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Distributed Kalman filter for UWB/INS 
integrated pedestrian localization under colored 
measurement noise
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Abstract 

Colored Measurement Noise (CMN) has a great impact on the accuracy of human localization in indoor environments 
with Inertial Navigation System (INS) integrated with Ultra Wide Band (UWB). To mitigate its influence, a distributed 
Kalman Filter (dKF) is developed for Gauss–Markov CMN with switching Colouredness Factor Matrix (CFM). In the 
proposed scheme, a data fusion filter employs the difference between the INS- and UWB-based distance measure-
ments. The main filter produces a final optimal estimate of the human position by fusing the estimates from local 
filters. The effect of CMN is overcome by using measurement differencing of noisy observations. The tests show that 
the proposed dKF developed for CMN with CFM can reduce the localization error compared to the original dKF, and 
thus effectively improve the localization accuracy.

Keywords:  Distributed filtering, Kalman filter, Colored measurement noise, Human localization

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the improvement of people’s living standards, the 
population aging problem has become increasingly seri-
ous in China. Consequently, health care for elderly peo-
ple has gradually received due attention and become a 
new research area (Li et  al., 2016; Xu et al., 2018, 2019; 
Zhuang et  al., 2019c). As an important technology to 
assist indoor medical care, localization and tracking of 
target personnel appear in many works (Chen et al., 2020; 
Tian et al., 2020), and many approaches have been devel-
oped to provide the localization with sufficient accuracy.

The Global Positioning System (GPS) is most widely 
used for localization solution (El-Sheimy & Youssef, 2020; 
Li et al., 2020; Mosavi & Shafiee, 2016). For example, the 
GPS signals are used in Sekaran et al. (2020) to navigate a 
robot car. A drawback of GPS is its signals are not always 
available in indoor environments (El-Sheimy & Li, 2021). 

Accordingly, the short-range communication technolo-
gies, such as the Radio Frequency IDentification (RFID) 
(Tzitzis et al., 2019), bluetooth, Wireless Fidelity (WiFi), 
and Ultra Wide Band (UWB), have been developed for 
GPS-denied spaces. For example, an active RFID tag-
based pedestrian navigation scheme was proposed in Fu 
and Retscher (2009). In Zhuang and El-Sheimy (2015); 
WiFi was used to assist the micro electromechanical 
systems sensors for indoor pedestrian navigation. An 
improved UWB localization structure was investigated in 
Yu et al. (2019) in a harsh indoor environment.

The localization techniques discussed above can pro-
vide social navigation in indoor environment with a suf-
ficient accuracy. Compared to the RFID, bluetooth, and 
WiFi, the UWB-based can provide more accurate. Con-
sequently, several UWB-based solutions were proposed 
in the last decades. However, these short-range com-
munication and localization techniques require the pre-
placed devices that cannot always be deployed properly 
in indoor spaces. To overcome this problem, several self-
contained localization structures were proposed, such as 
the indoor pedestrian navigation scheme (Li et al., 2016) 
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and a foot-mounted pedestrian navigation system based 
on Inertial Navigation System (INS) (Gu et al., 2015).

The INS-based navigation can be organized as a self-
contained system. However, the accuracy is acceptable 
only in a short time interval due to the accumulation of 
drift errors. This shortcoming can be circumvented by 
integrating the INS- and short range-based communica-
tion technologies, as shown in Zhuang et al. (2019a). The 
INS/UWB integrated scheme is a typical example, but 
there exist many other approaches. For example, in Xu 
et al. (2021) and Zhang et al. (2020); an UWB/INS inte-
grated pedestrian navigation algorithm was proposed, 
which employed the INS to assist the UWB to improve 
robustness. Another INS/UWB integrated scheme 
was designed for the quadrotor localization in Xu et  al. 
(2021). The seamless indoor pedestrian tracking using 
the fusion of INS and UWB data is discussed in Xu et al. 
(2020). The advantages of the integrated schemes are the 
higher accuracy and robustness.

