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Semi‑analytical assessment of the relative 
accuracy of the GNSS/INS in railway track 
irregularity measurements
Qijin Chen1, Quan Zhang1,2, Xiaoji Niu1,3*   and Jingnan Liu1,2 

Abstract 

An aided Inertial Navigation System (INS) is increasingly exploited in precise engineering surveying, such as rail-
way track irregularity measurement, where a high relative measurement accuracy rather than absolute accuracy is 
emphasized. However, how to evaluate the relative measurement accuracy of the aided INS has rarely been studied. 
We address this problem with a semi-analytical method to analyze the relative measurement error propagation of 
the Global Navigation Satellite System (GNSS) and INS integrated system, specifically for the railway track irregularity 
measurement application. The GNSS/INS integration in this application is simplified as a linear time-invariant sto-
chastic system driven only by white Gaussian noise, and an analytical solution for the navigation errors in the Laplace 
domain is obtained by analyzing the resulting steady-state Kalman filter. Then, a time series of the error is obtained 
through a subsequent Monte Carlo simulation based on the derived error propagation model. The proposed analysis 
method is then validated through data simulation and field tests. The results indicate that a 1 mm accuracy in measur-
ing the track irregularity is achievable for the GNSS/INS integrated system. Meanwhile, the influences of the dominant 
inertial sensor errors on the final measurement accuracy are analyzed quantitatively and discussed comprehensively.

Keywords:  Inertial surveying, Relative measurement accuracy, Error propagation modeling, Steady-state Kalman 
filter, Precise engineering surveying
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Introduction
The integration of a Global Navigation Satellite System 
(GNSS) and an Inertial Navigation System (INS) has 
been widely used in weapon guidance, aviation engi-
neering, and land mobile mapping to provide accurate 
georeferencing(Liu et  al. , 2020; El-Sheimy and Youssef 
, 2020). Attention is also paid to the outstanding short-
term relative measurement accuracy of the INS in iner-
tial surveying applications (Zhang et al. , 2013; Zhu et al. 
, 2019; Zhang et  al. , 2020). For example, an INS aided 
by GNSS and an odometer has successfully applied in 
precise engineering surveying, such as railway track 
irregularity measurement and road surface roughness 

measurement (Chen et al. , 2015; Chen et al. , 2018; Niu 
et al. , 2016).

The focus and accuracy requirement are very differ-
ent for the above two kinds of applications. The second 
kind of applications pays more attention to the absolute 
accuracy, which is dominated by the mid-term and long-
term error components, while the railway track irregu-
larity measurement, a typical precise inertial surveying 
application, is more concerned with the temporal or spa-
tial relative measurement accuracy, like the smoothness 
of the estimated trajectory, as illustrated in Fig. 9 in the 
appendix. This difference is made more explicit in the 
example depicted in Fig. 1. The upper panel in this figure 
depicts two typical samples from the first-order Gauss–
Markov processes with the same covariance but different 
correlation times. Considering two positioning appara-
tuses that are corrupted by these two error processes; in 
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this scenario, we would conclude that they have the same 
accuracy for georeferencing because these two stochas-
tic processes have the same second moment, i.e., covari-
ance matrix. In addition, it is obvious that the correlation 
between the values of y(t1) and y(t2) is higher than that 
between x(t1) and x(t2) for any two instants t1 and t2 , i.e., 
x exhibits more rapid variations in magnitude than y. 
Physically, we would then expect the apparatus corrupted 
by error process y have better accuracy in measuring rail-
way track irregularities, as depicted in the lower panel 
and discussed in the appendix. This example reveals that 
the covariance matrix or the propagation models of the 
aided INS navigation errors do not contain the informa-
tion describing the temporal correlation characteris-
tics, which actually determine the relative measurement 
accuracy.

For the research on precise railway track irregularity 
measurement by an aided INS, the following two ques-
tions are often asked 

1.	 Question 1: Is it possible to achieve 1 mm accuracy 
in track irregularity identification when the carrier-
phase differential GNSS/INS can only provide cen-
timeter-level accuracy?

2.	 Question 2: What accuracy can be expected with 
a Track Geometry Measuring Trolley (TGMT, as 
shown in Fig. 10) that uses the given GNSS/INS inte-
grated system?

These two questions are critical for the feasibility study 
and system design of a TGMT based on an aided INS. 

The example presented in Fig. 1 intuitively illustrates why 
the answer to the first question is positive, while obtain-
ing insights into these questions requires analyzing the 
relative measurement error propagation of the aided INS.

The previous studies were almost concentrated on the 
absolute accuracy analysis, for example, the propagation 
of the covariance matrix Pe of the navigation errors, as 
discussed in the appendix. The time history of Pe por-
trays how the ensemble errors accumulate with time. 
However, this kind of analysis cannot answer the above 
two questions. As discussed in the appendix, it is P�e in 
(A.7) rather than Pe that characterizes the track irregular-
ity measurement accuracy, while this information is not 
contained in Pe . Therefore, it is impossible to evaluate the 
performance of a TGMT system by studying the time his-
tory of its covariance matrix.

The main difference between the present research 
and previous studies lies in the following: (1) The rela-
tive measurement accuracy instead of the absolute error 
budget of the GNSS/INS integrated system determines 
its performance in railway track irregularity parameter 
identification. Hence, we not only care about the error 
budget but also are interested in the correlation char-
acteristics of the navigation errors. (2) A semi-analytic 
approach is proposed to analyze the relative measure-
ment accuracy of the GNSS/INS system, based on which 
the effects of the principal inertial sensor errors on the 
final railway track irregularity measurement accuracy are 
quantitatively evaluated.

The relative measurement accuracy analysis of an aided 
INS system was rarely studied, but with the emergence 
of precise engineering surveying using the inertial tech-
nique, this analysis has received more and more atten-
tion. In our previous work (Zhang et  al. , 2020; Zhang 
et  al. , 2017), we pointed out the importance of relative 
measurement accuracy in some mobile mapping sys-
tems and studied the short-term relative measurement 
accuracy of the GNSS/INS system by reading the Allan 
variance plots of the positioning error samples of a real 
GNSS/INS system.

The errors in the position, velocity and attitude solu-
tion with a GNSS/INS integrated system arise from dif-
ferent sources, including alignment errors, inertial sensor 
errors, computational inaccuracy and imperfections in 
navigation aids, etc. Navigation error propagation is also 
affected by the host vehicle trajectory. It is well known 
that a complete determination of GNSS/INS navigation 
error propagation is a complex problem, and analyti-
cal solution is available only for some extremely simple 
cases. Maybeck (Maybeck , 1978) analyzed the naviga-
tion error of an INS aided by position data in a simplified 
channel . His work suggested that the analytic or at least 
semi-analytic performance assessment of a GNSS/INS 
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Fig. 1  Different correlation characteristics of two random 
processes. The upper subplots are two typical samples from the 
first-order Gauss–Markov process α̇(t) = −

1
T
α(t)+ w(t) , with 

w(t) ∼ N(0, 2σ 2/T ) , where x and y have the same parameter σ 
but different correlation times T; the lower two are defined as 
�α(t) = α(t)− α(t +�t)
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integrated system, specific for railway track irregular-
ity measurement, is possible, as the host vehicle, i.e., the 
railway track trolley, moves along a simple and previously 
known trajectory and experiences only low dynamic 
motion in the surveying procedure.

The remainder of this paper is organized as follows. We 
first present a GNSS/INS integration algorithm specifi-
cally designed for railway track irregularity measurement 
and explicitly define the railway track irregularity meas-
urement errors. Then, the system dynamic and measure-
ment equations are simplified according to the railway 
track measurement condition, resulting in a time-invar-
iant linear system. Subsequently, the relative measure-
ment accuracy is analyzed with a semi-analytic approach. 
The relative error propagation analysis is then validated 
by a simulation. Finally, we use the semi-analytic method 
to quantitatively analyze the effects of the principal 
inertial sensor errors on the railway track irregularity 
measurement.

