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An indoor fusion navigation algorithm 
using HV‑derivative dynamic time warping 
and the chicken particle filter
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Abstract 

The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fin-
gerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents 
an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the 
Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to 
extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping 
employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of 
fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which mini-
mizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the 
experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly.
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Introduction
Location-based services such as pedestrian navigation, 
fire rescue, and intelligent commodity storage are in high 
demand. Navigation is one of the most important tech-
nologies in location services. BeiDou Navigation Satellite 
System (BDS), Global Positioning System (GPS), GLObal 
NAvigation Satellite System (GLONASS), and Galileo 
navigation satellite system (Galileo) are the global satellite 
navigation systems that have been successfully employed 
(Chen & Chang, 2021; Mosavi et al., 2017; Wang, Zhang, 
et  al., 2021). Many scholars have conducted extensive 
research on Global Navigation Satellite System (GNSS). 
Buildings impede or weak satellite signals, making it 
impossible to utilize a satellite system for indoor naviga-
tion. Other techniques are used, such as accelerometer 
(Jiménez et  al., 2010), gyroscope (El-Sheimy & Youssef, 

2020), geomagnetism (Zhang et al., 2014), Wireless Fidel-
ity (WiFi) (Biswas & Veloso, 2010), vision (Möller et al., 
2012), Radio Frequency Identification (RFID) (Xu et  al., 
2017), and so on. As a means of communication, smart-
phones have gained popularity. One of the most common 
approaches is to utilize a smartphone as a navigation 
device.

Smartphones are successfully integrated with Micro-
Electro-Mechanical Systems (MEMS) accelerometers 
and gyroscopes. By integrating with acceleration and 
angular velocity, the smartphone’s position, speed, and 
attitude are calculated. Although many studies (Shin & 
El-Sheimy, 2002; Syed et  al., 2007) used mathematical 
modeling or a turntable calibration platform to elimi-
nate various inertial sensor errors, the position error 
caused by the integration remains divergent. Another 
method is to use gait Dead Reckoning (DR) to estimate 
position in two dimensions (Chen et  al., 2018a). The 
most significant features of a gait-based DR are attitude 
angles, step length, and step counting. The inverted 
pendulum model is used to compute the pedestrian 
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step length after segmenting the vertical acceleration 
(Chen et al., 2021). Although DR can reduce the error 
caused by an integral operation, the cumulative error 
still exists. The greater the walking time, the larger the 
position error is. The position error is proportional 
to the cubic power of walking time (Ali & El-Sheimy, 
2013). Yu et al. used the Particle Filter (PF) to success-
fully reduce pedestrian position error after introducing 
the map’s new information (Yu et al., 2016).

The use of fingerprints for navigation is becoming 
popular. Fingerprint intensity is influenced by the spatial 
environment, resulting in variable fingerprint intensities 
in different locations. In other word, the fingerprints in 
adjacent locations are similar, whereas fingerprints from 
far away locations are different. In the offline phase, the 
fingerprints and their associated spatial positions are 
used to establish a reference fingerprint database. In the 
online phase, a smartphone measures the fingerprints. 
The matching approach is used to estimate the relevant 
position. Mismatching of fingerprints is unavoidable in 
the matching process. By constructing multidimensional 
fingerprints, Wang et  al. effectively reduced fingerprint 
mismatching (Wang et al., 2020).

To further solve the low accuracy problem of a fusion 
system, a number of fusion approaches incorporating DR 
and fingerprint matching have been developed (Chen 
et  al., 2015). Li et  al. used the DR navigation results to 
restrict the fingerprint matching scope, and the Multi-
Dimensional Dynamic Time Warping (MD-DTW) 
algorithm to calculate the distance between online and 
reference fingerprints (Li et al., 2016a). The performance 
of the fusion method is determined by the DR results. 
Chen et al. and Li et al. introduced the Extended Kalman 
Filter (EKF) and the unscented Kalman filter, respectively 
(Chen, et al., 2015; Li et al., 2016b). Because the Kalman 
filter is only applicable for linear systems, fusion algo-
rithms’ ability to improve their navigation performance 
is severely limited. Xie et  al. used an improved PF, but 
cannot solved the particle impoverishment problem (Xie 
et  al., 2014). To overcome the aforementioned difficul-
ties, this research proposes an effective indoor navigation 
technique. The innovative work is as follows.

