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Abstract 

The tropospheric delay is a significant error source in Global Navigation Satellite System (GNSS) positioning and navi-
gation. It is usually projected into zenith direction by using a mapping function. It is particularly important to establish 
a model that can provide stable and accurate Zenith Tropospheric Delay (ZTD). Because of the regional accuracy 
difference and poor stability of the traditional ZTD models, this paper proposed two methods to refine the Hopfield 
and Saastamoinen ZTD models. One is by adding annual and semi-annual periodic terms and the other is based on 
Back-Propagation Artificial Neutral Network (BP-ANN). Using 5-year data from 2011 to 2015 collected at 67 GNSS refer-
ence stations in China and its surrounding regions, the four refined models were constructed. The tropospheric prod-
ucts at these GNSS stations were derived from the site-wise Vienna Mapping Function 1 (VMP1). The spatial analysis, 
temporal analysis, and residual distribution analysis for all the six models were conducted using the data from 2016 
to 2017. The results show that the refined models can effectively improve the accuracy compared with the traditional 
models. For the Hopfield model, the improvement for the Root Mean Square Error (RMSE) and bias reached 24.5/49.7 
and 34.0/52.8 mm, respectively. These values became 8.8/26.7 and 14.7/28.8 mm when the Saastamoinen model was 
refined using the two methods. This exploration is conducive to GNSS navigation and positioning and GNSS meteor-
ology by providing more accurate tropospheric prior information.
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Introduction
During propagating through the neutral atmosphere, 
Global Navigation Satellite System (GNSS) signals from 
a satellite to a receiver will be delayed and bent due to 
their interaction with dry gases and water particles, 
which is called tropospheric delay (Bevis et  al.,  1992; 
Yao et al., 2018). It is a significant error source in GNSS 
positioning and navigation, for the delay varies from 2 
to 20  m depending on the elevation angle of a satellite 
(Chen et al., 2020; Penna et al., 2001). We generally pro-
ject the tropospheric delay into zenith direction by using 
a mapping function and utilize the Zenith Tropospheric 
Delay (ZTD) to describe the tropospheric influence on 

the signal propagation. An accurate ZTD is not only an 
important parameter for GNSS navigation and position-
ing (Duan et  al.,  1996; Meng,  2002; Zhang et  al.,  2017; 
Zumberge et  al.,  1997), but also the basis for retrieving 
Precipitable Water Vapor (PWV) in GNSS meteorology 
(Li et  al.,  2014; Yang et  al.,  2020a; Zheng et  al.,  2018). 
A stable and accurate ZTD model is necessary to meet 
these requirements.

Two types of ZTD models are commonly used: (1) 
ZTD models with the measured meteorological param-
eters at a site, such as Hopfield model, Saastamoinen 
model and Black model, which can achieve centime-
ter-level accuracy by inputting accurately measured 
meteorological parameters (Hopfield, 1969; Black & Eis-
ner,  1984; Saastamoinen,  1972); (2) the empirical ZTD 
models, which feedback only by the location of a site 
and time of interest. Some empirical models, such as 
GZTD series (Yang et  al.,  2020b; Yao et  al.,  2013, 2016) 
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and IGGtrop series (Li et al., 2012, 2015, 2018), are estab-
lished by using the trend analysis on long-term ZTD 
values. The other empirical models, such as GPT series 
(Boehm et al., 2007; Bohm et al., 2015; Lagler et al., 2013; 
Landskron & Boehm, 2018), are first building the models 
of various meteorological quantities, and then estimat-
ing the ZTD with these estimated meteorological param-
eters and the formula of Saastamoinen model, Hopfield 
model, and other models. Thus, the ZTDs estimated by 
the above two types of empirical models have generally 
poorer results than those with Saastamoinen and Hop-
field model based on the measured meteorological data. 
However, several studies confirmed that the Saasta-
moinen and Hopfield models tend to be poor when using 
the regional meteorological data in a local area (Yang 
et  al.,  2020c, 2021). The obvious regional differences in 
the accuracy with the Saastamoinen and Hopfield mod-
els are due to the fact that they were constructed based 
on global mean meteorological data and global climate 
analysis, which makes it difficult to describe the ZTD 
characteristics in certain areas. Therefore, it is necessary 
to perform the regional refinement of the ZTD models, 
which can not only optimize the performance of the cor-
responding parameter models in a specific area, but also 
improve the accuracy of empirical ZTD models.

In this paper, two regional refined methods are pro-
posed for the Hopfield and Saastamoinen models. The 
first method introduces the annual and semi-annual 
periodic terms in the Saastamoinen and Hopfield models 
and utilizes the least-squares fitting method to establish 
the regional refined models. The second method adopts 
Back-Propagation Artificial Neural Network (BP-ANN) 
to perform error compensation for the Saastamoinen and 
Hopfield models.

