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Semi‑tightly coupled integration 
of multi‑GNSS PPP and S‑VINS for precise 
positioning in GNSS‑challenged environments
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Abstract 

Because of its high-precision, low-cost and easy-operation, Precise Point Positioning (PPP) becomes a potential and 
attractive positioning technique that can be applied to self-driving cars and drones. However, the reliability and 
availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satel-
lite System (GNSS) signals are blocked frequently. Inertial Navigation System (INS) has been integrated with GNSS to 
ameliorate such situations in the last decades. Recently, the Visual-Inertial Navigation Systems (VINS) with favorable 
complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than 
the INS-only. Nevertheless, the system still must rely on the global positions to eliminate the accumulated errors. In 
this contribution, we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS (S-VINS), which 
achieves the bidirectional location transfer and sharing in two separate navigation systems. In our approach, the local 
positions, produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method. 
Furthermore, the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments. 
The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the 
degradation of positioning accuracy compared with the INS-only mode. We also carried out a vehicle-borne experi-
ment collecting multi-sensor data in a GNSS-challenged environment. For the complex driving environment, the PPP 
positioning capability is significantly improved with the aiding of S-VINS. The 3D positioning accuracy is improved by 
49.0% for Global Positioning System (GPS), 40.3% for GPS + GLOANSS (Global Navigation Satellite System), 45.6% for 
GPS + BDS (BeiDou navigation satellite System), and 51.2% for GPS + GLONASS + BDS. On this basis, the solution with 
the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8–60.6% in 3D position-
ing accuracy compared with the multi-GNSS PPP/INS solutions.
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Introduction
Precise Point Positioning (PPP) has been demonstrated 
as an effective tool in high-precision positioning and 
shows the advantages of efficiency and flexibility com-
pared to the baseline network approach (Zumberge et al. 
1997; Bisnath and Gao 2009). In recent years, the rapid 
development of Chinese BeiDou navigation satellite 

System (BDS) and European Galileo navigation satel-
lite system (Galileo) brings new opportunities for PPP. A 
four-system PPP model was proposed by Li et al. (2015) 
to fully use the Global Positioning System (GPS), Global 
Navigation Satellite System (GLONASS), Galileo, and 
BDS observations. In their study, the multi-constella-
tion Global Navigation Satellite System (GNSS) PPP 
presented faster solution convergence and higher posi-
tioning accuracy than single-system PPP. Recently, the 
investigation of multi-GNSS PPP data processing is not 
only about the dual-frequency models (Cai et  al. 2015), 
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but also focusing on the multi-frequency observations (Li 
et  al. 2019b, 2020a, b). Briefly, the multi-frequency and 
multi-GNSS based PPP is becoming increasingly fashion-
able for precise positioning services (Alkan and Öcalan 
2013; Guo et al. 2018), particularly in some new applica-
tions such as self-driving cars and unmanned aerial vehi-
cles (Nie et al. 2019; Geng and Guo 2020).

However, PPP fails in the cases of observation out-
ages or harsh signal environments (Zhang and Li 2012). 
Consequently, the Inertial Navigation System (INS) has 
been utilized to assist PPP in GNSS-challenged envi-
ronments in the last decades (Roesler and Martell 2009; 
Gao et  al. 2017). Shin and Scherzinger (2009) demon-
strated that PPP/INS integration could realize a better 
accuracy and reliability of positioning in both open sky 
and GNSS blocked areas. Rabbou and El-Rabbany (2015) 
presented a tightly coupled multi-GNSS PPP/INS solu-
tion and achieved the positioning accuracy at decimeter 
to centimeter-level when the measurement updates from 
GNSS are available. Nevertheless, the performance of the 
GNSS/INS integration is degraded due to the rapid INS 
drift errors for the case of the long-term GNSS outages.

Favorable complementary properties of visual and iner-
tial measurements make them suitable for fusion. Thus, 
extensive applications based on a visual-inertial integra-
tion were found in drones (Weiss et  al. 2012) and self-
driving vehicles (Li and Mourikis 2012). Generally, the 
existing visual-inertial fusion methods can be classified 
into the optimization-based (Yang and Shen 2017; Use-
nko et al. 2016) and the filter-based approaches (Bloesch 
et  al. 2015; Tsotsos et  al. 2015). A popular filter-based 
Visual-Inertial Odometry (VIO) algorithm was proposed 
by Mourikis and Roumeliotis (2007). In their approach, 
a versatile measurement model was presented to express 
the geometric constrains among multiple-camera poses 
with a common view. In practice, the optimization-
based approaches can provide higher accuracy than the 
filter-based approaches given adequate computational 
resources (Delmerico and Scaramuzza 2018). The prop-
erty of the re-linearization at each iteration contributes 
to the high accuracy of the optimization-based methods. 
Leutenegger et  al. (2015) presented a keyframe-based 
Visual-Inertial Navigation System (VINS) and used 
Google’s Ceres solver to perform the nonlinear optimi-
zation (Agarwal et al. 2012). Besides, the sliding window 
strategy was adopted in their study to reduce the com-
putation complexity of optimization. Qin et  al. (2018) 
proposed a complete and versatile monocular VINS, 
which can realize the indoor positioning of drones with 
accuracy at a decimeter-level. Additionally, the transla-
tion error of the stereo VINS (S-VINS) is about 1% of the 
driving distance in an outdoor vehicular experiment (Qin 
et  al. 2019). Although VINS can achieve a robust and 

accurate local pose estimation, the errors still accumulate 
over the time.

