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Abstract 

Technique PPP–RTK combines the advantages of both the Precise Point Positioning (PPP) and the Real-Time Kinematic 
(RTK) positioning. With the emergence of multi-frequency Global Navigation Satellite System (GNSS) observations, it is 
preferable to formulate PPP–RTK functional models based on original (undifferenced and uncombined) observations. 
While there exist many variants of the undifferenced and uncombined PPP–RTK models, a unified theoretical frame-
work needs developing to link these variants. In this contribution, we formulate a class of undifferenced and uncom-
bined PPP–RTK functional models in a systematic way and cast them in a unified framework. This framework classifies 
the models into a code-plus-phase category and a phase-only category. Each category covers a variety of measure-
ment scenarios on the network side, ranging from small-, medium- to large-scale networks. For each scenario, special 
care has been taken of the distinct ionospheric constraints and the difference between Code Division Multiple Access 
(CDMA) and Frequency Division Multiple Access (FDMA) signals. The key to systematically formulating these models 
lies in how to deal with the rank deficiency problems encountered. We opt for the Singularity-basis (S-basis) theory, 
giving rise to the full-rank observation equations in which the estimable parameters turn out to be the functions of 
original parameters and those selected as the S-basis. In the sequel, it becomes straightforward to derive for each sce-
nario the user model as it, more or less, amounts to the single-receiver network model. Benefiting from the presented 
theoretical framework, the relationships and differences between various undifferenced and uncombined PPP–RTK 
models become clear, which can lead to the better use of these models in a specific situation.
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only

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Global Navigation Satellite Systems (GNSSs) have long 
been providing high-precision positioning services with 
two classical techniques: Precise Point Positioning (PPP) 
and Real-Time Kinematic (RTK) positioning (Leick 
et  al., 2015; Teunissen & Montenbruck, 2017). PPP uti-
lizes precise satellite orbit and clock products to achieve 

positioning accuracy at millimeter to centimeter level 
after a long convergence time (tens of minutes) (Kouba 
& Héroux, 2001; Zumberge et al., 1997). While RTK pro-
vides accurate results in real time through ambiguity res-
olution, but it relies on (pseudo) observations provided 
by a nearby reference station or network (Odijk, 2002; 
Wübbena et  al., 2001). To seek a promising technique, 
the ambiguity resolution-enabled precise point position-
ing, also known as PPP–RTK, emerged (Wübbena et al., 
2005).

PPP–RTK takes the advantages of both PPP and RTK 
techniques. It extends the PPP by providing users, among 
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others, the satellite phase biases, enabling single-receiver 
ambiguity resolution and achieving RTK-like positioning 
performance (Teunissen & Khodabandeh, 2015). PPP–
RTK is more flexible than RTK (or network-RTK) since 
it inherits the State Space Representation (SSR) from PPP 
instead of the Observable Space Representation (OSR) 
adopted by RTK. Combining different SSR corrections 
estimated on the PPP–RTK network side produces vari-
ous services: using satellite clock and orbit corrections 
makes PPP–RTK compatible with PPP (Gao & Shen, 
2002; Liu et al., 2017); adding satellite phase bias correc-
tion allows for PPP–AR (Geng et al., 2012; Zhang et al., 
2019); and further including atmospheric corrections 
achieves rapid, high-precision PPP–RTK positioning (Li 
& Ge, 2011; Zha et  al., 2021). Moreover, PPP–RTK can 
also be compatible with RTK by transforming SSR to 
OSR (Khodabandeh & Teunissen, 2015).

Many PPP–RTK methods exist in the literature. 
Teunissen and Khodabandeh (2015) classified these 
methods into five types: distinct clock model (Teunissen 
et  al., 2010), common clock model (Zhang et  al., 2011), 
integer recover clock model (Laurichesse et  al., 2009), 
decoupled satellite clock model (Collins et al., 2010), and 
Uncalibrated Phase Delay/Fractional Cycle Bias (UPD/
FCB) model (Ge et  al., 2008). The first two adopt an 
undifferenced and uncombined formulation, while the 
last three choose the ionosphere-free combination at the 
start of the presentation and attempt to extend to the 
undifferenced and uncombined formulation (Gu et  al., 
2015; Naciri & Bisnath, 2021). The undifferenced and 
uncombined formulation simplifies the stochastic model, 
preserves all parameters for possible constraints, and 
enables the process of the observations from any systems 
and frequencies, thus is simple, flexible, and attractive 
(Lannes & Prieur, 2013; Odijk et al., 2016; Schönemann 
et  al., 2011). Hence, we focus on the undifferenced and 
uncombined PPP–RTK in this contribution.

Teunissen et al. (2010) proposed for the first time the 
undifferenced and uncombined PPP–RTK with the 
choice of a distinct clock datum, while Zhang et al. (2011) 
suggested adopting the common clock datum. The com-
mon clock model makes receiver and satellite biases 
estimable instead of being absorbed into distinct clocks, 
bringing a stronger model if the biases are properly con-
strained. Researchers then extended the common clock 
undifferenced and uncombined PPP–RTK from dual-
frequency GPS cases to multi-frequency and multi-GNSS 
situations (Khodabandeh & Teunissen, 2016; Ma et  al., 
2020; Odijk et  al., 2017; Psychas et  al., 2021). Imposing 
different constraints on atmospheric delays yielded vari-
ous PPP–RTK variants suitable for small-scale, medium-
scale, and large-scale networks (Odijk et al., 2012; Wang 
et  al., 2017; Zha et  al., 2021; Zhang et  al., 2018, 2019). 

Even in a very special case where the network contains 
only one receiver, researchers also proposed the concept 
of single-station PPP–RTK (Khodabandeh, 2021). With 
the proposal of a new GLONASS ambiguity resolution 
method (Teunissen, 2019), the Frequency Division Multi-
ple Access (FDMA) PPP–RTK became achievable (Zhang 
et  al., 2021). To avoid the adverse effects of unmodeled 
code-related errors, one can exclude code observations 
and turn to phase-only PPP–RTK (Hou et  al., 2022). 
While there exist many variants of the undifferenced 
and uncombined PPP–RTK models, but the discussions 
about their relationships and differences are limited. This 
motivates us to present these extended models in a sys-
tematic way and cast them in a unified framework.

In this contribution, we systematically present vari-
ous undifferenced and uncombined PPP–RTK models 
formulated based on the code-plus-phase and phase-
only observations. Concerning the different scales of 
networks, we provide the ionosphere-float, ionosphere-
weighted, and ionosphere-fixed models. For each sce-
nario, we consider both Code Division Multiple Access 
(CDMA) and FDMA systems. To address the rank defi-
ciency problem underlying each model, we employ the 
Singularity-basis (S-basis) theory (Teunissen, 1985) to 
establish full-rank observation equations and elaborate 
estimable parameters. Moreover, we comprehensively 
compare the models in terms of estimable parameters, 
ambiguity resolution performances, and applicable 
situations.

The remainder of this paper proceeds as follows. Sec-
tion  2 introduces how to apply the S-basis theory to 
identify and eliminate the rank deficiencies in GNSS 
observation equations. Section 3 presents the PPP–RTK 
models based on code-plus-phase observations, while 
Sect. 4 provides the models based on phase-only obser-
vations. Section 5 discusses and compares different mod-
els. Section 6 summarizes and concludes the whole study.