The refined models
Hopfield and Saastamoinen models are the most used 
ZTD models, which use the surface pressure, tempera-
ture, and water vapor pressure to estimate ZTD above a 
specific site. The Hopfield ZTD model is expressed as fol-
lows (Hopfield, 1969):

 where ZTDH denotes the ZTD estimates of Hopfield 
model, Ps, Ts and es represent pressure (in hPa), temper-
ature (in K), and water vapor pressure (in hPa), respec-
tively, hs denotes the height of a site above the mean 
sea level,. hd = 40, 136+ 148.72(Ts − 273.15) m and 
hw = 11, 000 m are the height of tropopause and wet 
tropopause, respectively.

(1)
ZTDH = 1.552× 10

−5
× Ps

/

Ts · (hd − hs)

+ 0.07465× es

/

T
2

s · (hw − hs)

The Saastamoinen ZTD model is represented by the 
following equation (Saastamoinen, 1972):

 where ZTDS denotes the ZTD estimates of the Saasta-
moinen model, ϕ represents the latitude of the site, and 
f is the correction of gravitational acceleration caused by 
the rotation of the Earth, which can be calculated by the 
following formula:

The research on the temporal and spatial distributions 
of ZTD found that ZTD has obvious annual and semi-
annual variations (Mao et  al. 2013; Myers et  al. 2013). 
The idea of compensating the Hopfield model by add-
ing annual and semi-annual periodic terms was utilized 
(Yang et al. 2020c). In this paper, we refined the Hopfield 
and Saastamoinen models, called the Hop-r1 and Saas-r1 
models, which are expressed as follows:

 where ZTDhr1 and ZTDsr1 denote the ZTD estimates of 
the refined Hopfield and Saastamoinen models, doy rep-
resents the day of year, (a11, a12) and (a21, a22) are the 
annual amplitudes for the two refined models, (a13, a14) 
and (a23, a24) are their semi-annual amplitudes, and c1 
and c2 denote their constant terms. To calculate the ten 
coefficients in the above two refined models, we utilized 
the accurate tropospheric products of the GNSS stations 
provided by the site-wise Vienna Mapping Function 1 
(VMF1) and adopted the least-squares method.

An Artificial Neural Network (ANN) is designed to 
simulate the way with which the human brain ana-
lyzes and process information, which is widely used in 
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/
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)
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]
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classification, regression, and in the geoscience field 
(Yang et al. 2020d). Composed of an input layer, an out-
put layer and one or more hidden layers, the ANN can 
efficiently handle the relations between input and out-
put variables and produce better results as enough data 
become available. In this paper, we utilized the BP-ANN 
to construct the relationship between the ZTD estimated 
with the models and the true ZTD values to achieve the 
purpose of ZTD error compensation. Specially, four 
input parameters are selected in this research, including 
temperature, pressure, water vapor pressure, and ZTD 
estimates of parameter models. The output parameter 
is the true ZTD value. We refined Hopfield and Saasta-
moinen models based on the BP-ANN, which are called 
Hop-r2 and Saas-r2 models, respectively. Figure  1 is 
a flowchart showing the basic process of constructing 
these two models based on BP-ANN.

The site-wise VMF1 tropospheric products contain 
the meteorological parameters and the true ZTD values 
of the selected GNSS stations, therefore, it can provide 
the dataset for BP-ANN training. We divide the datasets 
into a training set and a validation set, accounting for 75 
and 25 % of the total data sets, respectively. The func-
tion of training set and validation set are to adjust the 
weights on the neural network and to minimize overfit-
ting, respectively. The BP-ANN structure used for the 
two refined models are as follows: four nodes in the input 
layers, which is the same as the number of input param-
eters. A single node in the output layer is the true ZTD 
value. There are two hidden layers with four nodes. The 
used training and activation functions are Levenberg–
Marquardt and hyperbolic tangent, respectively. The 
values of 6000, 0.01 and 0.001 were selected for the maxi-
mum training number, learning rate and error threshold, 
respectively.

Analysis of the refined ZTD models
The 5-year data from 2011 to 2015 collected at 67 GNSS 
stations in China and surrounding regions are used to 
construct the above mentioned four refined models. To 
assess the performance of the proposed ZTD models, 
we evaluated the ZTD values estimated with different 
models using the true ZTD values of year 2016–2017 
provided by site-wise VMF1 as references. Thus, there 
are six models for estimating ZTD in the comparisons, 
including the Hopfield model, the refined Hopfield model 
with periodic terms (Hop-r1), the refined Hopfield model 
based on BP-ANN (Hop-r2), the Saastamoinen model, 
the refined Saastamoinen model with periodic terms 
(Saas-r1), and the refined Saastamoinen model based on 
BP-ANN (Saas-r2). Two statistical quantities, i.e., bias 
and Root Mean Square Error (RMSE), are chosen as the 
criteria to assess the performance of each model.