To eliminate the accumulated errors of VINS, many 
researchers integrate the GNSS and VINS for realizing 
a local accurate and global drift-free localization. Lynen 
et al. (2013) proposed a basic multi-sensor fusion frame-
work to process delayed, relative, and absolute meas-
urements from different sensors. Mascaro et  al. (2018) 
proposed a decoupled optimization-based multi-sensor 
fusion method, which is demonstrated to be more accu-
rate than other decoupled fusion strategies. Although 
some progress has been made with these methods in 
multi-sensor fusion navigation, they adopt the decoupled 
way to integrate the GPS and VINS. In addition, only 
the GPS derived positions are utilized in their frame-
work rather than the GNSS raw observations with more 
available information. Vu et al. (2012) developed a multi-
sensor fusion framework with differential GPS (DGPS), 
vision, and INS, which can provide a lane-level vehicle 
navigation in GNSS open-sky conditions. Moreover, Li 
et al. (2019a) proposed a tightly coupled fusion solution 
of multi-GNSS Real-Time Kinematic (RTK)/INS/vision, 
which can achieve centimeter-level positioning accuracy 
in GNSS degraded conditions. In the above two studies, 
the relative positioning methods were used to provide 
the global locations, which requires additional GNSS 
infrastructures such as reference stations and receivers 
in comparison to PPP. Zhu (2019) proposed a new struc-
ture named Semi-Tightly Coupled (STC) integration, 
which realized multi-sensor information fusion by the 
bidirectional location transfer and sharing in two sepa-
rate navigation systems. The STC not only combines the 
advantages of the Loosely Coupled (LC) integration and 
Tightly Coupled (TC) integration, but also overcomes 
their main deficiencies.

In this contribution, we present a graph-optimization 
based and semi-tight coupling framework of multi-GNSS 
PPP and S-VINS for improving the PPP performance in 
a GNSS-challenged environment and realizing a stable 
and accurate global positioning outputs in a complex 
driving environment. In addition to a GNSS outage simu-
lation test to verify the positioning capacity of S-VINS, 
the vehicle-borne experiment was also carried out in the 
campus of Wuhan University to assess the positioning 
performances of the S-VINS aided PPP solution and the 
multi-GNSS PPP/S-VINS solution. The contribution of 
the proposed method to precise positioning is presented 
and analyzed. In the following parts of this paper, we first 
describe the methods used in this study and then explain 
the algorithm implementation for the triple integrated 
system. Subsequently, the experimental situation is intro-
duced, and the results are analyzed. Finally, the conclu-
sions are summarized.
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Methodology
In this section, we firstly introduce the PPP observation 
model. Then, a tightly coupled stereo VIO algorithm is 
described. Subsequently, the semi-tightly coupled multi-
GNSS PPP/S-VINS fusion method is presented. Finally, 
the algorithm implementation of the developed multi-
sensor fusion framework is explained.

PPP observation model
The GNSS observation equations for raw pseudorange 
and carrier phase are formulated as (Li et al. 2015):

where the symbols s , r , and j represent the satellite, 
receiver and carrier frequency, respectively; ρ is the geo-
metric distance between the satellite and receiver; c is the 
speed of light in vacuum; tr and ts denote the receiver and 
satellite clock offsets, respectively; dr,j and dsj  are the code 
hardware delays for the receiver and the satellite, respec-
tively; I sr,1 is the ionospheric delay at the first carrier fre-
quency, and µj = f 2j

/

f 21  is the ionospheric coefficient 
associated to a frequency fj ; Ts

r  is the tropospheric delay; 
�j and Ns

r,j denote the wavelength and the integer ambi-
guity; br,j and bsj are the phase delays in receiver and satel-
lite sides (Ge et al. 2008; Li et al. 2011); �ρ denotes the 
other corrections which should be considered in the PPP 
model, such as phase wind-up effect, antenna Phase 
Center Offset (PCO) and Phase Center Variation (PCV), 
relativity effect, and earth rotation effect (Wu et al. 1993; 
Schmid et  al. 2007); εPs

r,j
 and εLsr,j represent the sum of 

measurement noises and multipath errors for code and 
phase, respectively.

The Ionospheric-Free (IF) combinations are usually 
applied to eliminate the ionospheric delay in the PPP 
model. The dual-frequency IF combinations can be writ-
ten as:

where γ = f 21
/

(f 21 − f 22 ) , f1 and f2 are the frequencies of 
two carriers; �IFNIF = γ (�1(N

s

r,1
+ br,1 − b

s

1
))+ (1− γ )

(�2(N
s

r,2
+ br,2 − b

s

2
)) is the IF ambiguity in meters. The 

measurements noises of IF pseudorange and phase can 

(1)
Ps
r,j = ρ + c(tr − ts)+ c(dr,j − dsj )+ µjI

s
r,1 + Ts

r +�ρ + εPs
r,j

(2)

Lsr,j = ρ + c(tr − ts)+ �j(br,j − bsj )

+ �jN
s
r,j − µjI

s
r,1 + Ts

r +�ρ + εLsr,j

(3)

PIF = γP1 + (1− γ )P2 = ρ + c(tr − t
s)

+mdry · Tdry +mwet · Twet + εPIF

(4)

LIF = γL1 + (1− γ )L2 = ρ + c(tr − t
s)+ �IFNIF

+mdry · Tdry +mwet · Twet + εLIF

be denoted by εPIF = γ εPs
r,1

+ (1− γ )εPs
r,2

 and 
εLIF = γ εLsr,1 + (1− γ )εLsr,2 . Additionally, dr,j is absorbed 
in receiver clock offset, and dsj  is corrected in the IF com-
binations when applying the precise clock products. The 
tropospheric delay T  in Eqs. (1) and (2) is made up of the 
dry and wet components which can be expressed by the 
zenith delays ( Tdry,Twet ) and the corresponding mapping 
functions ( mdry,mwet ). An empirical model can be used 
to correct the dry delay part ( mdry · Tdry ) (Saastamoinen 
1972), while the wet component delay ( mwet · Twet ) can 
be estimated from the observations.