Preliminaries
For the railway track irregularity measurement appli-
cation, the GNSS carrier phase observations are post-
processed in the differential mode to provide the 
positions accurate to the centimeter level and then the 
results are fused with the Inertial Measurement Unit 
(IMU) data in a loosely coupled architecture. The speed 
measurements from odometers and a Nonholonomic 
Constraint (NHC) are used to enhance the navigation 
performance. In the following, the design of a navigation 
Kalman Filter (KF) for loose integration of the GNSS and 
INS is sketched, and the track irregularity measurement 
errors are explicitly defined.

Used coordinate systems
We first define the coordinate systems frequently used in 
this work.

•	 the navigation frame (n-frame): a local geographic 
reference frame whose origin coincides with the IMU 
measurement center, x-axis points toward geodetic 
north, z-axis is down-pointing along the ellipsoid 
normal , and y-axis is directed east to form a right-
handed frame, i.e., the North-East-Down (NED) sys-
tem.

•	 the body frame (b-frame): an IMU body frame whose 
axes are the same as the IMU’s body axes; it is the 
frame in which the accelerations and angular rates 
generated by the strapdown accelerometers and 
gyroscopes are resolved.

•	 the vehicle frame (v-frame): the host vehicle frame, 
whose x-axis is along the vehicle’s forward direction, 

z-axis points downward, and y-axis is directed outward 
to form a right-hand system.

System models
For the GNSS/INS integrated KF design, the error state 
vector is defined as

In this definition, δrn = [δrN δrE δrD]
T and 

δvn = [δvN δvE δvD]
T are the INS-derived position 

and velocity errors in the n-frame, respectively, and 
δh = −δrD . φ = [φN φE φD]

T is the three-dimensional 
attitude error vector, including tilt errors and the azi-
muth error (Benson , 1975). δbg and δba are the errors of 
the gyroscope and accelerometer biases, respectively. The 
gyroscope and accelerometer scale factor and cross-cou-
pling errors are not included in this error state vector, for 
their influence on the final navigation solution depends 
on the host vehicle maneuvers. The TGMT experiences 
only low and weak maneuvers when it moves along the 
rails, and therefore the scale factor and cross-coupling 
error of the high-grade IMU can be safely neglected. The 
error state vector differential equation is written as

where F is the system matrix describing the system 
dynamics, G is the system noise distribution matrix, and 
w is the system noise vector. To obtain the model for an 
aided INS system the time derivative of each state varia-
ble is calculated. The position, velocity and attitude error 
differential equations are

where ωn
en is the angular rate vector of the n-frame 

with respect to the earth frame in the n-frame and 
δθ = [δ� cosϕ −δϕ δ� sin ϕ]T , where ϕ denotes the 
latitude and δϕ and δ� are the errors in the latitude and 
longitude, respectively. Cn

b is the b-frame to n-frame 
coordinate transformation matrix; f b is the specific 
force vector in the b-frame, where δf b is its error vec-
tor in the b-frame and f n denotes the specific force in 
the n-frame; ωn

ie is the earth angular rotation rate vector 
in the n-frame; vn is the velocity vector in the n-frame; 
δωn

ie and δωn
en denote errors of ωn

ie
 and ωn

en , respectively; 

(1)x(t) =
[

(δrn)T (δvn)T φT δbTg δbTa

]T

(2)ẋ(t) = F(t)x(t)+G(t)w(t)

(3)δṙn =− ωn
en × δrn + δθ × vn + δvn

(4)
δv̇n = Cn

bδf
b
+ f n × φ − (2ωn

ie + ωn
en)× δvn

+ vn × (2δωn
ie + δωn

en)+ δgnp

(5)φ̇ =− ωn
in × φ + δωn

in − Cn
bδω

b
ib
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δgnp is the local gravity error vector in the n-frame; ωn
in

 
is the angular velocity vector, ωn

in = ωn
ie + ωn

en with the 
corresponding error denoted by δωn

in ; and δωb
ib refers to 

the gyro measurement errors. More details on the above 
three equations can be found in (Benson , 1975; Shin , 
2005).

The residual inertial sensor errors are modeled as

where wa , wg are three-element vectors representing the 
white noise component of the accelerometers and the 
gyro measurements, respectively. The residual biases 
of the gyros and accelerometer are modeled as the first-
order Gauss–Markov process 

 where Tgb and Tab are the correlation times and wgb and 
wab are the corresponding driving white noise of strength 
2σ 2/T  , with σ being the root mean squared value of the 
process.

Measurement models
For a TGMT the available external measurements 
include the GNSS-derived position and the speed from 
the odometer and NHC. The models for these observa-
bles are given below.

GNSS position update
The position of a GNSS antenna is related to the INS 
position by taking into account the lever arm as follows 
[(Teunissen and Montenbruck , 2017), p. 831]:

where rG and rI are the position vectors of the GNSS 
antenna phase center and the IMU measurement center, 
respectively, which are expressed as the latitude ϕ , 
longitude � and height h. lb is the lever arm from  
the IMU center to the GNSS antenna phase center  
in the b-frame, which can be accurately measured.  

D
−1 = diag

(

[

1
RM+h

1
(RN+h) cosϕ

− 1
]T

)

 , a diagonal matrix  

that converts the delta position in meter to delta latitude, 
delta longitude in radians and delta height in meter, where 
RM and RN are, respectively, the meridian and prime ver-
tical radii of the curvature.

(6)δf b = δba + wa

(7)δωb
ib = δbg + wg

(8a)δḃg =−
1

Tgb
bg + wgb

(8b)δḃa =−
1

Tab
ba + wab

(9)rG = rI +D−1Cn
bl

b

Then, the measurement innovation vector comprises 
the difference between the GNSS- and the INS-derived 
positions, and the measurement model can be derived by 
perturbation as

where r̂G is the estimated position of the GNSS antenna 
center, r̃nG is the position measurement provided by the 
GNSS receiver, nr denotes the GNSS position measure-
ment noise in meter, modeled as Gaussian white noise 
with nr ∼ N (0,Rr) , which is adequate if the GNSS sam-
pling rate is below 1 Hz (Niu et al. , 2014).

Velocity update in the vehicle frame
The host vehicle, i.e., the TGMT, is a specifically designed 
trolley (as depicted in Fig.  10) that differs from civilian 
land vehicles since it cannot change its course arbitrar-
ily. It can keep rigid contact with the rails in both lateral 
and vertical directions when moving along the track and 
conforms to the NHC quite well even when railway track 
deformation exists. More details on the TGMT can be 
found in (Chen et al. , 2015; Chen et al. , 2018). The trol-
ley has only an along-track speed, which can be obtained 
from an odometer sensor, and the velocities in both 
cross-track and vertical directions are zero. Therefore, 
the velocity measurement in the v-frame can be written 
as

where ṽvwheel denotes the velocity measurement vector 
in the v-frame; vodo represents the along-track velocity 
derived from the odometer output, and nv is the veloc-
ity measurement noise with nv ∼ N (0,Rv) . Note that the 
noise strength of the last two components of nv are dif-
ferent from that of the first component and should be set 
according to the NHC condition.

The relationship between the velocities of the trolley 
wheel and the IMU is expressed as

where lbwheel is the lever-arm vector from the IMU meas-
urement center to the wheel sensor in the b-frame; Cv

b 
is the b-frame to v-frame coordinate transformation 
matrix, which can be computed from the misalignment 
angles of the v-frame with respect to the b-frame; and the 
estimated velocity at the wheel point is denoted by v̂vwheel . 