Rank deficiency identification and elimination 
in GNSS observation equations
Undifferenced and uncombined GNSS observation equa-
tions encounter a rank deficiency problem. This section 
introduces how to apply the S-basis theory to identify 
and eliminate rank deficiencies in GNSS observation 
equations.

Undifferenced and uncombined GNSS observation 
equations
Considering a network receiver r (r = 1, . . . , n) 
that tracks a satellite s (r = 1, . . . ,m) at a frequency 
j
(

r = 1, . . . , f
)

 , we write the undifferenced and uncom-
bined GNSS code and phase observations as (Teunissen 
& Montenbruck, 2017)
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where E[.] denotes the expectation operator. psr,j and φs
r,j 

represent the observed-minus-computed code and phase 
observations, respectively, containing the receiver-to-sat-
ellite geometry and other corrections. The unknown 
parameters on the right side include: τr the dry compo-
nent of the zenith tropospheric delay mapped to the slant 
direction by the function ms

r ; dtr the receiver clock error; 
dts the satellite clock error; lsr the slant ionospheric delay 
at the first frequency linked to other frequencies by 
µj =

(

�
s
j/�

s
1

)2
 with �sj the wavelength; dsr,j the receiver 

code bias; δsr,j the receiver phase bias; ds,j the satellite code 
bias; δs,j the satellite phase bias; and zsr,j the ambiguities in 
cycles scaled by the wavelength �sj . Except for ambigui-
ties, other parameters are expressed in length.

Equation (1) fits both CDMA and FDMA signals as the 
definitions of the receiver biases ( dsr,j and δsr,j ) and wave-
length ( �sj ) contain a satellite index, implying the con-
sideration of Inter-Frequency Bias (IFB) in GLONASS 
FDMA signals. For CDMA systems, the receiver biases 
and wavelength are reduced to satellite-independent 
quantities ( dr,j , δr,j , and �j).

Rank deficiency identification and elimination
Since the design matrix of Eq.  (1) is rank-deficient, 
the observations lack the information to estimate all 
unknown parameters. Here, we introduce how to apply 
the S-basis theory (Teunissen, 1985) to identify and elim-
inate rank deficiencies. To keep this process simple but 
not lose generality, we take the rank deficiency between 
receiver and satellite clocks as an example. The design 
matrix of receiver and satellite clocks A reads

where ⊗ denotes the Kronecker product, e(.) denotes 
the column vector of ones, and I (.) denotes the identity 
matrix. One can identify that the column-rank of matrix 
A equals n+m− 1 , implying the impossibility to esti-
mate all n+m receiver and satellite clock errors. Hence, 
we decompose the vector of the receiver and satellite 
clock errors dt into an estimable vector d

⌢

t  and an inesti-
mable part Vβ (Odijk et al., 2016)

(1)

E
[

psr,j

]

= ms
rτr + dtr

− dts + µj l
s
r + dsr,j − ds,j

E
[

φs
r,j

]

= ms
rτr + dtr − dts

− µj l
s
r + δsr,j − δs,j + �

s
j z

s
r,j

(2)A =
[

ef ⊗ In ⊗ em ef ⊗ (−en ⊗ Im)
]

(3)dt = d
⌢

t + Vβ

where V = en+m is the basis matrix corresponding to 
the null space of matrix A , satisfying AV = 0 , while β 
is the vector containing the minimum constraints on 
the parameters. The choice of β is not unique since dt 
can be decomposed in many ways. Here, we select the 
clock error of the first receiver dt1 as the S-basis and set 
β = [dt1] , which is a one-dimensional vector. Substitut-
ing β into Eq. (3) yields

where d
⌢

t r = dtr − dt1 and d
⌢

t
s

= dts − dt1 are the esti-
mable receiver and satellite clock errors, respectively. 
Substituting d

⌢

t r and d
⌢

t
s
 into Eq. (1) yields

where the rank deficiency between receiver and satellite 
clock errors is eliminated. For other rank deficiencies, 
one can adopt the same method to identify and eliminate 
them.

Code‑plus‑phase PPP–RTK models
This section works on both code and phase observations, 
forming the so-called code-plus-phase PPP–RTK mod-
els. Considering different constraints on the atmospheric 
delays, we formulate the ionosphere-float, ionosphere-
weighted, and ionosphere-fixed models. All models con-
sider both CDMA and FDMA systems.

Ionosphere‑float models
In a larger-scale network, we parameterize the iono-
spheric delays without any constraints, forming the iono-
sphere-float models for both CDMA and FDMA systems.

CDMA model
Starting from CDMA observation equations in Eq.  (1), 
we apply the S-basis theory to identify and eliminate 
the rank deficiencies in a step-by-step manner. To make 
this process straightforward, we introduce an identity in 
which a frequency-dependent quantity at the first two 
frequencies (.),j=1,2 can be decomposed as (Teunissen & 
Khodabandeh, 2015)

(4)d
⌢

t = dt − Vβ =

[

d
⌢

t 2, . . . , d
⌢

t n, d
⌢

t
1

, . . . , d
⌢

t
m
]T

(5)

E
[

psr,j

]

= ms
rτr + d

⌢

t r − d
⌢

t
s

+ µj l
s
r + dsr,j − ds,j

E
[

φs
r,j

]

= ms
rτr + d

⌢

t r − d
⌢

t
s

− µj l
s
r + δsr,j − δs,j + �

s
j z

s
r,j

(6)(.),j=1,2 = (.),IF + µj(.),GF
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where (.),IF and (.),GF are the ionosphere-free and geome-
try-free combinations, respectively, which are defined as.

Decomposing receiver and satellite code biases 
through Eq. (6), we rewrite Eq. (1) as

with

being the recombined receiver and satellite biases. Of 
particulate note, although Eq. (9) holds for all frequencies 
and is equal to zero for j = 1, 2 , we restrict them to j > 2 
for emphasizing that the recombined receiver and satel-
lite biases exist only at the third frequency and above.

Four types of rank deficiencies then become clear: (1) 
between dtr , dr,IF , and δr,j of size n; (2) between dtr , ds,IF , 
and δs,j of size m; (3) between lsr , dr,GF , and δr,j of size n; 
and (4) between lsr , ds,GF , and δs,j of size m. We select dr,IF , 
ds,IF , dr,GF , and ds,GF as the S-basis to eliminate these 
rank deficiencies, yielding

with

(7)

(.),GF =
1

µ2 − µ1

[

(.),2 − (.),1
]

(.),IF =
µ2

µ2 − µ1
(.),1 −

µ1

µ2 − µ1
(.),2

(8)

E
[

psr,j

]

= ms
rτr + dtr − dts

+ µj l
s
r +

(

dr,IF + µjdr,GF
)

−
(

ds,IF + µjd
s
,GF

)

+ dr,j − d
s

,j

E
[

φs
r,j

]

= ms
rτr + dtr − dts

− µj l
s
r + δr,j − δs,j + �jz

s
r,j

(9)

dr,j = dr,j − dr,IF − µjdr,GF
(

j > 2
)

d
s

,j = ds,j − ds,IF − µjd
s
,GF

(

j > 2
)

(10)

E
[

psr,j

]

= ms
rτr + dtr − dt

s

+ µj l
s

r + dr,j − d
s

,j

E
[

φs
r,j

]

= ms
rτr + dtr − dt

s

− µj l
s

r + δr,j − δ
s
,j + �jz

s
r,j

(11)

dtr = dtr + dr,IF

dt
s
= dts + ds,IF

l
s

r = lsr − ds,GF + dr,GF

δr,j = δr,j − dr,IF + µjdr,GF

δ
s
,j = δs,j − ds,IF + µjd

s
,GF

being the recombined parameters. Except for the recom-
bined ionospheric delay lsr , other parameters are still 
inestimable.