When multi-GNSS observations are involved, the dif-
ferent signal structures and different hardware delays for 
each GNSS system will result in different code biases in 
one multi-GNSS receiver (Li et  al. 2015). The differences 
between these biases are usually called Inter-System Biases 
(ISB) or Inter-Frequency Biases (IFB) for GLONASS sat-
ellites. ISB/IFB parameters must be introduced into the 
multi-GNSS estimator. The IF combinations of the multi-
GNSS code and phase observations can be written as:

where tr denotes the receiver clock offset of the reference 
GNSS system, namely GPS; ISBsys represents the ISB of 
the non-reference GNSS system. As for GLONASS, the 
ISBsys parameter will be set for each frequency. ρT rep-
resents the sum of the geometric distance and the dry 
tropospheric delay. The linearized equations of the IF 
combination can be expressed as:

where pIF and lIF signify observed-minus-computed 
pseudorange and phase IF measurement residuals; u rep-
resents the unit vector of the direction from the receiver 
to the satellite; δp is the position correction vector. In this 
paper, the GNSS raw measurements are processed by the 
individual multi-GNSS PPP module of the multi-sensor 
fusion system. The detailed information on the multi-
GNSS data processing in PPP is listed in Table 1.

Stereo visual‑inertial odometry formulation
The visual front-end processes the stereo pairs from the 
stereo camera. For each new stereo pair, the Kanade–
Lucas–Tomasi (KLT) sparse optical flow algorithm 
is applied to perform feature tracking of existing fea-
tures (Lucas and Kanade 1981). In addition, the forward 

(5)
PIF = ρT + c · tr + ISBsys − c · ts +mwet · Twet + εPIF

(6)

LIF = ρT + c · tr + ISB
sys − c · ts

+ �IFNIF +mwet · Twet + εLIF

(7)
pIF = −u · δp + c · tr + ISBsys +mwet · Twet + εPIF

(8)
lIF = −u · δp + c · tr + ISBsys + �IFNIF +mwet · Twet + εLIF
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(previous frame to current frame) and backward (cur-
rent frame to previous frame) feature tracking are both 
implemented to acquire high quality tracking results. 
Meanwhile, new corner features are detected to main-
tain a certain number of features (e.g., 100–300) in each 
image (Shi and Tomasi 1994). The stereo matches are 
also obtained by the KLT sparse optical flow algorithm 
between left and right images. As for the raw Inertial 
Measurement Unit (IMU) measurements, the IMU pre-
integration technique is used to generate relative IMU 
measurements between two consecutive states in VIO 
sliding window (Lupton and Sukkarieh 2012). For the 
IMU state propagation in pre-integration, the mid-point 
integration is used for the discrete-time implementation. 
To propagate the uncertainty of the state, the covariance 
of the IMU state can be computed recursively, referring 
to Qin et al. (2018).

An initialization procedure is required for the stereo 
VIO. For each frame in the sliding window, we trian-
gulate all features observed in the stereo pairs. Based 
on these triangulated features, a Perspective-n-Point 
(PnP) method is used to estimate the poses of all other 
frames in the window (Lepetit et al. 2009). Additionally, 
the pre-integration factor is constructed between each 
frame in the window. When the window size reaches 
10, a visual-inertial bundle adjustment is performed to 
obtain the optimized states in the window.

After the initialization of estimator, a tightly coupled 
sliding window-based VIO is carried out to achieve 
accurate and robust state estimation, serving as local 
constraints in the global fusion. The definition of state 
vector in the sliding window can be written as (Qin 
et al. 2018):

where χ lvio denotes the complete state vector including 
the IMU state vector xk , the extrinsic parameter xbc of 
IMU-camera, and the inverse depth �l of the l th feature 
from its first observation; c and b represent the camera 
frame and IMU frame, respectively. n and m are the quan-
tities of keyframes and features in the sliding window, 
respectively; the xk consists of the IMU states at the time 
when the k th image is captured; the position plviobk

 , veloc-
ity vlviobk

 , and orientation qlviobk
 of the IMU center is with 

respect to the local reference frame lvio which is defined 
by the first IMU pose; ba and bg represent the accelerom-
eter bias and gyroscope bias, respectively.

A maximum posteriori estimation of the VIO system 
states can be acquired by minimizing the sum of a priori 
and the Mahalanobis norm of all measurement residuals:

(9)χ lvio
= [x0, x1, . . . xn, x

b
c , �0, �1, . . . �m]

(10)xk = [p
lvio
bk

, v
lvio
bk

, q
lvio
bk

, ba, bg ], k ∈ [0, n]

(11)xbc = [pbc , q
b
c ]

(12)min
χ lvio




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cj
l ,χ)

�

�

�

2

P
cj
l

�







Table 1  Multi-GNSS data processing strategy in PPP

Items Correction model or estimation strategy

Estimator All the observation from different GNSS are processed together in sequential least squares estimator

Observations Ionospheric-free (IF) combination

Signal selection GPS: L1/L2; GLONASS: L1/L2;BDS: B1/B2

Elevation cutoff 7°

Observation weight Elevation-dependent weight model (Gendt et al. 2003). The a priori precisions for raw pseudoranges and carrier phases 
are set to 3 m and 0.03 cycles, respectively.

