, for a 300 km base-
line, within the same elevation range, the success rate 
varies from 25% to 50%. Importantly, the success rates for 

Fig. 12  Statistics of ambiguity resolution success rates for dynamic long baselines from 40 to 300 km

Table 4  Ambiguity resolution success rates for dynamic long baselines from 40 to 300 km

SAT
PRN

MSX5-40 km (%) R9-40 km (%) MSX5-200 km 
(%)

R9-200 km (%) MSX5-300 km 
(%)

R9-300 km (%) Elevation
(deg)

G03 75.36 68.25 54.56 49.60 41.52 48.04 25

G07 63.97 81.84 48.39 67.84 32.54 40.47 35

G08 66.42 20.83 13.38 9.86 0.56 6.97 15

G14 88.95 93.59 67.51 82.62 45.65 56.58 55

G17 68.81 59.87 51.70 45.34 29.27 40.48 35

G19 11.06 7.32 7.82 2.76 2.69 5.26 15

G21 74.59 83.22 56.40 77.27 26.92 41.66 35

G30 65.55 77.76 48.27 65.42 23.86 36.06 50

E21 97.98 91.09 84.47 88.22 49.25 66.86 75

E26 97.67 88.57 72.28 81.73 48.87 60.58 70

E27 77.48 61.74 49.19 47.16 30.91 40.05 25

E33 31.38 20.39 36.33 28.58 28.01 32.17 15
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the low-cost receiver MSX5 and the geodetic receiver R9 
are similar, which provides valuable reference for popu-
larizing device selection for the general public in practi-
cal applications.

The core of the new framework is that it accurately cal-
culates the atmospheric parameters of a low-cost user 
dynamic long baseline to complete system initialization. 
By utilizing the correlation between ambiguity and the 
ionospheric delay, we can transform this problem into 
that of answering two key questions: whether the ambi-
guity can be resolved and whether it is resolved correctly. 
Figure 12 shows that a dynamic long baseline of less than 
300 km has the possibility of correct AR, and the success 
rate exceeds 25% at a cutoff elevation of 25°. Although 
this percentage may seem relatively low for individual 
dynamic users, there is enough redundant information 
for overall mass users. By processing and merging data 
effectively, we can enhance the overall quality and cover-
age of the CAM.

Simulation experiment based on CAM‑augmented 
positioning
The experiments described above verify the initialization 
of the system. The results show that 12 satellites continu-
ously observed by dynamic users can be combined with 
dual base stations ambiguity closure tests to generate 
high-precision atmospheric delay correction information. 
This section assesses whether the generated atmospheric 
information can be used to improve the positioning per-
formance and assesses the ambiguity resolution of users 
for a single-epoch solution. The primary experimental 
settings are shown in Table 5. Other parameters, such as 
the elevation and SNR masks, remain the same as those 
in Table 1.

Figure  13 shows the position, ADOP, and ratio 
sequences of UBHH-R9 under different atmospheric 
constraints. The results indicate that simultaneously 
constraining ionospheric and tropospheric delays is the 
most effective approach. This suggests that our proposed 
framework can utilize low-cost receivers for generating 
atmospheric products, enabling fast integer ambiguity 

Table 5  Main data processing strategies

Items Scheme 1 Scheme 2 Scheme 3 Scheme 4

Estimator Single-epoch least squares

Constraints between epochs None

Base station UBHH (approximately 40 km away from the user)

Generation device MSX5

Augmentation device Net-R9

Atmospheric augmentation Ion and trop Ion Trop None

Fig. 13  Single-epoch ambiguity-fixed position differences, ratio, and ADOP sequences of UBHH-R9 for four schemes



Page 16 of 18Xu et al. Satellite Navigation            (2024) 5:13 

resolution in precise positioning. Constraining only the 
ionosphere also yields good positioning augmentation, 
while there is almost no significant gain when only the 
tropospheric delay is constrained.

We observed noteworthy fluctuations in the position 
and ADOP sequences, particularly at approximately 
443,800 s, coinciding with the transition of the vehicle’s 
dynamic conditions from static to dynamic. This phe-
nomenon was particularly pronounced when employing 
only the ionospheric constraint strategy. The observed 
instability can be attributed to the smaller number of 
prior parameters in this scheme compared to that of 
scheme one, leading to challenges when transitioning 
between epochs. Hence, in dynamic environments, it 
becomes imperative to meticulously consider and opti-
mize the configuration of prior parameters to ensure the 
stability of the position solution.

Multi‑vehicle based augmentation in a real environment
We further conduct multi-vehicle experiments to evalu-
ate the enhanced positioning effects of atmospheric 
information generated by different vehicles. The experi-
mental setup is consistent with real-world applications.

The data were collected on March 13, 2024. The vehicle 
trajectory was within 5 km of the reference station JFNG, 
and the ground-truth trajectory was provided by short-
baseline RTK/INS. Dual base stations HB01 and HB05, 
located 30 km and 40 km away from the vehicle, respec-
tively, were selected. The experimental configuration is 
shown in Fig. 14, and the strategy settings are detailed in 
Table  6. We continue to compare the four atmospheric 
augmentation schemes from “Simulation experiment 
based on CAM-augmented positioning” section.

Fig. 14  Multi-vehicle setup

Table 6  Main strategies for multi-vehicle based augmentation

Item Strategies

Dual base stations Base1: HB01 (approximately 30 km); 
Base 2: HB05 (approximately 40 km)

Generation device Car 2: MSX5

Augmentation device Car 1: NovAtel PwrPak7

Ground truth (base) JFNG (within 5 km)

Ground truth (rover) Car 1: SPAN-SE + iMAR-FASA

Fig. 15  Single-epoch ambiguity-fixed position differences, ratios, and ADOP sequences of the HB01-PwrPak7 for the four schemes
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The correct AR is determined by validating the atmos-
pheric information through the ambiguity closure test 
in the dynamic triangulation network constructed by 
MSX5, HB01, and HB05. The corresponding atmospheric 
information is then used to enhance the positioning of 
Car 1’s NovAtel PwrPak7. Figure  15 indicates that the 
atmospheric information we generated can effectively 
assist in resolving ambiguities in long-baseline RTK posi-
tioning, thus achieving centimeter-level positioning.

Conclusion and future work
This paper presents a novel GNSS positioning frame-
work based on massive vehicle GNSS data. The frame-
work aims to establish a spatial high-resolution CAM 
to improve the performance of GNSS positioning in 
complex atmospheric environments. To ensure the cor-
rectness of the ambiguity resolution and accurate iono-
spheric delay generation for dynamic long baselines, we 
introduce dual base stations. The CAM augments posi-
tioning and CAM generation with dynamic long base-
lines ranging from 40 to 300 km verify the positioning 
performance of the framework and applied potency at 
different spatial scales. Overall, this framework offers a 
viable solution for generating low-cost, high-resolution 
spatial atmospheric correction information within a 
local area.

Despite the highly promising results, various issues will 
deserve attention to further improve the applications and 
performance of the new framework. These include the 
generation of crowdsourced undifferenced atmospheric 
delay correction maps, which are expected to provide 
unprecedented spatial high-resolution atmospheric delay 
correction information for ionospheric and tropospheric 
monitoring research. Concerning the high storage require-
ments for atmospheric maps on the cloud server end, in 
the future, compression algorithms such as compressive 
sensing (Candès et  al., 2006) will be used to efficiently 
store historical atmospheric information on the cloud 
server end, which will provide data for further scientific 
research. Finally, the criteria for grid partitioning need to 
be further refined using techniques such as grid clustering 
(Schikuta, 1996).
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