The pitch and roll are used to extract the horizontal 
and vertical components of the magnetic field fingerprint 
to construct the HV fingerprint. The derivative of the HV 
fingerprint is employed, which possesses higher-level 
properties. The HV-Derivative Dynamic Time Warping 
(HV-DDTW) is proposed to reduce magnetic fingerprint 
mismatching.

To tackle the particle impoverishment problem, a CSO 
technique is proposed to improve the particle weights. 
An improved PF, or a Chicken PF (CPF), can increase the 
position accuracy of an indoor navigation system.

The experiments show the position accuracy for a labo-
ratory and an office building achieved 0.88 m and 1.1 m, 
respectively, with four different motion modes.

In this paper, the second section discusses the related 
work; the third section delves into the algorithm model; 
the fourth section describes the experiments in various 
scenarios; and the fifth section summarizes the study and 
gives the recommendations for future work.

Related work
Indoor navigation algorithms can be divided into two 
groups: the single-sensor navigation algorithms and the 
multi-sensor navigation algorithms. A single-sensor navi-
gation algorithm uses only the data of one sensor, and the 
positioning performance is improved primarily by deal-
ing with a data source. It is simple and straightforward to 
use, but has limited applications. A multi-sensor naviga-
tion algorithm combines the data from numerous sensors 
to better positioning performance by coping with the 
data sources. The navigation algorithm is relatively com-
plex, but widely used.

The single‑sensor navigation algorithms
The single-sensor navigation has been studied exten-
sively. Park and Suh provided a new zero velocity detec-
tion approach using the Markov model by segmenting 
the angular velocity (Park & Suh, 2010). To correct the 
lower-frequency biases in the accelerations and angles, 
Yan et  al. merged sophisticated machine learning algo-
rithms with inertial navigation system (Yan et al., 2018). 
To improve the accuracy of WiFi fingerprint matching, 
some researchers have used an indoor WiFi attenuation 
model to update fingerprint databases (Sun et al., 2018). 
Li et al. described the method to use the magnetic field 
value as a fingerprint for indoor localization (Li et  al., 
2012). A robust Ultra-Wide Band (UWB) indoor posi-
tioning system was proposed based on the skewness of 
the estimated channel impulse response (García et  al., 
2015). It can accurately operate in a very complex indoor 
scenario. Indoor localization is accomplished using a 
RFID signal propagation model based on the weighted-
least square approach (Wang, Zhang, et al., 2021).

The multi‑sensor navigation algorithms
The multi-sensor fusion algorithms have been widely 
researched because they take advantage of the comple-
menting qualities of sensor data. Li et  al. used a multi-
layer quality control strategy to reduce the positioning 
error of the fusion algorithm, which is based on the 
interaction of different technologies such as Pedestrian 
Dead Reckoning (PDR), magnetic field, and WiFi (Li 
et  al., 2017). To incorporate PDR, magnetic field, and 
floor plan, Wang et al. employed an adaptive unscented 
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Kalman filter (Wang et  al., 2015). To combine LiDAR, 
cameras, and inertial sensors, Li et  al. employs the fed-
erated filters (Li et al., 2020). However, the Kalman filter 
cannot improve dramatically performance for nonlinear 
indoor navigation systems.

The fusion navigation system based on magnetic/WiFi/
PDR selects the fusion strategy to combine the position-
ing results based on the PF framework (Guo et al., 2016). 
To combine MEMS sensor and indoor map data, Yu et al. 
employs an auxiliary PF (Yu et al., 2017). The weight is set 
to zero when the particles cross the wall. The auxiliary PF 
increases positioning precision by removing invalid par-
ticles. However, the particle impoverishment problem, is 
more serious and affects the algorithm’s stability.