It is obvious that data fusion can improve the locali-
zation accuracy (Zhao & Huang, 2020). In a hybrid 
navigation technology, Kalman Filter (KF) is typically a 
linear fusing model (Norrdine et al., 2016; Zhao et al., 
2016; Zhuang et  al., 2019b). For nonlinear models, it 
is often organized using the Extended Kalman Filter 
(EKF) (Hsu et  al., 2017), Iterated Extended Kalman 
Filter (IEKF) (Xu et  al., 2013), and Unscented Kalman 
Filter (UKF) (Chen et  al., 2015). Note that the above-
mentioned filters are centralized. Although such filters 
can fuse sensor’s data, the drawbacks, compared to the 
distributed filters, are: higher operation complexity and 
poorer fault tolerance. Moreover, the sensor data can 
be affected by Colored Measurement Noise (CMN). For 
example, Fig. 1 displays the UWB-derived distance with 

the CMN and white measurement noise. One thus can 
infer that the CMN is an important error factor in sen-
sor data. It worth noticing that although the KF-based 
algorithms solve the problem of multi-sensor data 
fusion in an integrated navigation system and improve 
the localization accuracy, they are not efficient under 
CMN observed in UWB data.

To mitigate the effect of CMN on the navigation 
accuracy in INS/UWB integrated schemes in indoor 
environments, in this paper we modify the distributed 
KF (dKF) under Gauss–Markov CMN with an assump-
tion that the Colouredness Factor Matrix (CFM) can 
switch at some points due to unstable operation con-
ditions. A local filter employs the differences between 
the INS-measured and UWB-measured distances. The 
main filter produces the final estimates by fusing the 
estimates provided by local filters. The effect of CMN 
is mitigated in local filters using measurement differ-
encing. The experiments show that the dKF modified 
for CMN with switch CFM can reduce the localization 
Root Mean Square Error (RMSE) by 26.85% compared 
to the standard dKF.

The rest of this work is structured as below. First, the 
INS/UWB integration for human localization scenario 
operating under CMN is described. Second, a dKF is 
developed for CMN with switch CFM. Third, the exper-
iment is introduced. Fourth, the comparisons are made 
in terms of the localization accuracy given by INS, 
UWB, dKF, and dKF modified for CMN with switch 
CFM. Finally, conclusions are drawn.

INS/UWB integrated human navigation under CMN
The proposed INS/UWB integrated human localiza-
tion scheme affected by CMN is shown in Fig. 2. In this 
structure, the INS and UWB subsystems work in par-
allel. The fusing filter is organized in the way that one 
key filter works together with M sub-filters. The jth 
sub-filter, j ∈ [1,M] , is employed to estimate the target 
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human position by fusing ranges rUWB
j  and rINSj  from 

the target person to the jth UWB Reference Node (RN) 
under CMN at a discrete time index n. The main filter 
fuses the results of sub-filters to produce an optimal 
estimate.

Design of dKF for CMN with switch CFM
In this section, we modify the dKF under Gauss–Markov 
CMN. First, we consider the state-space model of the navi-
gation problem. Then, the dKF is designed under CMN 
assuming switch CFM. Finally, the main filter fuses the 
results of the sub-filters.

Sub‑filters for CMN
The state equation representing the 2D human dynamics 
and related to the jth sub-filter is described by:

where the state vector is defined as

in which (δPos
E(j)
n , δPos

N (j)
n ) and (δVelE(j)n , δVelN (j)

n ) 
are the position and velocity errors in east and north 
directions, T (j) is the sample time for the jth sub-filter, 
w
(j)
n ∼ N (0,Q(j)) is noise in the jth sub-filter.
The observation equation corresponding to the data 

obtained by the jth sub-filter is written as

where j ∈ [1,M] , δ(j)xn = PosE,In − x(j) , δ(j)yn = PosN ,I
n − y(j) , 

(
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)

 denotes INS positions in east and north 
directions, and vn is Gauss–Markov CMN represented 
with
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where γ (j)n ∼ N (0,R) is white Gaussian driving noise and 
α
(j)
n  is the CFM.
To address the effects of CMN and apply filtering algo-

rithms, we use measurement differencing and write the 
new observation equation as