We then consider two other types of rank deficien-
cies: (5) between dtr and dts of size 1; and (6) between 
dr,j and ds,j of size f − 2 . Selecting dt1 and d1,j>2 as the 
S-basis reforms the equations as

with

being the estimable receiver clock error, satellite 
clock error, receiver code bias, and satellite code bias, 
respectively.

We finally identify the remaining two types of rank 
deficiencies: (7) between δs,j and zsr,j of size fm ; and (8) 
between δr,j and zsr,j of size fn . Here, the choice of the 
S-basis must keep the integer nature of the ambiguities. 
To this end, we select zs1,j , z

1
r  =1,j + δ1,j as the S-basis, 

yielding the full-rank model

with

being the estimable receiver phase bias, satellite phase 
bias, and double-differenced ambiguities, respectively.

Equation  (14) represents the full-rank model on the 
network side. Providing users with the satellite clock cor-
rections, satellite biases, and optionally, the atmospheric 

(12)

E
[

psr,j

]

= ms
rτr + dt̃r − dt̃ s

+ µj l
s

r + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s

− µj l
s

r + δr,j − δ
s
,j + �jz

s
r,j

(13)

dt̃r = dtr − dt1 (r > 1)

dt̃ s = dt
s
− dt1

d̃r,j = dr,j − d1,j
(

r > 1, j > 2
)

d̃s,j = d
s

,j − d1,j
(

j > 2
)

(14)

E
[

psr,j

]

= ms
rτr + dt̃r − dt̃ s

+ µj l
s

r + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s − µj l

s

r

+ δ̃r,j − δ̃s,j + �j z̃
s
r,j

(15)

δ̃r,j = δr,j − δ1,j + �j(z
1
r,j − z11,j) (r > 1)

δ̃s,j = δ
s
,j − δ1,j − �jz

s
1,j

z̃sr,j = (zsr,j − zs1,j)− (z1r,j − z11,j) (r > 1, s > 1)
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delays, one can form the user model parameterizing inte-
ger ambiguities. For brevity, we do not correct the atmos-
pheric delays but parameterize them as unknowns, thereby 
forming the full-rank user model as

where �x denotes the coordinate vector of a user receiver 
multiplied by the line-of-sight vector esu . The definitions 
of other parameters are consistent with those on the net-
work side, replacing the network receiver index ‘r’ with 
a user receiver index ‘u’. Equation  (16) (the user model) 
is equivalent to Eq.  (14) (the network model) if Eq.  (16) 
moves the satellite clock errors and satellite biases in 
Eq.  (14) from the right side to the left side and param-
eterizes the user coordinates.

FDMA model
The FDMA model adopts the same S-basis as the CDMA 
model, thereby forming the equations as

where zsr,j = zsr,j − zs1,j is the between-receiver single-dif-
ferenced ambiguity. Since the estimable receiver biases 
( ̃dr>1,j and δ̃r>1,j ) are the bias differences between two 
receivers, we ignore the between-receiver single-differ-
enced IFB, making estimable receiver biases free of sat-
ellite identifiers. This is reasonable in the network where 
the receivers and the connected antennas and firmware 
are homogenous (Wanninger, 2012).

Ambiguities in Eq.  (17) are still inestimable. Teunissen 
(2019) proposed to parameterize the ambiguities as

(16)

E
[

psu,j + dt̃ s + d̃s,j

]

= e
s
u�x +ms

uτu

+ dt̃u + µj l
s

u + d̃r,j

E
[

φs
u,j + dt̃ s + δ̃s,j

]

= e
s
u�x +ms

uτu

+ dt̃u − µj l
s

u + δ̃u,j + �j z̃
s
u,j

(17)

E
[

psr,j

]

= ms
rτr + dt̃r − dt̃ s

+ µj l
s

r + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s − µj l

s

r

+ δ̃r,j − δ̃s,j +
(

�
s
j z

s
r,j − �

1
j z

1
r,j

)

(18)

E
[

psr,j

]

= ms
rτr + dt̃r − dt̃ s

+ µj l
s

r + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s

− µj l
s

r + δ̃r,j − δ̃s,j +
2848�0j

a1as
˜̃zsr,j

where �0j  denotes the wavelength of the GLONASS 
center frequency. as = 2848+ κs with κs ∈ [−7,+6] 
being the channel number of GLONASS satellites; 
˜̃zsr,j=a1(z

s
r,j − zs1,j)− as(z

1
r,j − z11,j) is the estimable GLO-

NASS ambiguity.
Although ambiguities in Eq. (18) are estimable and inte-

gers, the integer nature of the original ambiguities cannot 
be guaranteed. For rigorous ambiguity resolution, we must 
transform the estimable ambiguities to integer-estimable 
ones, whose definition is in Teunissen (2019).

Along a similar line with Eq.  (16), we form the FDMA 
user model as

where the estimable ambiguities must be transformed to 
integer-estimable ambiguities.

Ionosphere‑weighted models
In medium-scale networks, we consider the spatial corre-
lation between ionospheric delays by introducing a zero-
mean constraint to between-receiver single-differenced 
ionospheric delays

where 
⌢

l
s

r denotes the pseudo ionospheric observations 
set as zero. Its uncertainty is modeled by a stochastic 
model, for example, the stochastic model in Zha et  al. 
(2021).

With the introduction of weighted ionospheric con-
straints, some rank deficiencies change. Additionally, one 
new rank deficiency between the satellite clock error and 
tropospheric delay occurs since tropospheric mapping 
functions are almost identical in medium-scale networks. 
This section clarifies these rank deficiencies and forms the 
ionosphere-weighted models for both CDMA and FDMA 
systems.