Satellite orbit and clock Precise orbit and clock products from the Center for Orbit Determination in Europe (CODE) (Dach et al. 2017)

Satellite antenna phase center Corrected

Phase windup Corrected

Zenith Tropospheric delay Initial model (Saastamoinen model) + piecewise constant

Mapping function Global Mapping Function (GMF)

Receiver clock offset Estimated at each epoch by a white noise process

ISB and IFB Estimated as constant

Station displacement Solid Earth tide, pole tide, ocean tide loading, the International Earth Rotation and Reference Systems Service (IERS) 
Convention 2010

Ambiguity resolution No
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where rI (ẑ
bk
bk+1

,χ) and rC(ẑ
cj
l ,χ) denote the inertial and 

visual residuals, respectively; 
{

rp −Hpχ
}

 represents the 
a priori information obtained by the process of margin-
alization in the sliding window; ρ(·) is the Huber function 
used for reducing the weight of the outliers in the least 
squares problems (Huber 1964). In addition, a strict out-
lier rejection mechanism is performed after each optimi-
zation by checking the average reprojection errors of 
(13), (14), and (15). When the window size is full, the old-
est IMU state and corresponding features in the sliding 
window will be marginalized to bound the computational 
complexity of VIO.

There are two additional types of reprojection equa-
tions for the stereo VIO compared to the mono-VIO pre-
sented in Qin et al. (2018). Supposed that the l th feature 
is observed by the i th stereo images and the j th stereo 
images. Additionally, the first observation of the feature 
happens in the former. Three types of reprojection equa-
tions are used in our method, which can be expressed as:

where [uci,1l , v
ci,1
l ] is the first observation of the lth feature, 

and ci,1 denotes the left image of the ith stereo images; 
π−1
c  is the back projection function which turns a pixel 

location into a unit vector using camera intrinsic param-
eters; 

(

Rb
c1
, pbc1

)

 and 
(

Rb
c2
, pbc2

)

 are the extrinsic parame-
ters of left IMU-camera and right IMU-camera, 
respectively; Pcj,1

l  and Pcj,2
l  are the reprojection results 

from the observations in ith left image to the jth left 
image and right image, respectively; Pci,2

l  represents the 
reprojection results from the left image to the right image 
in the ith image pair. The visual measurement residuals 
can be obtained by the way of 
observed-minus-computed.

Multi‑GNSS PPP/S‑VINS fusion
The multi-sensor fusion problem is depicted by con-
structing a graph structure displayed in Fig.  1. The 
graph structure consists of a series of nodes and edges. 
Each node denotes the vehicle state in the global frame. 

(13)P
cj,1
l = R

c1
b

(

R
bj
w

(

Rw
bi

(
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1

�l
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c
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u
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l

v
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l
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)

+ pwbi − pwbj

)
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(
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(
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u
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v
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(15)

P
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l = R
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((
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c1

1

�l
π−1
c

([

u
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l

v
ci,1
l

])
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)

− pbc2

)

The edge between two consecutive nodes is a local con-
straint formed by S-VINS. Another type of edge is the 
global constraint provided by the multi-GNSS PPP solu-
tion. Because of the low satellite availability in complex 
driving conditions, the positioning results from the PPP 
are selectively used as the global constraint. A Quality 
Number (QN) is adopted to indicate the accuracy of PPP 
solution, referring to (NovAtel Corporation 2018a). The 
quality of the positioning results from PPP solution are 
labeled with an integer 1–6 based on their covariances. 
In this paper, the QN within 4 will be maintained in the 
pose graph; the QN equal to 5 will be used only once and 
removed after the global optimization; and the QN more 
than 5 will be rejected. The growth rate of the node is 
dependent on the GNSS outputs.

The mathematical model of the fusion method can be 
expressed as a Maximum Likelihood Estimation (MLE) 
problem as described in Qin et  al. (2019). For the com-
pleteness, we briefly introduce the theory. The state 

estimation of the global fusion can be converted to a non-
linear least squares problem, which can be written as:

where χ= [x0, x1, . . . xn] is the state vector of all nodes in 
graph and xi = [pGi , q

G
i ] ; p

G
i  and qGi  are the position and 

orientation of the node i with respect to the global refer-
ence frame G ; S is the set of measurements including the 
local poses (S-VINS) and global positions (multi-GNSS 
PPP), The Mahalanobis norm is �r�2

�k
t

= rT�−1r . Here r 

(16)χ∗ = argmin
χ

n
∑

t=0

∑

k∈S

∥

∥

∥
zkt − hkt (χ)

∥

∥

∥

2

�k
t

Fig. 1  The graph structure for global fusion
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represents the vector of the measurement residual, and � 
is the corresponding covariance.