(10)
zr = D

(

r̂G − r̃G
)

= δrn + (Cn
bl

b)× φ + nr

(11)ṽvwheel =
[

vodo 0 0
]T

(12)ṽvwheel =vvwheel − nv

(13)vvwheel = Cv
bC

b
nv

n
+ Cv

b(ω
b
eb×)lbwheel
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The v-frame velocity error measurement model can be 
expressed as

Errors of the optimal position estimates
In the GNSS/INS integrated solution, the optimal posi-
tion estimate is obtained by subtracting the optimal 
estimate of the INS-derived position error from the INS-
derived position solution as

where r̂est(t) denotes the optimal position estimate from 
the aided INS, with the subscript ‘ est’ indicating the opti-
mal estimate; r̂(t) is the INS-indicated position solution, 
which contains errors δr ; and δ̂r is the optimal estimate 
of δr from the data-fusion KF. The error in the position 
estimate, denoted by δr̂est , is defined as

The INS-derived position error is defined as

where rreal(t) is the true position vector of the IMU. The 
best estimate δ̂r(t) also contains an estimation error, rep-
resented as

Substituting (15) and (17) into (16) yields

A comparison of (18) and (19) shows that the error of the 
estimated position of the integrated system is exactly the 
estimation error of the position state variable δr(t) , i.e., 
δr̂est(t) = −δ[δ̂r(t)] . Thus, δr̂est(t) is used in the follow-
ing error propagation modeling.

Errors of the track irregularity estimates
As introduced in the appendix, the alignment and verti-
cal irregularities of the railway track are both defined as 
differential versines in (A.2), namely, track irregularity is 
a relative quantity. The track irregularity measurement 
error with the GNSS/INS system should be evaluated by 
the relative navigation error as defined in (A.5). Assum-
ing the trolley moves at a constant speed, the railway 
track irregularity measurement error can be computed as 
differential navigation errors, denoted by ▽r̂est:

(14)

zv = v̂vwheel − ṽvwheel

= Cv
bC

b
nδv

n
− Cv

bC
b
n(v

n
×)φ

− Cv
b(l

b
wheel×)δωb

ib + nv

(15)r̂est(t) = r̂(t)− δ̂r(t)

(16)δr̂est(t) � r̂est(t)− rreal(t)

(17)δr(t) = r̂(t)− rreal(t)

(18)δ[δ̂r(t)] � δ̂r(t)− δr(t)

(19)δr̂est(t) = δr(t)− δ̂r(t)

where t ∈ T , ωi ∈ � ; δr̂est is a stochastic process that is a 
function defined on the product space T×� , where � is 
a fundamental sample space and T is a subset of the real 
line denoting a time set of interest.

Therefore, ▽r̂est is also a stochastic process, and con-
tains all necessary information to completely describe 
the railway track irregularity measurement accuracy of a 
TGMT. It is clear that the objective of the performance 
analysis of a TGMT based on an aided INS in measur-
ing the track irregularity is to completely characterize the 
relative error process ▽r̂est(t,ω) . In the subsequent analy-
sis, we study the second moment, i.e., covariance matrix, 
of ▽r̂est to evaluate the measurement performance of a 
given TGMT. The covariance matrix of the measurement 
errors is defined as

with

Proposed method
Equations (3) to (5) describe the INS error dynamics 
using a set of nonhomogeneous differential equations 
with time-varying coefficients. The full determination of 
the INS error propagation is too complicated when tak-
ing into account the real trajectories and maneuvers. In 
this case, we generally use a simulation approach to aid 
the analysis (Titterton and Weston , 2004; Groves , 2008). 
The situation becomes much more complex for an aided 
INS because the integrated navigation solution is affected 
not only by INS error sources but also by the external 
measurement noises. Fortunately, in the railway track 
surveying application, the nominal trajectory and motion 
of the host track trolley are simple and almost determin-
istic, which reduces the complexity and makes the ana-
lytic assessment possible.

Figure 2 depicts a flowchart of the semi-analytic assess-
ment of the relative measurement accuracy with the 
aided INS in measuring railway track irregularity. The 
procedure consists of an analytic assessment phase (the 
upper part of the figure) and a Monte Carlo simulation 
phase (the lower part). First, the system model and meas-
urement model are simplified according to the several 
assumptions that hold in the specific railway surveying 
scenario. Then the coupling between the channels of the 
INS error model vanishes, and the error state dynamics 
is reduced to a linear time-invariant stochastic system 
driven only by white Gaussian noise, as enclosed by the 

(20)▽r̂est(t,ωi) = δr̂est(t,ωi)− δr̂est(t +�t,ωi)

(21)
Pir(t) � E{

[

▽r̂est(t)−mir(t)
][

▽r̂est(t)−mir(t)
]T
}

(22)mir(t) � E{▽r̂est(t, ·)}
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dashed lines in the figure. The simplified INS error differ-
ential equations are solved in the Laplace domain, where 
HINS(s) represents the transfer function. The Laplace 
transformation of the steady-state KF estimator is per-
formed to yield the optimal estimate, where HKF(s) char-
acterizes the transfer function. An analytical solution of 
the navigation errors in the Laplace domain, i.e., δr̂(s) , is 
obtained as the difference between δr(s) and δ̂r(s).

The Monte Carlo simulation part, enclosed in the gray 
box, is performed as follows: create a transfer function 
model based on the derived δr̂(s) model; then, use the 
simulated white noise series as the input to generate the 
navigation error samples, i.e., the system responses; and 
finally, evaluate the relative measurement accuracy based 
on the output navigation error samples. More details on 
the simulation part are given in subsequent sections.

Simplification for the railway measurement case

Assumption 1  The track trolley is assumed to move 
uniformly in a straight line in the south-north direction.

This assumption is based on the following facts: High-
speed railway track is usually designed with a very large 
radius of curvature in both the horizontal and verti-
cal profiles and with a slope gradient smaller than 1.5%. 
The longest chord in railway track irregularity meas-
urements does not exceed 300 m; thus, it is reasonable 
to simplify such a short curve section to a straight line 
and to assume that the host vehicle moves uniformly in 
south-north direction and remains level, in which case 
the attitude matrix Cn

b = I . As defined in appendix, the 
horizontal railway track deformation refers to the devia-
tion of rails from its nominal position in the lateral and 
vertical directions. When the trolley moves in the south-
north direction, we can evaluate the horizontal and 

vertical irregularity measurement accuracy by directly 
analyzing the east and vertical positioning errors, respec-
tively. Thus, this assumption would simplify the follow-
ing analysis. In addition, the trolley moves at a low speed, 
and its attitude changes slowly, which makes the dynam-
ics-induced errors (such as the effects of the scale factor 
and cross-coupling) negligible.

Assumption 2  The IMU is mounted with its sensitive 
axes perfectly aligned with the host vehicle axes, i.e., the 
b-frame is coincident with the v-frame. In this case Cv

b 
becomes the identity matrix.

This assumption is reasonable because the IMU mount-
ing angles can be estimated and compensated for with 
sufficient accuracy, as discussed in (Chen et al. , 2020)

Assumption 3  Lever arms of the GNSS antenna and 
odometer are all zeros, and GNSS positions with centim-
eter accuracy, obtained by the postprocessed kinematic, 
are available all the time, as the lever arms can be meas-
ured with sufficient accuracy and the related effect can be 
corrected in practice.

Assumption 4  The local gravity uncertainty is assumed 
to be much smaller than the accelerometer measurement 
error and is therefore negligible.

System model simplification
The performance of the aided INS is also influenced by 
the real trajectories and maneuvers. We list the key infor-
mation on the trajectory, inertial sensor errors, and abso-
lute navigation error as follows:

•	 mean position of the trajectory: latitude = 30◦ , longi-
tude = 114◦ , h = 20 m.

•	 mean absolute positioning error: δrN = 0.01 m, δrE = 
0.01 m, δrD = 0.02 m.