CDMA model
Combining pseudo ionospheric observations with GNSS 
code and phase observations, the size of the rank deficiency 
between lsr , dr,GF , and δr,j is no longer n, but only one. We 
select the geometry-free code bias of the first receiver d1,GF 

(19)

E
[

psu,j + dt̃ s + d̃s,j

]

= e
s
u�x

+ms
uτu + dt̃u + µj l

s

u + d̃r,j

E
[

φs
u,j + dt̃ s + δ̃s,j

]

= e
s
u�x +ms

uτu

+ dt̃u − µj l
s

u + δ̃u,j +
2848�0j

a1as
˜̃zsr,j

(20)E

[

⌢

l
s

r

]

= lsr − ls1
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as the S-basis instead of the code biases of all receivers 
dr,GF . Keeping other S-basis unchanged, we form the iono-
spheric-weighted model as

with

being the estimable ionospheric delay, receiver code bias, 
and receiver phase bias, respectively, which differ from 
the parameters of the ionosphere-float model. Of par-
ticular note, although the estimable ionospheric delays l̃sr 
are not the original ionospheric delays lsr , constraints on 
the estimable ionospheric delays in Eq.  (21) are equiva-
lent to the constraints on the original ionospheric delays 

in Eq. (20), as we can verify that E
[

⌢

l
s

r

]

= l̃sr − l̃s1 = lsr − ls1

.
Since the tropospheric mapping functions are almost 

identical in a medium-scale network, an additional rank 
deficiency between the tropospheric delay and satellite 
clock error occurs. We select the tropospheric delay of 
the first receiver as the S-basis, yielding the full-rank 
ionosphere-weighted model

with

(21)

E
[

psr,j

]

= ms
rτr + dt̃r − dt̃ s + µj l̃

s
r

+ µj d̃r,GF + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s − µj l̃

s
r

+ ˜̃
δr,j − δ̃s,j + �j z̃

s
r,j

E

[

⌢

l
s

r

]

= l̃sr − l̃s1

(22)

l̃sr = lsr − ds,GF + d1,GF

d̃r,GF = dr,GF − d1,GF (r > 1)

˜̃
δr,j = δr,j − dr,IF − δ1,j + d1,IF

+ �j(z
1
r,j − z11,j) (r > 1)

(23)

E
[

psr,j

]

= ms
r τ̃r + dt̃r − d˜̃ts

+ µj l̃
s
r + µj d̃r,GF + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
r τ̃r + dt̃r − d˜̃ts

− µj l̃
s
r +

˜̃
δr,j − δ̃s,j + �j z̃

s
r,j

E

[

⌢

l
s

r

]

= l̃sr − l̃s1

(24)
τ̃r = τr − τ1 (r > 1)

d˜̃ts = dt
s
− dt1 −ms

1τ̃1

being the estimable ionospheric delay and satellite clock 
error, respectively.

On the user side, we consider, among others, the 
atmospheric products, forming the full-rank user model 
as

where τ̃u and 
⌢

l
s

u are the tropospheric and ionospheric 
delays, respectively, interpolated at the user station.

FDMA model
Along the similar line, one can form the FDMA model by 
replacing the CDMA estimable ambiguities with the FDMA 
ones. In this way, we write the FDMA network model as

while the user mode reads

where the estimable ambiguities must be transformed to inte-
ger-estimable ambiguities for rigorous ambiguity resolution.

Ionosphere‑fixed models
In small-scale networks, we assume that atmospheric 
delays at all stations are identical. Based on this assump-
tion, we investigate how the rank deficiencies change 

(25)

E
[

psu,j + d˜̃ts + d̃s,j −ms
uτ̃u

]

= e
s
u�x

+ dt̃u + µj l̃
s
u + µj d̃u,GF + d̃u,j

E
[

φs
u,j + d˜̃ts + δ̃s,j −ms

uτ̃u

]

= e
s
u�x

+ dt̃u − µj l̃
s
u +

˜̃
δu,j + �j z̃

s
u,j

E

[

⌢

l
s

u

]

= l̃su

(26)

E
[

psr,j

]

= ms
r τ̃r + dt̃r − d˜̃ts + µj l̃

s
r

+ µj d̃r,GF + d̃r,j − d̃s,j

E
[

φs
r,j

]

= ms
r τ̃r + dt̃r − d˜̃ts − µj l̃

s
r

+ ˜̃
δr,j − δ̃s,j +

2848�0j

a1as
˜̃zsr,j

E

[

⌢

l
s

r

]

= l̃sr − l̃s1

(27)

E
[

psu,j + d˜̃ts + d̃s,j −ms
uτ̃u

]

= e
s
u�x + dt̃u

+ µj l̃
s
u + µj d̃u,GF + d̃u,j

E
[

φs
u,j + d˜̃ts + δ̃s,j −ms

uτ̃u

]

= e
s
u�x + dt̃u

− µj l̃
s
u +

˜̃
δu,j +

2848�0j

a1as
˜̃zsu,j

E

[

⌢

l
s

u

]

= l̃su
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and form the full-rank ionosphere-fixed models for both 
CDMA and FDMA systems.

CDMA model
Assuming that ms

1τ1 = · · · = ms
nτn = τ s and 

ls1 = . . . lsn = ls , the tropospheric delay τ s can be directly 
absorbed into satellite clock errors, while the rank deficien-
cies related to the ionospheric delays are the same as those 
in the ionosphere-weighted model. We follow the S-basis 
selected for the ionosphere-weighted model and write the 
ionosphere-fixed model as

with

being the estimable satellite clock error and ionospheric 
delay, respectively.

On the user side, we directly use the ionospheric delay 
estimated on the network side to correct the ionospheric 
delay at a user station. Along with other corrections, we 
form the user model as

where the tropospheric delays are actually corrected 
since they are absorbed in the satellite clock errors.

FDMA model
It is now straightforward to extend the CDMA models to 
the FDMA models: the network model

and the user model

(28)

E
[

psr,j

]

= dt̃r − dt
s
+ µj l

s
+ µj d̃r,GF + d̃r,j − d̃s,j

E
[

φs
r,j

]

= dt̃r − dt
s
− µj l

s
+ ˜̃

δr,j − δ̃s,j + �j z̃
s
r,j

(29)

dt
s
= dts + ds,IF − τ s − dt1 − d1,IF

l
s
= ls − ds,GF + d1,GF

(30)

E
[

psr,j + dt
s
− µj l

s
+ d̃s,j

]

= e
s
u�x + dt̃r + µj d̃r,GF + d̃r,j

E
[

φs
r,j + dt

s
+ µj l

s
+ δ̃s,j

]

= e
s
u�x + dt̃r +

˜̃
δr,j + �j z̃

s
r,j

(31)

E
[

psr,j

]

= dt̃r − dt
s
+ µj l

s

+ µj d̃r,GF + d̃r,j − d̃s,j

E
[

φs
r,j

]

= dt̃r − dt
s
− µj l

s

+ ˜̃
δr,j − δ̃s,j +

2848�0j

a1as
˜̃zsr,j

where we emphasize again the necessity to transform the 
estimable ambiguities to integer-estimable ambiguities.

Phase‑only PPP–RTK models
Code-plus-phase model performs well in the case the 
code biases are properly modeled. However, some code 
biases are not only receiver-related but also satellite-
related, for example, the code IFB in GLONASS obser-
vations and even some in CDMA observations, typically 
the multipath. These biases are difficult to be modeled 
and could degrade the positioning performance. To avoid 
the adverse effects of these unmodeled code errors, we 
exclude the code observations and only use the phase 
observations to realize PPP–RTK. Due to the exclusion 
of code observations, phase-only observation equations 
encounter additional rank deficiencies. This section fur-
ther eliminates these rank deficiencies and forms the full-
rank phase-only PPP–RTK models.

Ionosphere‑float models
We also start with the ionosphere-float model, 
which parameterizes ionospheric delays without any 
constraints.