The error function r = zkt − hkt (χ) consists of two 
parts in the fusion model. Part one is the local meas-
urement residual, which is formulated as:

the upper equation describes the relative pose error 
between time t − 1 and t . The first row denotes the rela-
tive position errors, and the second row denotes the rela-
tive rotation error. ⊖ is the minus operation on the error 
state of quaternion. The unified covariance is applied for 
all local measurements in our framework. Part two is the 
global measurement residual, which can be written as:

where ppppt  is the position measurement from the multi-
GNSS PPP. The global location is directly used as the 
position constraint for every node. It should be noted that 
the local-level frame (ENU, East-North-Up) is adopted 
to represent the global reference frame G , and the ori-
gin point is located at the first global location from the 
multi-GNSS PPP solution during the global fusion. Fur-
thermore, the subsequent global positioning results are 
converted from the Earth-Centered Earth-Fixed (ECEF) 
frame to the ENU frame with respect to the first global 
location. The proposed triple integrated system can pro-
vide the covariances of the global locations, which con-
tributes to a better use of the position information from 
the GNSS. In comparison, the original work in Qin et al. 
(2019) determines the covariance only by the number of 
the visible satellites.

The nature of the fusion method is a rigid base frame 
alignment problem between a local reference frame 
and a global reference frame. The multi-sensor-fusion 
positioning in the global frame can be realized by car-
rying out this alignment process. The transformation 
between the local and the global reference frame will be 
updated after each global optimization. The subsequent 
positioning results from S-VINS can be converted from 
the local frame to the global frame by this transforma-
tion. Moreover, the predicted positions maintain a high 
accuracy in a short term, which can be utilized in the 
multi-GNSS PPP data processing. Thus, we transmit 
the global forecast position to the multi-GNSS PPP 
processor as the a priori information.

The a priori information is used for the following pur-
poses in the multi-GNSS PPP processing. Firstly, the 

(17)

r local = zlt − hlt(χ) = zlt − hlt(xt−1, xt)

=

[

qlt−1
−1(plt − plt−1)

qlt−1
−1qlt

]

⊖

[

qGt−1
−1(pGt − pGt−1)

qGt−1
−1qGt

]

(18)
rglobal = zGt − hGt (χ) = zGt − hGt (xt) = p

ppp
t − pGt

predicted position is used as an initial value for the PPP 
data processing to replace the Standard Point Position-
ing (SPP) result. On the one hand, SPP produces a posi-
tion with low accuracy in GNSS-challenged conditions 
(Angrisano et  al. 2013). On the other hand, the priori 
location has a comparable positioning accuracy with PPP 
in a short term, which is verified in the following experi-
mental part. Secondly, when the number of available sat-
ellites is less than six, the forecast position will be used 
as the position constraint in the PPP processing. This 
criterion is used mainly to cope with the extremely poor 
observation conditions. The variance of the predicted 
position can be determined by:

where σ0 =
√

σ 2
x0
+ σ 2

y0
+ σ 2

z0
 is the standard deviation of 

the global location used in last graph optimization; 
(σ 2

x0
, σ 2

y0
, σ 2

z0
) is the variances of position in ECEF; D 

denotes the diving distance from the vehicle state of last 
graph optimization to current vehicle state in meters; 1% 
is the degradation rate of the local positioning accuracy 
(Qin et  al. 2019). The unified variance σ 2 is applied for 
different axes of the position vector p = [pex, p

e
y, p

e
z] in our 

algorithm for the degradation rate of the local position-
ing accuracy is hard to be decomposed to different axes. 
The position feedback mechanism in our solution is 
bootable when the number of the global locations main-
tained in the global fusion processor exceeds a certain 
threshold.

Implementation of multi‑GNSS PPP/S‑VINS algorithm
The architecture of the proposed semi-tightly cou-
pled multi-GNSS PPP/S-VINS integration is shown 
in Fig.  2. A sliding window-based nonlinear optimi-
zation is operated for state updates after finishing the 
visual-inertial initialization. The newest local state 
is converted to the corresponding global state by the 
transformation between the local frame and the global 
frame. In addition, the transformation matrix is initially 
set to the identity matrix and gets updated after each 
global optimization. The IF combinations of GNSS raw 
pseudorange and phase measurements are applied to 
the PPP data processing. Once the feedback mechanism 
is activated, the predicted positions from S-VINS can 
be utilized in the PPP processing. When the PPP solu-
tion is completed, the global position with its uncer-
tainty will be transferred to the global fusion processor. 
Nevertheless, only the positioning result that passes the 
quality check will be used in the global fusion. Practi-
cally, the measurements from the local (S-VINS) and 
global (PPP) processor have different sampling rates. If 

(19)σ 2 = (σ0 + 0.01× D)2
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the timestamp of the newest local state is synchronized 
with the current GNSS epoch, the global optimization 
will proceed. Otherwise, only the forecast positions 
can be acquired. The Ceres Solver is used in the triple 
integrated system for state optimization (Agarwal et al. 
2012). The optimal positioning results are obtained 
after carrying out the global graph optimization. Mean-
while, the transformation from the local frame to the 
global frame is updated.

Experimental description
The vehicular road test was carried out in the campus of 
Wuhan University where the trees with dense forest can-
opies are on both sides of the roads. Figure 3 displays the 
top view of the trajectory and the typical surroundings 
in the road. The total distance of the trajectory is about 
2670 m, and it takes about 12 min in our experiment.