•	 velocity: vN = 1 m/s, vE = 0 m/s, vD = 0 m/s.
•	 mean velocity error: δvN = 0.002 m/s, δvE = 0.002 

m/s, δvD = 0.002 m/s.
•	 mean attitude error: φN = 0.003◦ , φE = 0.003◦ , φD = 

0.005◦.
•	 gyro bias: δωb

ib = 0.01 ◦/h.
•	 accelerometer bias: δf b = 10 mGal.
•	 local gravity value: 9.78 m/s2.

We can calculate the magnitude of each term in the INS 
error differential equations by substituting the param-
eters listed above. The error terms with a magnitude 
smaller than 10% of the predominant term are consid-
ered insignificant terms and thus are neglected in the 

Measurement
model

Monte carlo simulation

Motion &
Assumptions

Simplified
meas. model

Steady state
Kalman filter

HKF (s)

HINS (s)

n (s)

LaplaceSimplity

δr (s)^

δr (s)^

δr (s)

ω (s)

ω (t)

Fig. 2  Flowchart of the semi-analytical analysis of the relative 
measurement accuracy of the GNSS/INS integrated system
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following analysis. The inertial sensor error terms δωb
ib 

and δf b are always kept. As a result, the INS error differ-
ential equations from (3) to (5) can be simplified as

where δfN , δfE , δfD are the accelerometer measurement 
errors in the north, east, and vertical directions, respec-
tively. δωn

ib,N , δωn
ib,E , δωn

ib,D are the gyroscopic measure-
ment errors in the north, east, and vertical directions, 
respectively. After simplification, as shown in (23), the 
coupling between channels vanishes, and each channel 
can be analyzed separately.

Measurement model simplification
A similar simplification can be carried out for meas-
urement Eqs. (10) and (14) by taking into account the 
assumptions and trajectory information listed above, 
yielding

Measurement error propagation model
The navigation error propagation modeling of the GNSS/
INS is analyzed in the vertical and horizontal channels. 
In the following, the details on the vertical channel anal-
ysis are presented, while the analysis of the horizontal 
channel is similar and given in the appendix.

For the vertical channel analysis, in addition to the 
height and vertical velocity errors, the easting gyro bias 
δbgE and vertical accelerometer bias δbaD should be aug-
mented into the error state vector. Additionally, since the 
NHC is induced as a navigation aid, the attitude error 
term φE should be augmented. Thus, the error state vec-
tor and the related state dynamics model can be written 
as

with

(23)



















































δṙN = δvN
δṙE = δvE
δṙD = δvD
δv̇N = −fDφE + δfN
δv̇E = fDφN + δfE
δv̇D = δfD
φ̇N = −δωn

ib,N

φ̇E = −δωn
ib,E

φ̇D = −δωn
ib,D

(24)zr = δrn + nr

(25)zv = δvn − vn × φ + nv

(26)xD =
[

δh δvD φE δbgE δbaD
]T

(27)ẋD(t) =FD(t)xD(t)+GD(t)wD(t)

where the subscript ‘D’ denotes the down direction and 
wD(t) represents the driving white Gaussian noise of 
strength QD:

where δbgE is modeled as a first-order Gauss–Markov 
process with correlation time Tgb and driven by white 
Gaussian noise process wgbE . The residual bias in the 
vertical accelerometer δbaD is modeled as a first-order 
Gauss–Markov process with correlation time Tab and 
driven by white Gaussian noise process wabD . waD is 
the white Gaussian noise that corrupted the vertical 
accelerometer measurement. wgE is the white Gaussian 
noise that corrupted the gyro measurement in the east 
direction.

The measurements in the KF for the aided INS in the 
vertical channel includes the height difference between 
the INS and GNSS and the vertical velocity difference 
between the INS and the NHC. According to (25), the 
velocity measurement equation can be written as

where nvD is the vertical component of nv in (12) and rep-
resents the measurement uncertainty of the across-track 
zero velocity. According to assumption 1, the host vehi-
cle is assumed to move in the south-north direction, in 
which case the east velocity shall be zero. Thus, (31) can 
be simplified as

Therefore, the measurement equation for the aided INS 
in the vertical channel can be written as

where zD =
[

zh zvD
]T , nD =

[

nrD nvD
]T

However, if the vehicle moves with a nonzero constant 
heading angle rather in the south-north direction, then 

(28)FD =











0 − 1 0 0 0
0 0 0 0 1
0 0 0 − 1 0
0 0 0 − 1/Tgb 0
0 0 0 − 1/Tab 0











, GD =

�

0 0
0 I4

�

(29)wD =
[

0 waD wgE wgbE wabD

]T

(30)E
{

wD(t)w
T
D(t + τ )

}

=QDδ(τ )

(31)zvD = δvD + vEφN − vNφE + nvD

(32)zv,D = δvD − vNφE + nvD

(33)zD = HDxD + nD

(34)HD =

[

1 0 0 0 0
0 1 − vN 0 0

]

(35)E
{

nD(t)n
T
D(t + τ )

}

=RDδ(τ )
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vE  = 0 . In this case the simplification from (31) to (32) is 
not valid and the measurement Eq. (31) should be used.

The state dynamics equations of the continuous KF are 
given by

It is obvious from Eqs. (28) and (34) that FD , GD , HD are 
all constant matrices; RD and QD are constant and diag-
onal matrices. The filter gains converge to steady-state 
values in a short time, resulting in constant matrices P 
and K . The matrix P can be calculated by solving the con-
tinuous matrix Riccati differential equation Ṗ(t) = 0 . The 
gain matrix KD in this case is a 5-by-2 matrix.

Taking the Laplace transform of Eq. (27) yields the 
related solution in the Laplace domain:

The expansion of the above formula can be written as 

 where γgb = 1
Tgb

 , γab =
1

Tab
 . By taking the Laplace trans-

form of Eq. (33) and substituting (37) into the trans-
formed equation we obtain zD(s) , whose expansion can 
be written as 

Solving Eq. (36) in the Laplace domain yields

(36)
˙̂xD(t) = FD(t)x̂D(t)+ KD(t)

[

zD(t)−HD(t)x̂D(t)
]

(37)xD(s) =
[

(sI− FD)
−1GDwD(s)

]

(38a)δh(s) =−
1

s2
waD(s)−

1

s2(s + γab)
wabD(s)

(38b)δvD(s) =
1

s
waD(s)+

1

s(s + γab)
wabD(s)

(38c)φE(s) =
1

s
wgE(s)−

1

s(s + γgb)
wgbE(s)

(38d)δbaD(s) =
1

s + γab
wabD(s)

(38e)δbgE(s) =
1

s + γgb
wgbE(s)

(39a)
zh(s) =−

1

s2
waD(s)−

1

s2(s + γab)
wabD(s)

+ nrD(s)

(39b)

zvD(s) =
1

s
waD(s)−

vN

s
wgE(s)+

1

s(s + γab)
wabD(s)

+
vN

s(s + γgb)
wgbE(s)+ nvD(s)

Subtracting the height component δ̂h(s) in vector x̂D(s) 
from δh(s) in (37) yields the height estimate error of the 
aided INS, δĥ(s) , which is a linear function of wD(s) , writ-
ten as

where HaD , HgE , HgbE , HabD , HnrD , and HnvD are the 
related coefficients of the noise terms. The above equa-
tion is the error propagation model of the aided INS in 
the vertical channel in the Laplace domain. It tells that 
the height error of the GNSS/INS integration for meas-
uring the railway track irregularity can be regarded as a 
time-invariant stochastic system with the white noise as 
the system input. The detailed expression of δĥ(s) is a bit 
complicated, and the related derivation can be got by a 
symbolic operation with the MATLAB software.