Methodology
As illustrated in the indoor fusion technique is made up 
of four parts: the gait-based DR, magnetic field finger-
print matching, WiFi fingerprint matching, and a fusion 
algorithm. The gait-based DR module uses heading, step 
length, and step counting to estimate pedestrian position. 
Zero velocity UPdaTe (ZUPT) and EKF are used to elimi-
nate noise. HV-DDTW employs the derivative of the fin-
gerprint instead of the original one in the magnetic field 
fingerprint matching module, which obtains higher-level 
features due to considering the fingerprint shape infor-
mation. The pedestrian position is estimated using the 
Weighted K-Nearest Neighbor (WKNN) technique. The 

WiFi fingerprint matching module uses the MD-DTW 
approach to determine the fingerprint distance (Li, et al., 
2016a). The revised PF algorithm in the indoor fusion 
algorithm effectively increases the accuracy of pedestrian 
navigation following the introduction of the CSO algo-
rithm (Fig. 1).

The gait‑based DR
EKF, step length, step counting, and heading estimation 
are all parts of the technology. EKF is used to filter out 
vertical velocity noise when zero velocity is detected. DR 
is used to estimate the position of a pedestrian after com-
puting the heading, step length, and step counting.

EKF
To determine if a pedestrian is static, the ZUPT algo-
rithm is used. The EKF is triggered to filter out noise 
when a pedestrian is detected to be stationary. The fol-
lowing is a 9-element state vector.

where rz and vz denote the vertical displacement and ver-
tical velocity, respectively; Sroll , Spitch , and Syaw denote the 
user’s attitude angles; ∈vz denotes the bias of the vertical 
velocity; ∈roll , ∈pitch ., and ∈yaw denote the biases of the 
attitude angles.

The EKF system equation reads

(1)
δXk =

[

rz , vz , Sroll, Spitch, Syaw,∈vz ,∈roll,∈pitch,∈yaw

]T

k

Acceleration

ZUPT

EKF

Angular velocity Magnetic field

Online phase

HV-DDTW

WKNN

Offline phase

WiFi

Online phase Offline phase

MD-DTW

WKNN

WiFi
fingerprint
database

Magnetic
fingerprint
database

Heading

Step length

DR The gait-based DR Magnetic matching WiFi matching

CPF

A fusion algorithm

Pedestrian
trajectory

Step counting

Fig. 1  The indoor fusion navigation algorithm framework
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where F k−1 denotes the state transition matrix; Hk 
denotes the observation matrix; ωK−1 and vk denote the 
state transition noise and the observation noise. Refer to 
reference (Chen et  al., 2018b) for the determination of 
the four parameter values ( F k−1,ωK−1,Hk , vk).

Step length
The pedestrian step length is calculated using the inverted 
pendulum model. The vertical acceleration is determined 
as follows when the accelerometer collects the acceleration.

where az(t) is the vertical acceleration; the acceleration 
and gravity at the t-th epoch are represented by a(t) and 
g(t) , respectively; and |∗| denotes the norm of a vector.

The vertical displacement can be calculated using the 
double integral method.

where t1 and t2 are the beginning and ending times of the 
vertical acceleration, respectively; and SVD is the vertical 
displacement.

The step length is calculated using the inverted pendu-
lum model as follows.

where DSL denotes the length of one step and L denotes 
the distance between the smartphone and the ground 
while the walker is static.

Step counting
When a pedestrian is walking, the smartphone moves up 
and down, forming peaks and troughs. The two adjacent 
troughs are taken as one step for the pedestrian.

(2)δXk = F k−1δXk + ωK−1

(3)δZk = HkδXk + vk

(4)az(t) = − (a(t)− g(t)) · g(t)
∣

∣g(t)
∣

∣

(5)SVD =
t2
∫

t1

t2
∫

t1

az(t)dtdt

(6)DSL = 2

√

L2 − (L− SVD)
2

(7)

ttrough =
{

t|
(

at1−1
z − athd

)

·
(

at1+1
z − athd

)

< 0,

(

at2−1
z − athd

)

·
(

at2+1
z − athd

)

< 0, t = t1 + t2

2

}

where the trough point of the vertical acceleration is rep-
resented by ttrough ; two epochs are represented by t1 and 
t2 ; and the vertical acceleration threshold is represented 
by athd . The pedestrian step counting is depicted in Fig. 2.