The equipment used for collecting the multi-sensor 
fusion data is displayed in Fig. 4. In our vehicular road 
test, only single GNSS antenna was used. As shown in 
the top panel of Fig.  4, a GNSS receiver and an IMU 
device are connected to the GNSS antenna through a 
signal power divider. Two cameras are tightly mounted 

on the front of the platform with a 505  mm baseline. 
The detailed information on the devices is listed in 
Table 2, and the specification of the IMU sensor is pro-
vided in Table 3. We achieved the time synchronization 
at the hardware level. More specifically, the Pulses Per 
Second (PPS) generated by the GNSS receiver is used 
to trigger the IMU to work and the stereo cameras to 
exposure at different frequencies. By this means, the 
time stamps of different sensors will synchronize to GPS 
time. The offset between GNSS antenna reference point 
and IMU center was measured precisely to compensate 
the lever-arm effect. The extrinsic parameters for stereo 
cameras and IMU-camera were calibrated offline (Fur-
gale et al. 2013). Moreover, the extrinsic parameters of 
IMU-camera are also estimated in S-VINS based on the 
pre-calibrated values to compensate the small variations 
caused by the vehicle motion. We also calibrated the 
intrinsic parameters of the stereo cameras before and 
after the test.

Additionally, the multi-sensor fusion data were col-
lected under the normal driving conditions including 
most common ground vehicle dynamics, such as accel-
eration, deceleration, and cornering. The bidirectional 

Fig. 2  Implementation of the graph-optimization based semi-tightly coupled framework of multi-GNSS PPP/S-VINS
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smoothed solution of tightly coupled multi-GNSS RTK/
INS is used as the ground truth, which is calculated 
by the commercial software Inertial Explorer (IE) 8.7 
(NovAtel Corporation 2018b).

Fig. 3  Top view of the trajectory on google earth (top) and the typical situations (bottom) in tree-lined roads

Fig. 4  The experimental equipment including the hardware platform 
(top) and the data acquisition vehicle (bottom)

Table 2  Basic information on the devices

Devices details

GNSS receiver Septentrio PolaRx5
(Septentrio Corporation 2019)

IMU make/model iMAR IMU-FSAS
(NovAtel Corporation 2015)

IMU output rate 200 Hz

Camera make/model FLIR GS3-U3-28S5M-C
(FLIR Corporation 2019)

Camera lens HC1605A

Image frame rate 10 Hz

Image resolution 1920 * 800 pitches
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Result analysis
In this part, the number of available GNSS satellites and 
the corresponding position Dilution of Precision (PDOP) 
are firstly presented. Then, a simulation test of complete 
GNSS outage is proceeded to validate the positioning 
capacity of S-VINS. Subsequently, the positioning capac-
ity of the S-VINS aided multi-GNSS PPP solution is dis-
cussed. Finally, we assess the positioning performance of 
the multi-GNSS PPP/S-VINS solution.

Satellite availability
The top panel of Fig. 5 depicts the evolutions of the num-
ber of available satellites for GPS (G), GLONASS (R), 
BDS (C), and GPS + GLONASS + BDS (G + R+C) dur-
ing the test at a cutoff elevation angle of 7◦ . The Galileo 
system is absent for only the single-frequency signals of 
Galileo can be received by our receiver during the test. 

The mean values of the number of visible satellites for 
different GNSS constellations are 4.8 (G), 3.2 (R), 4.1 
(C), and 12.1 (G + R + C). There are frequent decreases 
in the satellite numbers as shown in Fig. 5, and the num-
ber of available GLONASS or BDS satellites sometimes 
becomes zero. The PDOP variations of different GNSS 
constellations are presented in the bottom of Fig. 5. The 
average PDOP values for different GNSS constellations 
are 3.1 (G), 4.7 (R),4.3 (C), and 1.2 (G + R + C). It is obvi-
ous that the value of the PDOP increases as the num-
ber of observed satellites decreases. On account of such 
GNSS partly blocked conditions, the number of observed 
satellites drops frequently, and the signal tracking is dis-
continued, which is a challenge to precise positioning.

S‑VINS positioning performance during GNSS outage
In this section, we simulated the complete GNSS outage 
conditions to investigate the positioning performance of 
S-VINS compared with the INS-only solution. A com-
plete dynamic trajectory (about 2670 m) in the real driv-
ing environment was divided into ten segments with 
the driving time of 100 s each. Meanwhile, the complete 
GNSS outage for 50 s was simulated in each segment. The 
average root mean square (RMS) values of the position 
drifts for the two solutions are shown in Fig.  6. During 
the GNSS outage time from 5 s to 50 s, the position RMS 
values of the INS mode are degraded from 0.05, 0.02, and 
0.01 m to 3.12, 3.04, and 0.15 m in the east, north, and 
vertical directions, respectively. By contrast, the RMS 
values of S-VINS drop from 0.05, 0.06, and 0.01  m to 
0.80, 1.16, and 0.12 m in east, north, and vertical direc-
tions, respectively. It can be seen that the S-VINS mode 
has a slower degradation in positioning accuracy than 
the INS-only mode. This indicates that redundant vis-
ual observation from the tracked features can help the 
S-VINS maintain an accurate local position.