CDMA model
Starting from phase observation equations in Eq.  (14), 
we identify the additional rank deficiencies caused by 
the exclusion of code observations. To make it straight-
forward, we decompose the receiver and satellite phase 
biases through Eq.  (6), and rewrite the phase observa-
tions as

with

(32)

E
[

psr,j + dt
s
− µj l

s
+ d̃s,j

]

= e
s
u�x

+ dt̃r + µj d̃r,GF + d̃r,j

E
[

φs
r,j + dt

s
+ µj l

s
+ δ̃s,j

]

= e
s
u�x

+ dt̃r +
˜̃
δr,j +

2848�0j

a1as
˜̃zsu,j

(33)

E
[

φs
r,j

]

= ms
rτr + dt̃r − dt̃ s − µj l

s

r

+ δ̃r,IF + µj δ̃r,GF − δ̃s,IF

− µj δ̃
s
,GF + δ̂r,j − δ̂s,j + �j z̃

s
r,j
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the estimable receiver and satellite phase biases at the 
third frequency and above.

Similar to the rank deficiencies related to the receiver 
code biases in Eq.  (8), Eq.  (33) encounters four types of 
rank deficiencies related to the receiver phase biases: (1) 
between dt̃r and δ̃r,IF of size n ; (2) between dt̃ s and δ̃s,IF of 
size m; (3) between lsr and δ̃r,GF of size n; and (4) between 
l
s

r and δ̃s,GF of size m. We select δ̃r,IF , δ̃s,IF , δ̃r,GF , and δ̃s,GF as 
the S-basis, forming the equations as

with

being the redefined receiver clock error, satellite clock 
error, and ionospheric delay, respectively.

Equation  (35) still has one additional rank deficiency: 
5) between l̂sr and z̃sr,j of size (n− 1)(m− 1) . We select 
the ambiguities at the first frequency z̃sr,j=1 as the S-basis, 
forming the full-rank model as

with

being the estimable ionospheric delay and ambiguities, 
respectively.

To keep the integer nature of ambiguities, we define the 
simplest integer ratio w2,j

w1,j
 that satisfies w2,j

w1,j
=

�j

�1
 , where 

w1,j and w2,j are integers. Replacing �j
�1

 with w2,j

w1,j
 yields

with

(34)

δ̂r,j = δ̃r,j − δ̃r,IF − µj δ̃r,GF
(

r > 1, j > 2
)

δ̂s,j = δ̃s,j − δ̃s,IF − µj δ̃
s
,GF

(

j > 2
)

(35)
E
[

φs
r,j

]

= ms
rτr + dt̂r − dt̂ s − µj l̂

s
r

+ δ̂r,j + δ̂s,j + �j z̃
s
r,j

(36)

dt̂r = dt̃r + δ̃r,IF (r > 1)

dt̂ s = dt̃ s + δ̃s,IF

l̂sr = l
s

r − δ̃r,GF + δ̃s,GF

(37)

E
[

φs
r,j

]

= ms
rτr + dt̂r − dt̂ s − µj

ˆ̂
lsr

+ δ̂r,j + δ̂s,j + �j
ˆ̃zsr,j

(38)

ˆ̂
lsr = l̂sr − �1z̃

s
r,1

ˆ̃zsr,j = z̃sr,j −
�j

�1
z̃sr,1

(

j > 1
)

(39)

E
[

φs
r,j

]

= ms
rτr + dt̂r − dt̂ s − µj

ˆ̂
lsr

+ δ̂r,j + δ̂s,j +
�j

w1,j

ˆ̂zsr,j

the integer-estimable ambiguities, to which a rigorous 
ambiguity resolution is applicable.

Users receive the satellite clock errors and satellite 
phase biases to form the full-rank model as

where the satellite phase biases are provided to the obser-
vations at the third frequency and above.

FDMA model

Again, replacing �j

w1,j

ˆ̂zsr,j with 
2848�0j
w1,ja1as

⌣
z
s

r,j forms the estimable 
network FDMA model

and the estimable user FDMA model

with

the estimable FDMA ambiguities which must be trans-
formed to integer-estimable ambiguities for ambiguity 
resolution.

Ionosphere‑weighted models
Combining pseudo ionospheric observations with phase 
observations, this section reidentifies the rank deficiencies 
and forms the phase-only ionosphere-weighted models for 
both CDMA and FDMA systems.

CDMA model
With the introduction of pseudo ionospheric observations, 
the size of the rank deficiency between lsr and δ̃r,GF is no 
longer n, but only one. We select δ̃1,GF , instead of δ̃r,GF , as 
the S-basis to eliminate this rank deficiency, while the other 
S-basis related to receiver biases are consistent with those 
in the ionosphere-float model. Moreover, we select the 

(40)ˆ̂zsr,j = w1,j z̃
s
r,j − w2,j z̃

s
r,1

(

j > 1
)

(41)

E
[

φs
u,j + dt̂ s + δ̂s,j

]

= e
s
u�x +ms

uτu

+ dt̂u − µj
ˆ̂
lsu + δ̂u,j +

�j

w1,j

ˆ̂zsu,j

(42)

E
[

φs
r,j

]

= ms
rτr + dt̂r − dt̂ s − µj

ˆ̂
lsr

+ δ̂r,j + δ̂s,j +
2848�0j

w1,ja1as

⌣
z
s

r,j

(43)

E
[

φs
u,j + dt̂ s + δ̂s,j

]

= e
s
u�x +ms

uτu

+ dt̂u − µj
ˆ̂
lsu + δ̂u,j +

2848�0j

w1,ja1as

⌣
z
s

u,j

(44)⌣
z
s

r,j = w1,j
˜̃zsr,j − w2,j

˜̃zsr,1
(

j > 1
)
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tropospheric delay of the first receiver to eliminate the rank 
deficiency between the tropospheric delay and satellite 
clock error. In this way, we write the CDMA ionosphere-
weighted network model as

with

being the estimable satellite clock error, ionospheric 
delay, and between-receiver differential phase bias, 
respectively. Note that, Eq. (45) is already estimable since 
the rank deficiency between the ionospheric delays and 
ambiguities no longer exists due to the introduction of 
ionospheric constraints.

We write the CDMA ionospheric-weighted user model 
as

where we emphasize again that satellite phase biases are 
provided only to observations at the third frequency and 
above.

FDMA model
Similarly, we form the FDMA network model as

and the user model as

(45)

E
[

φs
r,j

]

= ms
r τ̃r + dt̂r − d˜̂ts − µj

˜̂
lsr

+ µj
˜̂
δr,GF + δ̂r,j + δ̂s,j + �j z̃

s
r,j

E

[

⌢

l
s

r

]

=
˜̂
lsr −

˜̂
ls1

(46)

d˜̂ts = d˜̃ts + δ̃s,IF

˜̂
lsr = l̃sr −

˜̃
δ1,GF + δ̃s,GF

˜̂
δr,GF = ˜̃

δr,GF −
˜̃
δ1,GF (r > 1)

(47)

E
[

φs
u,j + d˜̂ts + δ̂s,j −ms

uτ̃u

]

= e
s
u�x

+ dt̂u − µj
˜̂
lsu + µj

˜̂
δu,GF + δ̂u,j + �j z̃

s
u,j

E

[

⌢

l
s

u

]

=
˜̂
lsu

(48)

E
[

φs
r,j

]

= ms
r τ̃r + dt̂r − d˜̂ts − µj

˜̂
lsr

+ µj
˜̂
δr,GF + δ̂r,j + δ̂s,j +

2848�0j

a1as
˜̃zsr,j

E

[

⌢

l
s

r

]

=
˜̂
lsr −

˜̂
ls1

where the estimable ambiguities are the same as those in 
the code-plus-phase model.