From (1) and (3) we obtain
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where T
(j)
n = α

(j)
n H

(j)
n F (j)−1

 , D
(j)
n = H

(j)
n − T

(j)
n  , 

γ̄
(j)
n = T

(j)
n w

(j)
n + γ

(j)
n  and γ̄ (j)

n ∼ N (0, R̄) is white Gauss-
ian noise

with the covariance

where �(j)
n = Q(j)T

(j)T

n  . It follows from (8) that the obser-
vation noise γ̄ (j)

n  is time-correlated with system noise w(j)
n  

and the KF cannot be applied straightforwardly. To de-
correlate noise, we follow Shmaliy et al. (2020) and mod-
ify the state equation (1) as

where η(j)n ∼ N (0,�
(j)
n ) has the covariance

(3)v
(j)
n = α

(j)
n v

(j)
n−1 + γ

(j)
n

(4)

z
(j)
n = y

(j)
n − α

(j)
n y

(j)
n−1

= H
(j)
n x

(j)
n + v

(j)
n − α

(j)
n H

(j)
n−1x

(j)
n−1

− α
(j)
n v

(j)
n−1

(5)x
(j)
n−1 = F (j)−1

(x
(j)
n − w

(j)
n )

(6)v
(j)
n−1 = α

(j)−1

n (v
(j)
n − γ

(j)
n )

(7)
z
(j)
n = (H

(j)
n − T

(j)
n )x

(j)
n + T

(j)
n w

(j)
n + γ

(j)
n

= D
(j)
n x

(j)
n + γ̄

(j)
n

(8)γ̄
(j)
n = T

(j)
n w

(j)
n + γ

(j)
n

(9)
R = E{γ̄

(j)
n γ̄

(j)T

n } = T
(j)
n Q(j)T

(j)T

n + R

= T
(j)
n �

(j)
n + R

(10)

x
(j)
n = F (j)x

(j)
n−1 + w

(j)
n + β

(j)
n [z

(j)
n − (D

(j)
n x

(j)
n + γ̄

(j)
n )]

= (I − β
(j)
n D

(j)
n )F (j)x

(j)
n−1 + β

(j)
n z

(j)
n

+ (I − β
(j)
n D

(j)
n )w

(j)
n − β

(j)
n γ̄

(j)
n

= A
(j)
n x

(j)
n−1 + u

(j)
n + η

(j)
n



Page 4 of 10Xu et al. Satell Navig            (2021) 2:22 

The noise vectors η(j)n  and γ̄ (j)
n  will be de-correlated if 

the conditions E{η(j)n (γ̄
(j)
n )T} = 0 is satisfied that can be 

achieved with

 

 Provided the de-correlation, the algorithm of the sub-
KF method operating under CMN is described in Algo-
rithm 1. Unlike the standard KF, Algorithm 1 requires the 
CFM α(j)

n  at each n. To set α(j)
n  properly, we take notice of 

possible time variations in α(j)
n  , and make CMF switching 

by the following steps:

•	 Set several possible values of α(j),i
n , i ∈ [1, q].

•	 Run q sub-KFs with α(j),i
n , i ∈ [1, q] in parallel.

•	 Compute the Mahalanobis distance (Mahalanobis, 
1936) 

•	 Find α(j)
n,opt by solving the minimization problem 
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A pseudo code of the sub-KF for CMN with switch 
CFM is listed as Algorithm 2 and the structure of this 
filter is shown in Fig. 3. Having selected a proper range 
for CFM, this algorithm determines α(j)

n,opt , which is fur-
ther used in the main filter. 