The ZTD estimates of all stations in the research area 
are calculated by these six models and compared with the 
references at the corresponding time. Figure 2 represents 
the maps of RMSE, which shows the different perfor-
mances of the six models at each site. It shows the influ-
ence of site latitude on RMSE, that is, the RMSE is always 
small at high latitudes and becomes large at the middle 
and low latitudes. The two traditional models perform 
poorly, especially the Hopfield model. All four refined 
models can improve the accuracy compared with the tra-
ditional models, as indicated by the color change of the 
points in the figure. It is obvious that both refined Hop-
field models still have some stations with poor accuracy. 
In this comparison, the refined Saastamoinen models do 
not show this phenomenon, indicating that they are bet-
ter than the refined Hopfield models. It is observed that 
the refined models based on the BP-ANN perform bet-
ter than the those with periodic terms, indicating that the 
advantages of the second refinement method.

The maps of bias for the six models are illustrated in 
Fig. 3. The negative bias appears at each site for the two 
traditional models. The absolute value of bias increases as 
the latitude decreases for the Saastamoinen model, while 
the bias is always a large negative value at most of the sta-
tions for the Hopfield model. After the refinement, the 
biases for the four refined models at each site are closer 
to 0with small positive value at some stations. Note that 
the Hop-r1 model hardly shows an improvement at some 
stations. One can observe that the refined models based 
on the BP-ANN give the best results, which is similar to 
that of Fig. 2.

The mean RMSE and bias, as well as their maximum 
and minimum values, of the differences between the 
ZTD estimated with the six models and the referenced 
ZTD at all stations are summarized in Table 1. For RMSE, 
the Hopfield model performs worst with the values of 
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70.5/161.0/20.5 mm for the mean, maximum, and mini-
mum, respectively. The two refined models significantly 
improve the results, with the mean RMSE reduced from 
70.5 to 46.0 mm and 36.5 mm, an improvement by about 
35 and 48 %, respectively. The Saas-r2 model achieves the 
best performance, i.e., the mean, maximum, and mini-
mum of RMSE are 36.0, 54.1 and 9.1 mm, respectively. 

For bias, we can obtain the same conclusions from theses 
statistical values.

Considering the complex topography of the research 
area, the changes in the mean RMSE and the bias with 
the height of a site are analyzed for the six models, which 
are shown in Figs. 4 and 5. It is obvious that the heigh has 
a great influence on the accuracy of the Hopfield model, 
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Fig. 2  Maps showing the RMSE at each site for the six models
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that is, the larger the height of the site is, the larger the 
RMSE and the negative bias will be. After the refine-
ment, the Hop-r1 model improves this phenomenon, but 
its accuracy is still affected by the site height. The Hop-
r2 model performs well, and its accuracy is not affected 
by the height of a site. For the Saastamoinen model, its 
RMSE and bias are not affected by the height of a site. 

Moreover, the two refined Saastamoinen models improve 
the performance at each site, especially the Saas-r2 model

To analyze the variation of the ZTD values estimated 
with the six models in different seasons and months, the 
bias and RMSE for all stations in the research area are 
calculated monthly and seasonally, as shown in Figs.  6 
and 7. It can be seen that the ZTD biases of the Hopfield 
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Table 1  Mean RMSE and bias of the ZTD differences for the six models at all stations

Names of the model Results of RMSE (mm) Results of bias (mm)

Mean Maximum Minimum Mean Maximum Minimum

Hopfield 70.5 161.0 20.5 −55.0 −11.9 −159.6

Hop_r1 46.0 110.7 14.6 −5.3 37.8 −110.0

Hop_r2 36.5 64.1 9.4 −2.2 20.1 −23.0

Saastamoinen 50.7 81.8 14.1 −31.4 2.6 −76.3

Saas_r1 41.9 61.1 13.6 −4.7 29.3 −49.7

Saas_r2 36.0 54.1 9.1 −2.7 20.0 −25.2
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and Saastamoinen models show apparent seasonal effects 
with the peaks in summer, and the maximum nega-
tive biases are in July which are − 83.5 and − 54.2 mm, 
respectively. It indicates that the water vapor in the 

research area changes greatly in summer, the ZTD esti-
mates with the two traditional models are smaller than 
the referenced ZTD, and therefore implementation of 
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error compensation is necessary. Correspondingly, their 
RMSE experiences an increase from Spring to Summer, 
and then a decrease from Summer to Autumn with the 
maximum values of 95.8 mm and 70.6 mm, respectively. 
For the four refined models, their monthly mean biases 
and RMSEs have no obvious seasonal changes, and the 
monthly fluctuations are also small. For example, the 
maximum and minimum monthly mean RMSEs of the 
Hop-r2 model appear in July and December, and their 
values are 43.2 mm and 32.1 mm, respectively. For the 
Saas-r2 model, these values are 42.7 mm and 31.9 mm in 
October and December, respectively.