Ionosphere‑fixed models
Based on the assumptions that ms

1τ1 = · · · = ms
nτn = τ s 

and ls1 = . . . lsn = ls , this section provides the ionosphere-
fixed models for both CDMA and FDMA systems.

CDMA model
From the experiences in the derivation of code-plus-phase 
models, we first lump the tropospheric delay with the satel-
lite clock error, then adopt the same S-basis in the phase-
only ionosphere-weighted model, and finally, form the 
ionosphere-fixed network model as

with

the estimable satellite clock and ionospheric delay, 
respectively.

The user model reads

where the satellite clock errors, ionospheric delays, and 
satellite phase biases are corrected.

FDMA model
Finally, we present the FDMA network model as

(49)

E
[

φs
u,j + d˜̂ts + δ̂s,j −ms

uτ̃u

]

= e
s
u�x + dt̂u

− µj
˜̂
lsu + µj

˜̂
δu,GF + δ̂u,j +

2848�0j

a1as
˜̃zsr,j

E

[

⌢

l
s

u

]

=
˜̂
lsu

(50)

E
[

φs
r,j

]

= dt̂r − dˆ̂ts − µj
˜̂
ls + µj

˜̂
δr,GF

+ δ̂r,j + δ̂s,j + �j z̃
s
r,j

(51)
dˆ̂ts = dt

s
+ δ̃s,IF

˜̂
ls = l

s
− ˜̃

δ1,GF + δ̃s,GF

(52)

E

[

φs
u,j + dˆ̂ts + µj

˜̂
ls + δ̂s,j

]

= e
s
u�x

+ dt̂u + µj
˜̂
δu,GF + δ̂u,j + �j z̃

s
u,j

(53)

E
[

φs
r,j

]

= dt̂r − dˆ̂ts − µj
˜̂
ls + µj

˜̂
δr,GF

+ δ̂r,j + δ̂s,j +
2848�0j

a1as
˜̃zsr,j
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and the user model as

where only the CDMA ambiguities are replaced with 
FDMA ambiguities.

Discussions
This section discusses the differences between the CDMA 
and FDMA models, compares the estimable param-
eters of the ionosphere-float, ionosphere-weighted, and 
ionosphere-fixed models, and clarifies the relationship 
between the code-plus-phase and phase-only models.

CDMA vs. FDMA
FDMA PPP–RTK models adopt the same S-basis selected by 
the CDMA PPP–RTK models, forming the between-receiver 
single-differenced receiver biases, e.g., Eqs. (13) and (15). Tak-
ing advantage of this formulation, FDMA PPP–RTK avoids 
the effects of IFB in the sense that between-receiver single-
differenced code IFB is ignorable in a network employing 
homogeneous receivers, while the phase counterpart is neg-
ligible even in heterogeneous networks (Wanninger, 2012). 
As a consequence, the FDMA and CDMA PPP–RTK mod-
els contain the same estimable parameters, except for ambi-
guities, e.g., Eqs. (14) and (18). We further discuss the CDMA 
and FDMA estimable ambiguities below.

The key to PPP–RTK is ambiguity resolution. Teunis-
sen and Khodabandeh (2015) indicated that PPP–RTK fixes 
double-differenced ambiguities on both the network and 
user sides, regardless the methods adopted. Here, we fur-
ther clarify that PPP–RTK fixes a linear combination of the 
ambiguities, typically, the double-differenced ambiguities. 
It is straightforward for CDMA systems to form double-
differenced ambiguities, while this formulation fails for the 
FDMA system since it adopts different frequencies to iden-
tify satellites. To ensure the estimability of the FDMA PPP–
RTK model, we adopt a specific linear combination of FDMA 
ambiguities proposed in Teunissen (2019). Here, we write 
again the double-differenced CDMA ambiguities and the 
estimable FDMA ambiguities along with their coefficients

where one can verify that the two ambiguities are equiva-
lent if a1 = · · · = as = 2848 , implying that the CDMA 
model is a special case of the FDMA model. In other 
words, the FDMA model can be directly transformed 

(54)
E

[

φs
u,j + d

ˆ̂ts + µj
˜̂
ls + δ̂s,j

]

= e
s
u�x + dt̂u + µj

˜̂
δu,GF + δ̂u,j +

2848�0j

a1as
˜̃zsr,j

(55)

CDMA : �j z̃
s
r,j = �j

(

zsr,j − zs1,j − z1r,j + z11,j

)

FDMA :
2848�0j

a1as
˜̃zsr,j =

2848�0j

a1as

(

a1z
s
r,j − a1z

s
1,j − asz

1
r,j + asz

1
1,j

)

to the CDMA model by setting the frequencies of all 
satellites to the same. This illustrates that we establish 
a unified framework for CDMA and FDMA PPP–RTK 
models.

The coefficients of the ambiguities determine the per-
formance of ambiguity resolution. One may question the 
success rate of FDMA integer ambiguity resolution as 
the coefficients are so small (approximately 0.1 mm). To 
ensure rigorous ambiguity resolution and improve the 
success rate, we must transform the estimable FDMA 
ambiguities in Eq. (55) into integer-estimable ambiguities 
defined in Teunissen (2019). We analyze the performance 
of GLONASS ambiguity resolution through (Teunissen, 
2019)

where ηDF−FDMA denotes the dual-frequency FDMA 
Ambiguity Dilution Of Precision (ADOP), while 
ηDF−CDMA denotes the CDMA ADOP taking dual-fre-
quency GPS as an example. gm denotes the greatest com-
mon divisor of (a1, . . . , am).

Equation (56) indicates that GLONASS ambiguity res-
olution depends highly on the number of satellites. Since 
gm is at most two for seven satellites, the FDMA ADOP 
is approximately three and a half times larger than its 
CDMA counterpart, indicating a lower FDMA ambiguity 
success rate. Fortunately, partial ambiguity resolution can 
remarkably improve the FDMA ambiguity success rate 
by resolving per frequency m − 2 ambiguities instead of 
m − 1. In this way, FDMA ambiguity resolution performs 
as well as CDMA ambiguity resolution (Teunissen, 2019).

While many studies have validated the CDMA PPP–
RTK (Odijk et  al., 2017; Psychas et  al., 2021; Teunissen 
et  al., 2010), the FDMA PPP–RTK is a recent progress. 
For an initial assessment of the FDMA PPP–RTK, refer 
to Zhang et al. (2021), in which they succeeded in FDMA 
ambiguity resolution and high-precision GLONASS 
PPP–RTK positioning using both the ionosphere-float 
and ionosphere-weighted models.