Distributed KF for CMN with switch CMN
The dKF algorithm used in the proposed navigation sys-
tem is responsible for fusing data collected from local 
sub-filters and estimating the object position x̂n and 
localization error covariance Pn as

(15)α
(j)
n,opt = arg min

α
(j),i
n

Lα
(j),i

n

(16)
x̂n = Pn(P

(1)−1

n x̂(1)n + P(2)−1

n x̂(2)n

+ · · · + P(M)−1

n x̂(M)
n ) ,

(17)P−1
n = P(1)−1

n + P(2)−1

n + · · · + P(M)−1

n



Page 5 of 10Xu et al. Satell Navig            (2021) 2:22 	

A pseudo code of the main dKF for CMN with switch 
CFM is listed as Algorithm 3. 

Experimental setup
To test the dKF designed under CMN with switch CFM, 
we exploited the INS/UWB human localization system 
deployed in the No. 14 building of the University of 
Jinan, Jinan, China, as shown in Fig. 4. The target per-
son equipped with experimental devices was pictured 

in Fig.  5. In this work, we conducted two tests, where 
we exploited the INS and the UWB localization systems 
described in Xu et al. (2019). The testbed worked as fol-
lows. We placed UWB RNs in indoor spaces according 
to designed positions and installed a Blind Node (BN) 
on a mobbing target. The target person wore an Iner-
tial Measurement Unit (IMU) to obtain the INS results. 
The encoder was used to measure the distance from the 
start point. In this experiment, a target traveled along a 
planned trajectory, which was complicated with obsta-
cles. Moreover, the method to obtain the ground truth 
coordinates in the experimental test can be founded 
in Xu et  al. (2019). It has two phases: (1) establishing 
the mapping between the distance walking along the 
planned path from the start point and the ground truth 
coordinate and (2) encoding, to measure the walking 
distance and calculate the ground truth coordinates 
through the constructed mapping.

Localization errors
To test this filter, we specify the state space model for 
q = 5 and T (j) = 0.45 s, j ∈ [1, 4] , with α
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Error comparison of KF and dKF
Since the models (1)–(7) are linear, the linear data fusion 
is used in this paper. The localization error Pos_error 
produced by INS, UWB, KF, and dKF in Test 1 is com-
puted as

where 
(

PosE,R, PosN,R
)

 denote the reference coordi-
nates. The cumulative distribution functions (CDFs) are 
sketched in Fig. 6. From this figure, one can see that the 
KF and dKF can reduce the localization error over the 
INS and UWB. Also, the dKF has a better performance 
than the KF. The INS, UWB, KF, and dKF results in Test 
1 are given in Table 1, which suggests that the dKF gives 
the smallest localization error.

Test 1
The trajectories planned or estimated by the INS, 
UWB, dKF for CMN, and dKF for CMN with switch 

(18)
Pos_error =

√

(

PosE − PosE,R
)2

+
(

PosN − PosN,R
)2

CMN in test 1 are shown in Fig.  7. As can be seen, 
the errors in the INS outputs are accumulated, but at 
a lower rate due to the implementation of the Zero-
velocity Update (ZUPT). Figures 8 and 9 show the esti-
mates in the east and north directions produced by the 
INS, UWB, dKF, and dKF for CMN with switch CFM in 
test 1. Compared to INS, the UWB trajectory is close 
to the planned path. It is also noticed that the estimate 
produced by the dKF is not as accurate as that by the 
dKF for CMN with switch CFM, whose outputs are 
closer to the planned path. Figure 10 sketches the CDFs 
of the localization errors Pos_error produced by dif-
ferent estimators in test 1. It is clear that the proposed 
dKF for CMN with switch CFM produces the smallest 
errors compared to the INS, UWB, and dKF. Table  2 
shows the localization results which indicating that the 
dKF for CMN with switch CFM has the smallest errors.