Further, the performance of the six models to estimate 
ZTD at different Coordinated Universal Time (UTC) 
epochs are analyzed. Their RMSE distributions at the 
four UTC epochs are illustrated in Fig.  8. Based on the 
accuracy from low to high the six models at each UTC 
epoch are ranked as the Hopfield model, Saastamoinen 
model, Hop-r1 model, Saas-r1 model, Hop-r2 model, and 
Saas-r2 model. The accuracy for the Hopfield and Saas-
tamoinen models is similar at different UTC time. The 
RMSE of the four refined models at UTC 6:00 and UTC 
12:00 are slightly smaller than those at UTC 0:00 and 
UTC 18:00. The Saas-r2 model has the best performance 
at each UTC epoch, and the values at these UTC epochs 
are 37.8, 34.4, 34.7 and 36.9 mm, respectively.

The histogram of the ZTD residuals, namely the differ-
ences between the model-derived ZTDs and the refer-
enced ZTDs, is shown in Fig.  9. One can see that most 
of the ZTD residuals calculated with the Hopfield and 
Saastamoinen models are less than 0. The percentages 
of the ZTD residuals larger than − 100/− 50 mm are 

20.5 %/52.3 and 8.7 %/32.5% for the Hopfield and Saasta-
moinen models, respectively, indicating that the residual 
distribution for the Saastamoinen model is slightly better 
than the Hopfield model. After the refinement, the Hop-
r1 makes the ZTD residual distribution closer to the nor-
mal distribution, and the Saas-r2 model leads more ZTD 
residuals closer to zero. The two refined models based 
on the BP-ANN achieve the best ZTD residuals distribu-
tions, which basically follow the normal distribution and 
make most of the ZTD residuals concentrated around 0 
mm. For example, the percentages of the ZTD residuals 
in the range of − 10 to 10 mm are 29.0 and 28.6% for the 
Hop-r2 model and the Saas-r2 model, respectively. When 
the range changes to − 50 to 50 mm, these percentages 
become 81.5 and 82.4 % for the two refined models.

Moreover, the Standard Deviation (SD) of the ZTD 
residuals is computed for the six models. These values 
are 50.4 mm and 45.3 mm for the Hopfield and Saasta-
moinen models, respectively. The two corresponding 
refined models improves the SD of the Hopfield model 
by 6.7 and 23.2 %, respectively. The Saas-r1 and Saas-r2 
models achieve SD values of 43.1 mm and 38.0 mm, an 
improvement by about 4.9 and 16.1 % over the Saasta-
moinen model.

Conclusions
To refine the Saastamoinen model and the Hopfield 
model, two methods were introduced, namely the 
method by adding annual and semi-annual periodic 
terms and the method based on the BP-ANN. Therefore, 
four refined ZTD models are established using the ZTD 
products provided by the site-wise VMF1. The compre-
hensive comparisons between the four refined models 
and the two traditional models are conducted using the 2 
years data derived from the site-wise VMF1 tropospheric 
products. From the spatial analysis the accuracy for the 
two traditional models shows a spatial difference and is 
affected by the latitude of a site. Moreover, the accuracy 
of the Hopfield model becomes worse as an increase in 
the site height. The refined models can effectively over-
come the above problems, especially the refined models 
based on the BP-ANN. For example, the mean bias and 
RMSE of the Hop-r2 and Saas-r2 model are − 2.2/36.5 
mm and − 2.7/36.0 mm, respectively. From the temporal 
analysis of the model accuracy, the two traditional mod-
els appear obvious seasonal effect and have the worst 
performance in summer. The four refined models can 
eliminate the seasonal influence of the estimated ZTD, 
and the monthly fluctuation also becomes very small. 
The accuracies of all six models are not affected by dif-
ferent UTC epochs, and the Saas-r2 model has the best 
performance at each UTC epoch. From the analysis of 
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residual distributions, the refined models can improve 
the residual distributions compared with the traditional 
models, especially the models based on the BP-ANN, 
which make the ZTD residuals follow the normal distri-
bution and concentrated around zero. We constructed 
the refined models in China and surrounding regions, 
which can improve the accuracy of estimated ZTD in this 
region, and therefore provide more accurate information 
on troposphere for the research on GNSS navigation and 
positioning and GNSS meteorology. In further research, 
the refined models that are better suitable for local areas 
should be explored, such as constructing the coefficients 
of the refined models in the form of dense grids.
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