Ionosphere‑float vs. ionosphere‑weighted vs. 
ionosphere‑fixed
Different constraints on tropospheric and ionospheric 
delays yield three models: ionosphere-float, ionosphere-
weighted, and ionosphere-fixed models. Table 1 summa-
rizes these constraints on atmospheric delays and their 
estimable forms in the three models based on code-plus-
phase observations. The ionosphere-float model avoids 
any external constraints on atmospheric delays, the ion-
osphere-weighted model imposes a zero-mean weighted 

(56)ηDF−FDMA ≈

(

2848

gm

)
1

(m−1)

ηDF−CDMA
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constraint on ionospheric delays and considers the tropo-
spheric mapping functions of all stations identical, while 
the ionosphere-fixed model assumes the atmospheric 
delays at all stations identical. As a result, three mod-
els of full-rank estimate the original tropospheric delay, 
between-receiver single-differenced tropospheric delay, 
and “None”, respectively. The “None” means that tropo-
spheric delays of the ionosphere-fixed model are inesti-
mable since they are absorbed into satellite clock errors. 
Regarding ionospheric delays, the ionosphere-float model 
estimates the ionospheric delay containing dr,GF , while 
the other two models estimate the ionospheric delay con-
taining d1,GF . This difference brings more convenient ion-
ospheric modeling for the ionosphere-weighted model 
since the ionospheric delays of all receivers absorb a com-
mon receiver bias, while ionospheric modeling for the 
ionosphere-float model should consider the inconsistent 
receiver bias datum (Zha et  al., 2021). The ionosphere-
fixed model estimates the same ionospheric delays of all 
receivers and thus can be directly sent to users without 
modeling.

In addition to atmospheric parameters, Table 2 shows 
other parameters that are also different in three mod-
els. Since the change in tropospheric constraints affects 
the rank deficiency between tropospheric delays and 

satellite clock errors, ionosphere-weighted and iono-
sphere-fixed models estimate the satellite clock errors 
absorbing tropospheric delays at the first receiver, while 
the ionosphere-float model estimates the satellite clock 
errors without tropospheric delays. Due to the linear 
correlation between the ionospheric delays and receiver 
biases, ionospheric constraints on the ionosphere-
weighted and ionosphere-fixed models change the 
estimable forms of receiver biases. Compared with the 
ionosphere-float model, the other two models estimate 
additionally a Between-Receiver Differential Code Bias 
(BR-DCB) and estimate the receiver phase bias without 
geometry-free receiver code bias.

Due to the different atmospheric constraints under-
lying three models, their applications and perfor-
mances are different. The ionosphere-float model 
is suitable for large-scale networks where the iono-
spheric delays are modeled without any constraints, 
e.g., the global or national networks. The ionosphere-
weighted model is designed for medium-scale net-
works, e.g., the network of a province. One may also 
carry out ionosphere-float PPP–RTK in medium-scale 
networks. However, it underperforms the ionosphere-
weighted PPP–RTK with a proper stochastic model of 

Table 1  Constraints on atmospheric delays and their estimable forms in the code-plus-phase ionosphere-float, ionosphere-weighted, 
and ionosphere-fixed models

Model Parameter Constraint Estimable form

Ionosphere-float Troposphere None τr

Ionosphere None l
s

r = lsr − ds,GF + dr ,GF

Ionosphere-weighted Troposphere ms
1 = · · · = ms

n τ̃r = τr − τ1

Ionosphere 0 = lsr − ls1 l̃sr = lsr − ds,GF + d1,GF

Ionosphere-fixed Troposphere ms
1τ1 = · · · = ms

nτn = τ s None

Ionosphere ls1 = · · · = lsn = ls l
s
= ls − ds,GF + d1,GF

Table 2  Different estimable parameters in the code-plus-phase ionosphere-float, ionosphere-weighted, and ionosphere-fixed models

(.)1r denotes a between-receiver single-differenced operation

Parameter Estimable form

Ionosphere-float Ionosphere-weighted Ionosphere-fixed

Satellite clock dt̃s = dt
s
− dt1 d˜̃ts = dt

s
− dt1 −ms

1τ̃1 dt
s
= dt

s
− dt1 − τ s

BR-DCB None d̃r ,GF = dr ,GF − d1,GF d̃r ,GF = dr ,GF − d1,GF

Receiver phase bias δ̃r ,j = δ1r ,j − d1r ,IF

+ujd1r ,GF + �j z
1
1r ,j

˜̃
δr ,j = δ1r ,j − d1r ,IF + �j z

1
1r ,j

˜̃
δr ,j = δ1r ,j − d1r ,IF + �j z

1
1r ,j
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ionospheric constraints. In small-scale networks, the 
ionosphere-fixed model works best compared to the 
other two models.

This work systematically formulates a class of PPP–
RTK functional models and casts them in a unified the-
oretical framework, while many studies have elaborated 
on the practical aspects of these models. For instance, 
Zhang et al. (2018) applied the ionosphere-fixed model 
to analyze the characteristics of the receiver phase bias 
in a small network, Zha et al. (2021) evaluated the per-
formance of ionosphere-weighted PPP–RTK during 
low and high solar activity days, and Zhang et al. (2019) 
carried out ionosphere-float PPP–RTK over China.

Code‑plus‑phase vs. phase‑only
The code-plus-phase and phase-only PPP–RTK models 
provide network products in different forms. Table  3 
shows the estimable forms of network products based 
on the two models. Since we form the phase-only 
model by starting with phase observation equations 
in the full-rank code-plus-phase model, the estima-
ble parameters of the phase-only model are the linear 
combinations of the estimable parameters of the code-
plus-phase model. One can obtain the same phase-only 
model if starting with the original phase observation 
equations. This illustrates that the null space of the 
code-plus-phase model is a subset of the null space 
of the phase-only model. Notably, satellite clock and 
ionospheric products ( d˜̂ts and ˜̂lsr ) based on phase-only 
observations absorb ambiguities since they are biased 
with the estimable satellite phase bias of the code-plus-
phase model δ̃s,IF that contains ambiguities. This indi-
cates that the magnitudes of the satellite clock error 
and ionospheric delays are unpredictable, which should 
be considered when coding and broadcasting the prod-
ucts on the network side.

Despite different forms of individual products based 
on two models, the combined products are the same. 
See below the estimable forms of the combined prod-
ucts based on two models

where ρs
1 is the satellite-to-receiver geometrical distance. 

The phase-only model excludes the satellite phase bias 
since only observations at the third frequency and above 
require this product.

Equation  (57) illustrates that both code-plus-phase 
and phase-only PPP–RTK models provide users with 
the same combined products which can also be rep-
resented as (pseudo) observations. This illustrates the 
transformation from SSR to OSR (Khodabandeh & 
Teunissen, 2015). Hence, the RTK terminals can also 
use the PPP–RTK network products, implying that 
PPP–RTK is compatible with RTK.