As described above, the GNSS is in normal operation 
in the remaining 50 s of each segment. Thus, the accumu-
lated positioning errors of S-VINS in the triple integrated 
system can be corrected after each global optimization. 
To have a comprehensive assessment of the positioning 
performance of S-VINS, the predicted position accuracy 
of S-VINS before each global optimization is calculated. 
The distribution of the predicted position differences is 
shown in Fig. 7. The results show that the percentage of 
position differences less than 5  cm is 71.9%, 63.8%, and 
98.5% for east, north, and up components, respectively. 
The corresponding percentage is 22.6%, 33.2%, and 0.5% 
in the range of 5  cm to 10  cm. Given the above, it can 
be found that more than 90% of the predicted position 
differences are at centimeter level when GNSS is in nor-
mal operation, despite of the outliers caused by the visual 

Table 3  Technical specifications of iMAR IMU-FSAS

Items Gyroscope Accelerometer

Bias <0.75 (°)/h 1.0 mg

Random Walk 0.1 (°)·h−0.5 –

Scale factor 300 ppm 300 ppm

Fig. 5  Number of available satellites (top) and PDOP (bottom) for the 
GPS, GLONASS, BDS, and GPS + GLONASS + BDS
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instability resulting from the feature mismatches in the 
complex driving conditions.

Additionally, the S-VINS-only positioning perfor-
mance is also evaluated in the same dynamic driving 
environment. We aligned the S-VINS trajectory (local 

coordinate) with the ground truth (ECEF coordinate) 
using a rigid body transformation (Horn 1987) and calcu-
lated the position differences of each matched positions. 
The RMS of position differences of S-VINS in the local 
coordinate system is given in Table 5.

Positioning capacity of the S‑VINS aided multi‑GNSS PPP 
solution
In our triple integrated system, the forecast position 
from S-VINS is used as an initial value or a position con-
straint to assist multi-GNSS PPP in GNSS-challenged 
conditions. The position differences of the IF PPP solu-
tion for the GPS, GPS + GLONASS, GPS + BDS, and 
GPS + BDS + GLONASS modes are shown in Fig.  8. 
The corresponding position differences for the S-VINS 
aided IF PPP solution are shown in Fig. 9. The results of 
both modes are listed in Table 4. For the PPP-only solu-
tions, the positioning accuracy is seriously affected by the 
poor satellite visibility. The maximum values of position-
ing error are (4.99, − 24.68, − 55.14) m for GPS, (4.80, 
− 19.37, − 44.98) m for GPS + GLOBASS, (7.05, − 24.91, 
− 54.49) m for GPS + BDS, and (5.36, − 19.14, − 44.99) 
m for GPS + GLONASS + BDS in east, north, and verti-
cal components, respectively. With the aiding of S-VINS, 
the positioning performance of the PPP-only solution is 
improved. The statistics indicates that the improvements 

Fig. 6  The RMS values of position drifts in the INS-only and the 
S-VINS solutions during the GNSS outages for different period

Fig. 7  The histogram for the predicted position differences of S-VINS 
during one-second GNSS outages

Fig. 8  Position differences of PPP solution for GPS, GPS + GLONASS, 
GPS + BDS, and GPS + GLONASS + BDS
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of the positioning accuracy are (20.2%, 31.9%, 55.5%) for 
GPS, (24.0%, 22.6%, 44.4%) for GPS + GLOANSS, (19.8%, 
43.3%, 47.8%) for GPS + BDS, and (0, 19.5%, 67.7%) for 
GPS + GLOANSS + BDS in east, north and up com-
ponents, respectively. Simultaneously, the outliers are 
also effectively suppressed. Compared with the unaided 
PPP solution, the maximum values of positioning error 
are reduced to (2.58, − 3.88, − 4.81) m for GPS, (0.14, 
− 2.91, − 7.3) m for GPS + GLONASS, (2.17, − 3.28, 
− 6.12) m for GPS + BDS, and (2.00, − 2.78, − 3.13) m 
for GPS + GLONASS + BDS in east, north, and vertical 
directions, respectively. It can be seen that the position-
ing accuracy and availability of the IF PPP solution have 

a significant improvement with the aiding of S-VINS in 
such GNSS-challenged conditions. The main contribu-
tion of S-VINS is to provide a high-accuracy forecast 
position, which is immune to the unexpected sudden 
changes in the observation environment such as short-
term GNSS signal losses. However, the absolute posi-
tioning accuracy of the S-VINS aided PPP solution still 
depends on the precision of PPP.

Positioning performance of the triple integrated system
The positioning performance of the triple integrated 
system is evaluated in this section. For comparison, the 
multi-GNSS PPP/INS solutions are calculated and ana-
lyzed. The combined mode of GPS + GLONASS + BDS 
is applied in the IF PPP processing. The position differ-
ences of the multi-GNSS PPP/S-VINS, LC multi-GNSS 
PPP/INS, and TC multi-GNSS PPP/INS are shown in 
Fig. 10, and the corresponding RMSs are listed in Table 5. 
As expected, the positioning accuracy of the multi-GNSS 
PPP/S-VINS solution is further improved by the S-VINS 
augmentation. The results show that the position RMS 
of the multi-GNSS PPP/S-VINS solution is 0.88, 1.47, 
and 0.96  m with an improvement of 7.4%, 6.4%, and 
27.3% in east, north, and vertical directions, respectively, 
compared with the S-VINS aided PPP (G + R+C) solu-
tion. Additionally, the statistical analysis indicates that 
the improvements in 3D positioning accuracy with our 
method are 60.6% for the LC multi-GNSS PPP/INS solu-
tion and 41.8% for the TC multi-GNSS PPP/INS solu-
tion. More specifically, compared to the LC multi-GNSS 
PPP/INS solution, the positioning accuracy of the tri-
ple integrated solution is improved by 53.4%, and 71.4% 
in horizontal and vertical components, respectively. 
Besides, the maximum values of position differences 
are reduced from (21.11, 0.59, 0.89) m to (2.02, − 2.84, 
− 3.12) m. Compared to the TC multi-GNSS PPP/INS 
solution, the triple integrated solution achieves a signifi-
cant improvement in the vertical component but less in 
the horizontal position. The main reason is that the over-
all positioning accuracy of the triple integrated system is 