Relative measurement accuracy analysis
The position error solution δr̂est(s) in the Laplace 
domain has been obtained. Theoretically, the cor-
responding analytic solutions in the time domain, 
denoted by δr̂est(t) , can be obtained by an inverse 
Laplace transform. Then, we can completely evaluate 
the relative measurement accuracy of the aided INS 
according to (A.5) and (A.7). Unfortunately, obtaining 
this analytic expression δr̂est(t) is impossible because 
the inverse Laplace transformation of white noise in 
Eqs. (41) and (B.12) does not lead to an explicit analytic 
expression. Therefore, the remainder analysis should be 
performed with a Monte Carlo simulation to generate 
the samples of δr̂est(t) , as depicted in Fig. 2.

The Monte Carlo simulation relies on repeated random 
sampling to obtain numerical results, which is helpful in 
understanding the behaviors of a stochastic system that 
are not amenable to analysis by the usual direct mathe-
matical methods (Brown and Hwang , 2012). Since white 
Gaussian noise is a stationary and Gaussian-distributed 
random process with a constant spectral density function 
over all frequencies, if it is put into a linear time-invari-
ant system, the system output will also be stationary and 
Gaussian distributed. It is evident from (41), (B.12) and 
(20) that ▽r̂est will also be a stationary, Gaussian-distrib-
uted, and ergodic random process. In that case, we would 
be able to conduct the performance analysis of the rela-
tive measurement accuracy with sufficiently long samples 
δr̂est(t) . The analysis procedure is as follows: 

(40)x̂D(s) =
[

(sI− FD + KDHD)
−1KD

]

zD(s)

(41)
δĥ(s) = HaD waD(s)+HgE wgE(s)

+HgbE wgbE(s)+HabD wabD(s)

+HnrD nrD(s)+HnvD nvD(s)
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(1)	 Use the MATLAB function tf to create a transfer 
function model based on the error propagation 
model (41) and (B.12) in the Laplace domain.

(2)	 Simulate the input white noise samples, including 
the system noise, measurement noise, and driving 
noise of the first-order Gauss–Markov process; the 
corresponding parameters needed are listed subse-
quently.

(3)	 Use the MATLAB function lsim to generate the 
time response of the dynamic system (generated in 
step 1) to the input stimuli (the output in step 2), 
obtaining navigation error samples of the aided INS 
in the time domain.

(4)	 Calculate the railway track irregularity measure-
ment error ▽r̂est in (20) and its corresponding 
covariance matrix Pir in (21).

The information needed for generating the input white 
noise are listed as follows:

•	 Angular Random Walk (ARW) = 0.002 ◦/
√
h , Veloc-

ity Random Walk (VRW) = 0.001 m/s/
√
h.

•	 Tgb = 1000 s, σgb = 0.005 ◦/h , Tgb = 1000 s, σgb = 25 
mGal

•	 nrE = 1 cm/
√
Hz , nrD = 2 cm/

√
Hz , nv = 0.1 

mm/s/
√
Hz

Figure  3 is a sample of the aided INS positioning error 
process in the lateral and vertical directions. In this fig-
ure, the navigation errors are plotted versus the travel 
distance, which is obtained from the calibrated odom-
eter sensor. Since the positioning error in the along-track 
direction has little influence on the track irregularity 
measurement accuracy, it is not included in this figure. 
The first observation is that the error sequence varies 
within 1 cm and shows an explicit spatial correlation.

Based on the generated navigation error samples, we 
can calculate the railway track irregularity measurement 
error ▽r̂est as introduced in the above step 4. Figure 4 is 
a histogram of ▽r̂est in the east and vertical directions, 
which are related to the short-wave alignment and lon-
gitudinal direction, respectively, illustrating the distri-
bution of ▽r̂est . They approximately follow the Gaussian 
distribution, as expected. The results show that 1 mm 
accuracy is achievable in vertical and horizontal track 
irregularity measurements with a navigation-grade IMU 
aided by a carrier-phase differential GNSS and the NHC. 
This result answers the first question raised in the intro-
duction section.

Validation and discussion
In this section, we employ a full simulation approach to 
validate the results obtained from the proposed semi-
analytical error propagation model. Figure 5 depicts the 
validation flowchart. The previous analysis adopted a 
semianalytical approach where the analytical method 
was aided by a simulation technique in the last step. 
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Fig. 3  A sample of the aided INS positioning error process in the 
lateral and vertical directions
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The simulation method encompasses a system simula-
tion where the actual filter algorithm is embedded and 
the effects of nonlinearities in the system are kept. The 
simulated raw IMU data and navigation aids corrupted 
by different error terms are processed by a full compre-
hensive aided INS algorithm, i.e., the data-fusion KF, 
and based on its output errors; the irregularity meas-
urement errors are analyzed. The results from these 
two approaches are finally compared to evaluate the 
feasibility of the semi-analytical method.

Aided INS raw data simulation
The aided INS data simulation software is developed at 
the GNSS Research Center of Wuhan University. The 
software consists of an IMU data simulator, navigation 
aiding simulator, error source simulator, and reference 
navigation calculator. It can generate the outputs of 
three orthogonal gyros and three orthogonal acceler-
ometers, together with the navigation aid that includes 
position and velocity measurements via the user-
defined trajectory and motion. The perfect inertial sen-
sor output without corruption is first derived with the 
inverse principle of the INS. The simulated perfect IMU 
data are then integrated forward with time through the 
INS mechanization algorithm by setting the initial nav-
igation state to generate the true navigation solutions 
as the navigation reference truth. The error source sim-
ulator is designed to generate several typical stochastic 
processes to model the inertial sensor errors and meas-
urement noise, including white noise, random walk, 
and the first-order Gauss–Markov process, by using the 
corresponding parameters. The simulated error terms 
perturbing the gyros and accelerometers are added to 
the perfect inertial sensor outputs to yield the noise 
corrupted IMU data. The noise corrupted navigation 
aid, such as position measurement, can be achieved by 
adding additive noise terms to the perfect aid samples.

Simulation settings
The host vehicle trajectory and motion settings for 
the aided INS data simulation are consistent with the 
assumptions and settings in the proceeding section for 
error propagation modeling. The host vehicle is assumed 

to move in a straight line with a constant speed in the 
north direction and remain level. The motion details 
are summarized in Table  1. At the beginning, the vehi-
cle remains stationary for ten minutes to finish the 
static alignment, followed by an alternating accelerating 
dynamic motion to make the KF converge to a steady 
state in a short time. Finally, it accelerates from rest at 0.2 
m/s2 for a period of 5 s, reaching a speed of 1 m/s, and 
then maintains uniform motion in a straight line at this 
velocity for 10,000 s. Only the navigation error of the uni-
form motion section is studied in detail in the following 
sections. The error terms that perturb the onboard IMU 
and the navigation aids are set to the same values as those 
for the preceding error propagation modeling analysis. 
The simulated IMU dataset is sampled at 200 Hz.

Simulated data processing
The simulated aided INS data are processed with the 
postprocessing software InsRail developed at the GNSS 
Research Center of Wuhan University. InsRail contains 
three function modules: post GNSS positioning pro-
cess, aided INS data fusion, and railway track geometry 
analysis. The fusion of the GNSS positioning solutions 
and the raw inertial dataset is implemented in a loosely 
coupled manner. As the basis of the integrated processing 
modular of InsRail, the extended KF is designed based 
on 21-dimensional error state vectors, e.g., errors of the 
position, velocity and attitude, biases and scale factors 
of the gyros and accelerometers. Moreover, the Rauch-
Tung-Striebel (RTS) backward smoothing algorithm is 
applied in the software to achieve a high accuracy in the 
smoothed solutions. InsRail also supports other aids for 
the INS, such as the Zero-velocity Update (ZUPT), veloc-
ity update, and NHCs, to improve the aided INS perfor-
mance. To be consistent with the analytic assessment 
based on the error propagation model, the simulated 
aided INS data are processed under the forward Kalman 
filtering mode.