Phase-only ambiguity resolution is more difficult than 
code-plus-phase ambiguity resolution, especially for 
the ionosphere-float models. Phase-only ionosphere-
float PPP–RTK selects the ambiguities at the first 
frequency as the S-basis to eliminate the rank deficien-
cies, making the estimable ambiguities changed. Here, 
we write again the estimable CDMA ambiguities in 
the code-plus-phase and phase-only ionosphere-float 
models

where the phase-only ambiguities are related to the 
simplest integer ratio of wavelength. Taking dual-fre-
quency GPS observations as an example, its estima-
ble phase-only ambiguities at the second frequency are 
�2
60

(

60z̃sr,2 − 77z̃sr,1
)

 . The wavelength of the estimable 
phase-only ambiguities is 60 times smaller than that of 
code-plus-phase ambiguities, leading to more difficulties 

(57)

dt̃ s + l̃s1 + δ̃s,1 = dts − dt1 −ms
rτ1 + ls1

+ δs,1 − δ1,1 − �1z
s
1,1 = −

(

φs
1,1 − ρs

1

)

d˜̂ts +
˜̂
ls1 = dts − dt1 −ms

rτ1 + ls1

+ δs,1 − δ1,1 − �1z
s
1,1 = −

(

φs
1,1 − ρs

1

)

(58)

Code-plus-phase : �j z̃
s
r,j = �j

(

zsr,j − zs1,j − z1r,j + z11,j

)

Phase-only :
�j

w1,j

ˆ̂zsr,j =
�j

w1,j

(

w1,j z̃
s
r,j − w2,j z̃

s
r,1

)

Table 3  Network products based on the code-plus-phase and phase-only ionosphere-weighted models

Parameter Estimable form

Code-plus-phase Phase-only

Tropospheric delay τ̃r = τr − τ1 τ̃r = τr − τ1

Ionospheric delay l̃sr = lsr − ds,GF + d1,GF ˜̂
lsr = l̃sr −

˜̃
δ1,GF + δ̃s

,GF

Satellite clock d˜̃ts = dt
s
− dt1 −ms

1τ̃1 d
˜̂ts = d˜̃ts + δ̃s,IF

Satellite code bias d̃s,j=d
s

,j−d1,j (j > 2) None

Satellite phase bias δ̃s,j = δ
s
,j − δ1,j − �j z

s
1,j δ̂s,j = δ̃s,j − δ̃s,IF − µj δ̃

s
,GF (j > 2)
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in phase-only ambiguity resolution for the ionosphere-
float model. Fortunately, the phase-only ionosphere-
weighted and ionosphere-fixed models parameterize the 
same ambiguities as those of the code-plus-phase mod-
els. In such cases, the performance of phase-only ambi-
guity resolution is similar to that of code-plus-phase 
ambiguity resolution since the contribution of code 
observations is marginal as its precision is less than that 
of the phase counterpart by two orders of magnitude.

Although the code-plus-phase model is stronger 
than its phase-only counterpart, the phase-only model 
plays an essential role in the case the unmodeled code-
related errors are severe. For instance, in a network of 
heterogeneous receivers, Zhang et al. (2021) suggested 
adopting the phase-only model to realize GLONASS 

PPP–RTK, thereby avoiding the code IFB. Regard-
ing the CDMA systems, Hou et  al. (2022) applied 
the phase-only model to BDS data and improved the 
positioning performance compared to the code-plus-
phase PPP–RTK since the remarkable code multipath 
degraded the code-plus-phase positioning.

Conclusions
In this contribution, we present a class of undiffer-
enced and uncombined PPP–RTK functional models 
in a systematic way. Figure 1 presents these models and 
shows the framework of undifferenced and uncombined 
PPP–RTK. We classify the models into the code-plus-
phase and phase-only divisions. Both divisions con-
tain the ionosphere-float, ionosphere-weighted, and 

PPP-RTK

Code-plus-phase

Phase-only

Ionosphere-weighted

Ionosphere-float

Ionosphere-fixed

CDMA: Eq. (14), (16)

FDMA: Eq. (18), (19)

CDMA: Eq. (23), (25)

FDMA: Eq. (26), (27)

CDMA: Eq. (28), (30)

FDMA: Eq. (31), (32)

Ionosphere-weighted

Ionosphere-float

Ionosphere-fixed

CDMA: Eq. (39), (41)

FDMA: Eq. (42), (43)

CDMA: Eq. (45), (47)

FDMA: Eq. (48), (49)

CDMA: Eq. (50), (52)

FDMA: Eq. (53), (54)

Fig. 1  Framework of undifferenced and uncombined PPP–RTK. Two equations in each textbox on the far right side represent the network and user 
models
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ionosphere-fixed models. Each model considers both 
CDMA and FDMA systems. We conclude the properties 
of these models below.

Code-plus-phase models are stronger than their phase-
only counterparts, but phase-only models may perform 
better in the case the unmodeled code-related errors 
are severe. The exclusion of code observations results in 
additional rank deficiencies, making more phase-related 
parameters inestimable. As a result, the estimable param-
eters of the phase-only model are the combinations of 
estimable parameters of the code-plus-phase model. The 
less estimable parameters of the phase-only model indi-
cate the weakness of the model. However, the phase-only 
models avoid the adverse effects of the unmodeled code-
related errors, such as the code IFB in GLONASS and 
code multipath in BDS GEO satellites. GLONASS code 
IFB between different types of receivers can reach several 
meters, while phase IFB is small enough to be ignored in 
most practical cases (Wanninger, 2012). Hence, phase-
only GLONASS PPP–RTK fits well for the networks 
deploying heterogeneous receivers. Many studies have 
reported that BDS GEO satellites exhibit remarkable 
code multipath (Montenbruck et al., 2013), implying the 
potential applications of the phase-only model in such a 
case.

The ionosphere-weighted model is stronger than the 
ionosphere-float model, and the ionosphere-fixed model 
is the strongest. However, this does not mean that the 
ionosphere-fixed model always performs best. In small-
scale networks where atmospheric delays are almost 
identical at all stations, the ionosphere-fixed model ben-
efits its strength and would perform best. However, in 
medium-scall networks where one cannot consider all 
ionospheric delays identical in a deterministic way, the 
ionosphere-weighted model that imposes weighted con-
straints on ionospheric delays could perform best. This 
is because the ionosphere-fixed model is no longer unbi-
ased in medium-scale networks. Concerning large-scale 
networks, the ionosphere-float model takes the center 
stage since the weighted constraints on ionospheric 
delays lose efficiency.

FDMA ambiguity resolution is more difficult than the 
CDMA ambiguity resolution, but fast FDMA ambiguity 
resolution is feasible. Due to the effects of IFB, FDMA 
PPP–RTK parameterizes a specific linear combination of 
ambiguities, instead of the double-differenced ambigui-
ties in CDMA systems. Taking advantage of the integer-
estimability theory (Teunissen, 2019), FDMA PPP–RTK 
can achieve fast partial ambiguity resolution and improve 
positioning compared to the ambiguity-float solution. 
The rigorous GLONASS PPP–RTK model contributes to 
multi-GNSS solutions that provide more accurate, reli-
able, and continuous positioning services.

In conclusion, all models presented in this contribution 
play an indispensable role in different scenarios. With the 
contribution of this work, the GNSS community would 
enjoy a systematic theoretical framework of undiffer-
enced and uncombined PPP–RTK functional models. 
We may inevitably miss some materials. For instance, 
the single-frequency PPP–RTK functional model (Odijk 
et al., 2012) is not introduced in this contribution, but it 
can also be cast in the framework shown in Fig.  1. The 
stochastic and dynamic models are not discussed in this 
contribution, but they can be flexibly constructed since 
our functional models are based on undifferenced and 
uncombined observations and preserve all of the param-
eters. Some problems remain to be solved. For instance, 
how to efficiently process the mass data collected by 
hundreds or even thousands of receivers, which will be 
addressed in our future work.
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