Test 2
We employed another test to verify the performance of 
the proposed method. Trajectories planned or given by 
the INS, UWB, dKF, and dKF for CMN with switch CMN 
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Table 1  Position RMSEs produced by the INS, UWB, KF, and dKF 
in Test 1

Algorithms RMSE (m)

INS 3.60

UWB 0.80

KF 0.71

dKF 0.64
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Fig. 6  The CDFs of Pos_error produced by the KF and dKF in Test 1
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in test 2 are shown in Fig. 11. One can see that the UWB 
trajectory is close to the planned path, unlike that of INS. 
It is also noticed that the estimate produced by the dKF is 
not as accurate as that by the dKF for CMN with switch 
CFM, whose output is much closer to the planned path. 
The CDFs of Pos_error produced by the INS, UWB, dKF, 
and dKF for CMN with switch CFM in test 2 are shown 
in Fig. 12. Thus, we conclude that the proposed dKF for 
CMN with switch CFM gives the smallest errors of 0.9, 
which is reduced by about 27.4% relative to dKF (Table 3).

The performances for the dKF for CMN with switch CFM 
and with constant CFM
We compare the performances of the dKFs designed 
to the trajectories given by INS and UWB. The CDFs 

of Pos_error produced by the dKF for CMN with 
switch CFM and with constant CFM in test 1 and test 
2 are shown in Figs. 13 and 14 respectively. To compare 
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Table 2  Position RMSEs produced by the INS, UWB, dKF for CMN, 
and dKF for CMN with switch CFM in test 1

Algorithms RMSE (m)

INS 3.60

UWB 0.80

dKF 0.64

dKF for CMN with switch CFM 0.61
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errors, we set α(j)
opt = 0.15 , j ∈ [1, 4] , in constant CFM 

for all data. From this figure, we infer that the perfor-
mances of the dKFs for CMN with switch CFM and 
with constant CFM are similar in the tests. It should 
also be emphasized that the method of setting a con-
stant CFM is offline in this work, which is obtained 
from all the test data. The procedure is not designed 
and not the best choice for real time applications. Com-
pared with dKF for CMN with constant CFM, the pro-
posed dKF for CMN with switch CFM can obtain the 
CFM adaptively. Moreover, its performance is similar 
to the dKF for CMN with constant CFM. Figures  13 
and 14 also show that the dKF for CMN with switch 
CFM can perform online and the results are very close 
to the optimal ones.

Conclusion
The dKF designed in this paper under CMN with 
switch CFM has demonstrated the ability to improve 
online the performance of the INS/UWB integrated 
human localization system in indoor environments. 
The effect was achieved with determining the optimal 
CFM by solving the minimization problem and modify-
ing the KF-based fusion filter. Accordingly, the effect of 
the CMN has been essentially mitigated in the output 
of the main dKF. The tests demonstrated a better per-
formance of the dKF for CMN with switch CFM over 
the dKF for CMN. It also shows that the accuracy of the 
INS/UWB integrated system-based human localization 
can be improved compared to the standard dKF. Abbreviations

CDF: Cumulative distribution function; CFM: Colouredness factor matrix; CMN: 
Colored measurement noise; dKF: Distributed Kalman filter; EKF: Extended 
Kalman filter; GPS: Global positioning system; IEKF: Iterated extended Kalman 
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Fig. 11  Trajectories by plan or given by the INS, UWB, dKF, and dKF 
for CMN with switch CMN in test 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position error (m)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

C
D

F

INS+ZUPT
UWB
dKF
dKF for CMN with switch CFM

Fig. 12  The CDFs of Pos_error produced by the INS, UWB, dKF, and 
dKF for CMN with switch CFM in test 2

Table 3  Position RMSEs produced by the INS, UWB, dKF for CMN, 
and dKF for CMN with switch CFM in test 2

Algorithms RMSE (m)

INS 1.69

UWB 0.76

dKF 0.73

dKF for CMN with switch CFM 0.53
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Fig. 13  The CDFs of Pos_error produced by the dKF for CMN with 
switch CFM and constant CFM in test 1
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filter; IMU: Inertial measurement unit; INS: Inertial navigation system; KF: 
Kalman filter; RFID: Radio frequency identification; RMSE: Root mean square 
error; UKF: Unscented Kalman filter; UWB: Ultra wide band; UWB RN: UWB 
reference node; UWB BN: UWB blind node; ZUPT: Zero-velocity update.
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