Fig. 9  Position differences of the S-VINS aided PPP solution for GPS, 
GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS

Table 4  RMS of position differences of the PPP solution and the S-VINS aided PPP solution for the GPS, GPS + GLONASS, 
GPS + BDS, and GPS + GLONASS + BDS

Items RMS in different directions 
for G

RMS in different directions 
for G + R

RMS in different directions 
for G + C

RMS in different 
directions for G + R+C

E N U E N U E N U E N U

PPP (m) 1.24 2.54 5.59 1.00 2.35 5.70 1.11 2.40 4.98 0.95 1.95 4.09

S-VINS aided PPP (m) 0.99 1.73 2.49 0.76 1.82 3.17 0.89 1.36 2.60 0.95 1.57 1.32

Improvement (%) 20.2 31.9 55.5 24.0 22.6 44.4 19.8 43.3 47.8 0 19.5 67.7

3D positioning accuracy 
improvement (%)

49.0 40.3 45.6 51.2
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still largely impacted by the PPP performance due to the 
location-based information fusion. In addition, the major 
improvement of PPP is in vertical component while the 
horizontal components obtain a modest improvement 
with the aiding of S-VINS. In conclusion, the multi-
GNSS PPP/S-VINS solution achieves a higher position-
ing accuracy and availability compared with multi-GNSS/
INS solutions in such GNSS-challenged environment.

Conclusion
To improve the positioning performance in GNSS-
challenged environments, an optimization-based 
semi-tightly coupled multi-sensor fusion framework of 
multi-GNSS PPP/S-VINS was developed and validated 
in this study. Based on the GNSS outage simulation 
test and the vehicle-borne experiment, the positioning 

performances of the multi-GNSS PPP/S-VINS solu-
tion were comprehensively evaluated with respect to 
the stand-alone S-VINS positioning, the S-VINS aided 
multi-GNSS PPP positioning, and the triple integrated 
system positioning.

The GNSS outage simulation test demonstrates 
that the S-VINS can achieve a slower degradation in 
positioning accuracy than the INS-only. The statis-
tical analysis of the complete GNSS outages for 50  s 
shows that the average RMS of position drifts for 
S-VINS is 0.80, 1.16, and 0.12  m with an improve-
ment of 74.4%, 61.8%, 20.0% in north, east, and up 
components, respectively, compared with the INS-
only mode. Furthermore, more than 90% of the pre-
dicted position differences is at centimeter level 
during one-second GNSS outages. According to the 
results of the vehicle-borne experiment, the accu-
rate predicted positions from S-VINS can assist PPP 
to improve the overall positioning performance. The 
maximum position error of the stand-alone PPP 
(GPS + GLONASS + BDS) solution is reduced from 
(5.36, − 19.14, − 44.99) m to (2.00, − 2.78, − 3.13) m 
compared with the results of the aiding of S-VINS in 
east, north, and up components, respectively. Besides, 
the improvements of 3D positioning accuracy for the 
unaided PPP solution are 49.0% for GPS, 40.3% for 
GPS + GLONASS, 45.6% for GPS + BDS, and 51.2% 
for GPS + GLONASS + BDS. Due to the improvement 
in the positioning accuracy of the S-VINS aided PPP 
solution, better positioning results can participate 
in the graph optimization for global fusion. The sta-
tistics shows that that the RMSs of position errors of 
the multi-GNSS PPP/S-VINS solution are 0.88, 1.47, 
and 0.96  m with an improvement of 7.4%, 6.4%, and 
27.3% in east, north, and up components, respectively, 
compared with the S-VINS aided PPP (GPS + GLO-
NASS + BDS) solution. Moreover, the multi-GNSS 
PPP/S-VINS solution improves 3D positioning accu-
racy by 60.6% and 41.8% compared with the LC multi-
GNSS PPP/INS solution and the TC multi-GNSS PPP/
INS solution, respectively.

In conclusion, the positioning performance of the 
PPP solution can be significantly improved with the 

Fig. 10  Accuracy comparison of the multi-GNSS PPP/S-VINS solution, 
multi-GNSS PPP/INS (LC) solution, and multi-GNSS PPP/INS (TC) 
solution in a GNSS-challenged environment

Table 5  RMS of  position differences for  S-VINS solution, multi-GNSS PPP/S-VINS solution, LC multi-GNSS PPP/INS 
solution, and TC multi-GNSS PPP/INS solution (unit: m)

RMS in different directions 
for S-VINS

RMS in different directions 
for Multi-GNSS
PPP/S-VINS

RMS in different directions 
for Multi-GNSS
PPP/INS (LC)

RMS in different directions 
for Multi-GNSS
PPP/INS (TC)

E N U E N U E N U E N U

12.75 6.23 0.53 0.88 1.47 0.96 3.48 1.18 3.36 0.62 0.53 3.27
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aiding of S-VINS. Meanwhile, the multi-GNSS PPP/S-
VINS solution realizes a higher positioning accuracy 
and availability compared with the multi-GNSS PPP/
INS solutions in GNSS-challenged environments, 
which shows a great potential of the multi-sensor 
fusion system for precise positioning.
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