Semianalytical
method

Fig. 5  Flowchart of the validation of the semianalytical error 
propagation model through a data simulation approach

Table 1  Description of the dynamic motion of the host vehicle

Segment No. Motion setting

1 keep stationary for 600 s

2 accelerate to 80 m/s in 20 s

3 accelerate to 0 m/s in 20 s

4 accelerate to 80 m/s in 20 s

5 accelerate to 0 m/s in 20 s

6 accelerate to 80 m/s in 20 s

7 accelerate to 0 m/s in 20 s

8 accelerate to 1 m/s in 5 s

9 move with constant speed for 10,000 s
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Simulation results
Figure  6 shows the Short wavelength Track Irregularity 
(STI) measurement error distribution in both alignment 
(or lateral) and longitudinal-level (vertical) directions. It 
illustrates that the measurement errors of the GNSS/INS 
integrated system in the simulation case closely follow a 
Gaussian distribution and are consistent with the those 
obtained from the semi-analytical approach, as shown 
in Fig.  4. It should be noted that the STI measurement 
is used here as an example, and a similar figure can also 
be plotted for the Long wavelength Track Irregularity 
(LTI) measurement. The statistical values of the measure-
ment errors from both the semi-analytical and simula-
tion approaches are listed in Table 2, which demonstrates 
that the consistence between these two methods is better 
than 85%. This comparison validates the feasibility of the 
proposed semi-analytical approach.

It is notable that the measurement errors from the 
semi-analytical approach are slightly greater than those in 
the simulation. This can be explained as follows: the cou-
pling between channels (i.e., axes) of the INS is ignored 
in the error propagation modeling procedure; the origi-
nal weak observability of some navigation states across 
an axis is reduced or lost; and the loss of state observ-
ability causes the KF to lose the opportunity for state cor-
rection, lowing the final estimation accuracy slightly. In 
the simulation full coupling between channels has been 
considered, resulting in better results.

Validation in field tests
The proposed method and the related measurement 
accuracy analysis can also be verified through field tests, 
and the results were reported in our previous work (Chen 
et al. , 2015; Chen et al. , 2018). The TGMT based on a 
GNSS/INS configuration was evaluated comprehen-
sively for the first time in November 2013 in the newly 

built Lanzhou-Urumqi high speed railway. The Lanzhou-
Urumqi high speed passenger railway runs from Lanzhou 
to Urumqi in northwestern China with a designed opera-
tion speed of 250 km/h. In the experiment, the track sec-
tion of about 1000 m was surveyed. The key information 
on the experiment and equipment used is listed below:

•	 GNSS/INS integrated system: a navigation grade 
Positioning and Orientation System (POS) which 
integrates a Ring Laser Gyro (RLG) based IMU and a 
high-precision NovAtel GNSS OEM6 receiver.

•	 Independent reference: a classical TGMT using high 
precision total station was used to provide alignment 
reference values accurate to 1.4 mm. A Trimble DiNi 
digital level was used to obtain the referenced vertical 
irregularity that is accurate to about 0.3 mm.

•	 GNSS base station receiver: Trimble NetR9 GNSS 
reference receiver.

•	 GNSS antenna: NovAtel GPS-702-GGL.

Figure 7 compares the STI measurements by the TGMT 
using GNSS/INS integrated system with the independ-
ent reference values obtained with the high precision 
geodetic surveys. It shows that the STI measurements in 
both vertical and alignment directions are accurate to 1 
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Fig. 6  Histogram of the short-wave track irregularity measurement errors of the aided INS by the simulation method

Table 2  Comparison of the track irregularity measurement 
accuracy analysis results from the semianalytical and simulation 
methods

Semianalytical Simulation Consistency

STI Meas. Error
(mm, 3 σ)

lateral 1.02 0.99 97%

vertical 1.29 1.09 85%

LTI Meas. Error
(mm, 3 σ)

lateral 2.24 2.09 93%

vertical 3.01 2.62 87%
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mm at 98% confidence level, which are consistent with 
the semi-analytical and simulation results. In this figure, 
we take the STI result as an example, more details on the 
field tests and results can be found in (Chen et al. , 2018). 
In a field test, Dead Reckoning (DR) using the GNSS/INS 
integrated attitude and the travel distance is suggested to 
exploit the NHC’s potential to the fullest and ensure the 
consistency between the semianalytical analysis and the 
field tests.

Discussion
In the error propagation modeling, the semi-analytical 
method is used, which combines an analytical method 
and a Monte Carlo simulation in the relative meas-
urement accuracy analysis. The method is proved to 
be feasible and credible for the performance analysis 
of a TGMT based on an aided INS for specific railway 
track irregularity measurement applications. There is 
an advantage of employing the semi-analytical method 
over the full simulation approach. Because the error 
state space KF model for the aided INS is simplified and 
reduced to a linear time-invariant stochastic system 
driven by the input white Gaussian noise for the spe-
cific application, it is possible to perform the accuracy 
analysis beforehand without a raw IMU data generator 
simulation and an integrated data processing. Thus, the 
semi-analytical method is more computationally effi-
cient than the full simulation approach and more con-
venient to evaluate the effects of any changes in sensor 
hardware or error sources on the final measurement 
accuracy. It aids the system design of a TGMT based 
on an aided INS without actually building the system, 
implementing an IMU raw data simulator, and aided 

INS data processing software. A limitation of this 
approach is the analytic portion is appropriate only for 
the situation that the vehicle motion is extremely sim-
ple, e.g., railway track geometry surveying. It is not a 
general method suitable for any ground vehicle systems.

Effect of the inertial sensor errors 
on the measurement accuracy
With the semi-analytical approach, it is convenient to 
analyze the performance of a TGMT based on GNSS/INS 
integration and evaluate the effects of any changes in sen-
sor hardware and error sources on the final measurement 
accuracy, which is very important for sensor selection in 
the TGMT design procedure. Here, we present a quanti-
tative analysis of the effects of predominant inertial sen-
sor errors, including bias instability and measurement 
noise of the gyroscopes and accelerometers, on the track 
irregularity measurement accuracy. The bias is modeled 
as a first-order Gauss–Markov process characterized by 
the correlation time and mean squared value.

Figure  8 shows measurement errors of the STI and 
LTI in both vertical and alignment directions versus the 
inertial sensor bias and random noise. It shows a sig-
nificant increase in measurement errors with respect to 
the gyroscope bias and noise, i.e., ARW, in both the STI 
and LTI measurement. While there are no noticeable 
effects of the accelerometer bias and VRW on the meas-
urement accuracy. The determined track position and 
track irregularity are highly correlated with the relative 
measurement accuracy of the attitude angles, including 
roll, pitch and heading angles. Since the TGMT motion 
is constrained by rails, the short term attitude accuracy 
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of the GNSS/INS integrated system is dominated by the 
gyroscope triads.

This figure shows that we can evaluate the system per-
formance with the derived error propagation model and 
given sensor error sources. We can conclude from the 
above analysis that the errors in the gyroscopic measure-
ments are the predominant error sources for the TGMT 
based on GNSS/INS integration. Accelerometer errors 
seem to have insignificant effects on the system perfor-
mance and the relative measurement accuracy. However, 
the accelerometer bias can give rise to roll angle meas-
urements and finally affect the cross-level measurement. 
Namely, gyroscopes are critical sensors that determine 
the performance of the railway track irregularity meas-
urement system. Therefore, in the system design atten-
tion should be paid to the gyroscope selection. The above 
result has answered question 2 raised in the introduction 
section.

Conclusions
In this research, the temporal and spatial relative meas-
urement accuracy and corresponding error propagation 
of the GNSS/INS integration specifically for the meas-
urement of railway track irregularities are studied. A 
semi-analytical method is proposed to analyze the rela-
tive measurement error propagation model. In the rail-
way surveying, the complexity of the nonlinearity of the 
aided INS is reduced, allowing each channel to be ana-
lyzed separately. Considering the steady-state KF opera-
tion, true errors in the optimal estimates of an aided INS 
are obtained with an analytical expression in the Laplace 
domain. Based on the derived error propagation model, 
the relative measurement accuracy of a railway track 

geometry surveying system based on the aided INS is 
assessed. The proposed error model is verified by a simu-
lation, which shows the agreement between the results 
with the semi-analytic and simulation method is better 
than 85% and 93% for the vertical and horizontal chan-
nels, respectively.

Therefore, this research has answered the two funda-
mental questions for a TGMT based on an aided INS: 1) 
an accuracy of 1 mm is possible in measuring the align-
ment and vertical track irregularities and 2) the influence 
of the principal inertial sensor errors on the final meas-
urement accuracy can be quantitatively analyzed. These 
conclusions are valuable for the development of a TGMT 
and other inertial surveying applications using an aided 
INS and can benefit the future research.

Appendix

Railway track irregularity parameters
For a given railway track section, we can draw a chord of 
certain length with its start and end points on the rail, 
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as depicted in Fig.  9. Then, the nominal offset from the 
rail to the chord at mileage s, denoted by vnom(s) , can be 
computed from the designed geometry of the track. For 
example, in the straightline section, the nominal versine 
is zero. Actual rails do not perfectly follow the designed 
positions and tend to drift away from the nominal 
smoothness. The offset from the actual rail to the chord is 
called the actual versine and denoted by vreal(s) , which is 
measured by the classic geodetic instruments or a GNSS/
INS integrated system. The difference between the real 
and nominal versines is defined as

where �v(s) can be regarded as the versine offset from 
the nominal value. Then, the railway track alignment 
irregularity parameter is computed as

It is clear from the above equation that track alignment 
irregularity is a relative quantity. A series of Ir, i.e., the 
point-to-point variation of the versine deviations, por-
trays the track’s smoothness. In the standards on pre-
cise railway track measurement, the chord length and 
�s are defined. The chord length can be chosen as 30 m 
or 300  m, and the corresponding �s can then be set as 
5 m or 150 m, respectively. The railway track irregularity 
parameters related to a 30 m chord are called short wave-
length irregularities, and those related to a 300 m chord 
are called long wavelength irregularities. The railway track 
irregularities are evaluated separately in both horizontal 
and vertical directions, with the former called alignment 
and the latter called longitudinal or vertical irregularity. 
The vertical irregularity parameters are computed using 
the same method depicted in Fig.  9 but plotted in the 
mileage-height plane. More details on the track geomet-
ric parameters can be found in our previous work (Chen 
et al. , 2015; Chen et al. , 2018).

Relative measurement accuracy
The navigation error process in an aided INS’s solutions is 
stochastic. Let � be a fundamental sample space and T be a 
subset of the real line denoting a time set of interest. Then, 
the navigation error process can be defined as a real-valued 
function of two arguments e(t,ω) , where the first argument 
is an element of T and the second an element of � . For any 
fixed t ∈ T  , e(t, ·) is a random variable. If we fix the second 
argument, for each point ωi ∈ � there is associated with a 
time function e(·,ωi) , whose value at each time instant is a 
sample from the stochastic process.

It is common practice to describe the stochastic navi-
gation error by the associated first two moments, i.e., the 
mean value function and covariance matrix. The mean 

(A.1)�v(s) = vnom(s)− vreal(s)

(A.2)Ir(s) = �v(s)−�v(s +�s)

value function me(t) and covariance matrix Pe(·) of the 
process e(·) are defined for all t ∈ T  by

In the preceding section, we notice that it is the error var-
iation between the navigation error e at any time instant 
t and t +�t that inherently determines the track irregu-
larity measurement accuracy. Here, we denote the rela-
tive navigation error for all t ∈ T  by

The corresponding mean value function and covariance 
matrix are defined as

Obviously, the information in (A.7), which characterize 
the TGMT’s relative measurement accuracy, is not avail-
able in (A.4).

Analytic analysis of a steady‑state Kalman filter estimator
The steady-state KF can be derived from the tempo-
ral continuous KF. If the system dynamic matrix F , the 
noise input mapping matrix G in (2), and the measure-
ment matrix H are all constant matrices, and if the sys-
tem noise and measurement noise are stationary ( Q and 
R are constant), the KF for a GNSS/INS/NHC integrated 
system may reach steady-state performance, leading to a 
constant covariance matrix P . In this condition, the Ric-
cati equation for the continuous KF becomes an algebraic 
relation:

(A.3)me(t) ≡ E{e(t, ·)}

(A.4)Pe(t) ≡ E{[e(t)−me(t)][e(t)−me(t)]
T
}

(A.5)�e(t) ≡ e(t, ·)− e(t +�t, ·)

(A.6)m�e(t) ≡ E{�e(t, ·)}

(A.7)
P�e(t) ≡ E{[�x(t)−m�e(t)][�x(t)−m�e(t)]

T
}

(A.8)Ṗ = FP+ PFT +GQGT
− PHTR-1HP = 0

Track Trolley

GNSS Atennna
GNSS/INS

System

Fig. 10  Railway track geometry measuring trolley (TGMT) based on 
an aided INS
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In the steady-state condition, the rate at which the uncer-
tainty increases (given by GQGT ) is balanced by the rate 
at which new information enters ( PHTR-1HP ) and the 
dissipative effects of the system ( FP+ PFT ). For a steady-
state covariance matrix, the optimal filter is also time 
invariant, given by

Taking the Laplace transform of this (neglecting initial 
conditions) yields

so that

x̂(s) is the optimal estimate of the state vector of the KF 
for the GNSS/INS/NHC integration. The term in brack-
ets in the above equation is the transfer function repre-
sentation of the steady-state KF. More details about the 
steady state can be found in the textbook [(Maybeck , 
1982), p. 273].

Navigation error propagation of the aided INS 
in the horizontal channel
The navigation error propagation analysis in the hori-
zontal channel is similar to that for the vertical channel. 
According to assumption 1, the host vehicle is assumed 
to move at constant speed in a northward straight line. 
The north channel is the along-track direction, for which 
centimeter-level accuracy is sufficient and easy to fulfill 
when an accurate GNSS position is available. The east 
position component of the aided INS determines the 
track alignment measurement accuracy in the across-
track direction, which is critical for railway track geom-
etry surveying (Chen et  al. , 2015). Therefore, for the 
horizontal channel, we concentrate only on the east 
direction.

In addition to the position and velocity errors, the tilt 
error φN is augmented into the error state vector, since 
a tilt error will introduce an acceleration component due 
to gravity with magnitude gφN to be projected onto the 
horizontal axes (Titterton and Weston , 2004)). The atti-
tude error about the yaw axis is also considered once the 
NHC is used. In this case the residual gyro bias about the 
x-axis δbgN and about the z-axis bgD , as well as the east 
component of the accelerometer bias δbaE , should also be 
augmented into the error state vector of the filter. Then 
there are seven error state variables:

The state dynamics model can be written as

(A.9)˙̂x(t) = [F− KH]x̂(t)+ Kz(t)

(A.10)[sI− F+ KH]x̂(s) = Kz(s)

(A.11)x̂(s) =
[

(sI− F+ KH)−1K
]

z(s)

(B.1)xE =
[

δrE δvE φN φD δbgN δbgD δbaE
]T

with

where the subscript ‘E’ denotes the east direction. wE rep-
resents the driving zero-mean white Gaussian noise of 
strength QE(t)

where I6 is the 6-by-6 identity matrix. δbgN is the north 
component of the gyro bias, modeled as a first-order 
Gauss–Markov process with correlation time Tgb and 
driven by zero-mean white Gaussian noise wgbN ; δbgD 
is the vertical component of the gyro bias, modeled as 
a first-order Gauss–Markov process with correlation 
time Tgb and driven by zero-mean white Gaussian noise 
wgbD . baE is the east component of the accelerometer 
bias, modeled as a first-order Gauss–Markov process 
with correlation time Tab and driven by zero-mean white 
Gaussian noise wabE . waE represents the accelerometer 
measurement noise along the east axis. wgN and wgD are 
the north and vertical components of the gyro measure-
ment noise, respectively.

The measurement to be presented to the KF for the aided 
INS in the east direction should include the position differ-
ence between the INS and GNSS and the cross-track veloc-
ity difference between the INS and the NHC. Considering 
assumption 1, we have vD = 0 . Then, the velocity measure-
ment Eq. (25) can be simplified as

where nvE is the east component of nv in (12) and rep-
resents the measurement uncertainty of the across-track 
zero velocity. The GNSS position measurement equation 
can then be written as

Therefore, the measurement equations for the aided INS 
in the east direction can be written as

(B.2)ẋE(t) = FE(t)xE(t)+GE(t)wE(t)

(B.3)

FE(t) =



















0 1 0 0 0 0 0
0 0 fD 0 0 0 1
0 0 0 0 − 1 0 0
0 0 0 0 0 − 1 0
0 0 0 0 − 1/Tgb 0 0
0 0 0 0 0 − 1/Tgb 0
0 0 0 0 0 0 − 1/Tab



















(B.4)GE(t) =

[

0 0
0 I6

]

(B.5)wE =
[

0 waE wgN wgD wgbN wgbD wabE

]T

(B.6)E
{

wE(t)w
T
E (t + τ )

}

= QEδ(τ )

(B.7)zvE = δvE + vNφD + nvE

(B.8)zrE = δvE + nrE
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where zE =
[

zr,E zvnhc,E
]T , nE =

[

nr,E nvnhc,E
]T

It is obvious from (B.3), (B.4) and (B.10) that FE , GE , HE , 
RE and QE are all constant matrices. The introduction of 
the NHC makes the heading error observable; thus, the 
filter gains will converge to steady-state values. In this sit-
uation P and K also become constant matrices. The gain 
matrix K in this case is a 7-by-2 matrix. A similar deriva-
tion can be performed for the vertical channel to obtain 
the east position component error propagation model as

where HaE , HgN , HgD , HgbN , HgbD , HabE , HvE , and HrE 
represent the related coefficients of the noise terms. The 
above equation is the east position error propagation 
model of the aided INS in the Laplace domain.

Acknowledgements
The authors thank Wuhan MAP Space Time Navigation Technology Co., LTD, 
and Guangzhou Datie Detecting & Surveying, Inc., for their efforts in promot-
ing the TGMT using an aided INS.

Authors’ contributions
Conceptualization: Qijin Chen and Xiaoji Niu; Data analysis: Qijin Chen; Writing: 
Qijin Chen; All authors read and approved the final manuscript.

Funding
This work is funded by the National Natural Science Foundation of China 
(41904019).

Availability of data and materials
The datasets are available from the corresponding author.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 GNSS Research Center, Wuhan University, Wuhan, China. 2 Collaborative 
Innovation Center of Geospatial Technology, Wuhan University, Wuhan, China. 
3 Artificial Intelligence Institute, Wuhan University, Wuhan, China. 

(B.9)zE = HExE + nE

(B.10)HE =

[

1 0 0 0 0 0 0
0 1 0 vN 0 0 0

]

(B.11)E
{

nE(t)n
T
E (t + τ )

}

= REδ(τ )

(B.12)

δr̂E(s) = HaE waE(s)+HgN wgN (s)

+HgD wgD(s)+HgbN wgbN (s)

+HgbD wgbD(s)+HabE wabE(s)

+HrE nrE(s)+HvE nvE(s)

Received: 16 July 2021   Accepted: 25 October 2021

References
Benson, D. O. (1975). A comparison of two approaches to pure-inertial and 

Doppler-inertial error analysis. IEEE Transactions on Aerospace and Elec-
tronic Systems, 4, 447–455.

Brown, R. G., & Hwang, P. Y. C. (2012). Introduction to Random Signals and 
Applied Kalman Filtering: with MATLAB Exercises (4th ed.). New York: Wiley.

Chen, Q., Zhang, Q., & Niu, X. (2020). Estimate the pitch and heading mounting 
angles of the IMU for land vehicular GNSS/INS integrated system. IEEE 
Transactions on Intelligent Transportation Systems

Chen, Q., Niu, X., Zhang, Q., & Cheng, Y. (2015). Railway track irregularity 
measuring by GNSS/INS integration. Navigation: Journal of The Institute of 
Navigation, 62(1), 83–93.

Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y., & Liu, J. (2018). A railway track 
geometry measuring trolley system based on aided INS. Sensors, 18(2), 
538.

El-Sheimy, N., & Youssef, A. (2020). Inertial sensors technologies for navigation 
applications: State of the art and future trends. Satellite Navigation, 1(1), 
1–21.

Groves, P. D. (2008). Principles of GNSS, inertial, and multisensor integrated navi-
gation systems. Boston: Artech House.

Liu, J., Gao, K., Guo, W., Cui, J., & Guo, C. (2020). Role, path, and vision of “5G+ 
BDS/GNSS.” Satellite Navigation, 1(1), 1–8.

Maybeck, P. S. (1978). Performance analysis of a particularly simple Kalman 
filter. Journal of Guidance and Control, 1(6), 391–396.

Maybeck, P. S. (1982). Stochastic Models, Estimation, and Control (Vol. I). New 
York: Academic press.

Niu, X., Chen, Q., Zhang, Q., Zhang, H., Niu, J., Chen, K., et al. (2014). Using Allan 
variance to analyze the error characteristics of GNSS positioning. GPS 
Solutions, 18(2), 231–242.

Niu, X., Chen, Q., Kuang, J., & Liu, J. (2016). Return of inertial surveying–trend or 
illusion? Proceedings of IEEE/ION PLANS, 2016, 165–169.

Shin, E.-H. (2005). Estimation techniques for low-cost inertial navigation. Ph.D. 
thesis, University of Calgary, Deparment of Geomatics Engineering

Teunissen, P., & Montenbruck, O. (2017). Springer Handbook of Global Naviga-
tion Satellite Systems. Switzerland: Springer.

Titterton, D., & Weston, J. L. (2004). Strapdown Inertial Navigation Technology 
(2nd ed.). Stevenage: IET.

Zhang, Q., Niu, X., & Shi, C. (2020). Impact assessment of various IMU error 
sources on the relative accuracy of the GNSS/INS systems. IEEE Sensors 
Journal, 20(9), 5026–5038.

Zhang, Q., Niu, X., Chen, Q., Zhang, H., & Shi, C. (2013). Using Allan variance 
to evaluate the relative accuracy on different time scales of GNSS/INS 
systems. Measurement Science and Technology, 24(8), 085006.

Zhang, T., Ban, Y., Niu, X., Guo, W., & Liu, J. (2017). Improving the design of 
MEMS INS-aided PLLs for GNSS carrier phase measurement under high 
dynamics. Micromachines, 8(5), 135.

Zhu, F., Zhou, W., Zhang, Y., Duan, R., Lv, X., & Zhang, X. (2019). Attitude vari-
ometric approach using DGNSS/INS integration to detect deformation in 
railway track irregularity measuring. Journal of Geodesy, 93(9), 1571–1587.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Semi-analytical assessment of the relative accuracy of the GNSSINS in railway track irregularity measurements
	Abstract 
	Introduction
	Preliminaries
	Used coordinate systems
	System models
	Measurement models
	GNSS position update
	Velocity update in the vehicle frame

	Errors of the optimal position estimates
	Errors of the track irregularity estimates

	Proposed method
	Simplification for the railway measurement case
	System model simplification
	Measurement model simplification

	Measurement error propagation model
	Relative measurement accuracy analysis

	Validation and discussion
	Aided INS raw data simulation
	Simulation settings
	Simulated data processing
	Simulation results
	Validation in field tests
	Discussion

	Effect of the inertial sensor errors on the measurement accuracy
	Conclusions
	Acknowledgements
	References