Heading
The quaternion approach is used to update the angle 
increment when the angular velocity is collected by the 
gyroscope. The quaternion vector at the (k + 1)-th epoch 
reads

where qk+1 =
[

q1 q2 q3 q4
]

k+1
 ; I is a 3 identity matrix; 

and �θk is the angle increment. �� is calculated as 
follows.

where �θxk  , �θ
y
k  , and �θ zk  represent x, y, z triaxial angle 

increments at the k-th epoch, respectively.
The directional cosine matrix is calculated as follows 

after the quaternion vector has been updated.

(8)qk+1 =
[

I cos
�θk

2
+��

sin
�θk
2

�θk

]

qk

�� =









0 �θ zk −�θ
y
k �θxk

−�θ zk 0 �θxk �θ
y
k

�θ
y
k

−�θxk

−�θxk
−�θ

y
k

0
−�θ zk

�θ zk
0









(9)Cn
b =





q21 − q22 − q23 + q24 2q1q2 − 2q3q4 2q1q3 + 2q2q4
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Fig. 2  The step counting detection result
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The attitude angles are determined as follows when the 
direction cosine matrix is changed.

where ϑ , φ an ϕ denote pitch, roll, and yaw, respectively.

DR
The DR algorithm determines the pedestrian position 
based on its previous position 

[

xk yk
]T and the current 

step length DSL and heading ϕ.

Fingerprint matching
Database training in the offline phase
The databases < location, RSS > and < location, mag-
netic feature > are both created in the offline phase. The 
walk-survey approach is a time and cost-effective way of 
constructing a fingerprint database (Li et al., 2015b). As 
illustrated in Fig. 3, the reference points in a test area are 
first marked. Then a laser rangefinder is used to get their 
two-dimensional coordinates. When a reference point is 
reached while walking, the walking time and fingerprints 
including Received Signal Strength (RSS) and magnetic 
field are recorded. Finally, interpolation is used to acquire 
the fingerprints for other locations.

WiFi fingerprint
Android smartphones usually have low WiFi RSS update 
rates, such as 0.2  Hz for Nexus 5X. When the surveyor 
arrives at a reference point, he or she presses the button 
to record the time, and the WiFi fingerprint that is clos-
est to the time of recording is used as the reference point 
fingerprint. The following is the WiFi fingerprint of the 
j-th reference point.

where posi is the i-th reference point’s two-dimensional 
coordinate; the media access control address and RSS 
of the j-th AP at the i-th reference point are maci,j and 

(10)ϑ = arctan
−Cn

b (3, 1)
√

(

Cn
b (3, 2)

)2 +
(

Cn
b (3, 3)

)2

(11)φ = arctan
Cn
b (3, 2)

Cn
b (3, 3)

(12)ϕ = arctan
Cn
b (2, 1)

Cn
b (1, 1)

(13)
[

xk+1

yk+1

]

=
[

xk
yk

]

+ DSL ·
[

cosϕ
sin ϕ

]

(14)
FWi ={posi,

(

maci,1, RSSi,1
)

,
(

maci,2, RSSi,2
)

,
(

maci,j , RSSi,j
)

, · · · ,
(

maci,m, RSSi,m
)

}

Reference point

Fig. 3  Schematic diagram of WiFi fingerprint and magnetic 
fingerprint collection in an indoor environment. The distance 
between the reference points is set to 5–10 m

0 20 40 60 80 100 120 140
Time (s)

−50

0

50

 M
ag

ne
tic

 fi
el

d 
am

pl
itu

de
 (μ

T) z axis magnetic field
y axis magnetic field
x axis magnetic field

Fig. 4  The triaxial magnetic field



Page 6 of 18Chen et al. Satellite Navigation            (2022) 3:13 

RSSi,j , respectively; and m is the number of available APs 
at the i-th reference point.

Magnetic fingerprint
As shown in Fig. 4, the magnetometer collects the three-
axis magnetic field ( Bx,By,Bz ). The following is the mag-
netic intensity fingerprint at the k-th epoch of the i-th 
reference point.

where posi and Bi,k =
√

(

Bx
i,k

)2
+

(

B
y
i,k

)2
+

(

Bz
i,k

)2
 

represent the i-th reference point’s two-dimensional 
coordinate and magnetic intensity at the k-th epoch of 
the i-th reference point, respectively.

Constructing two-dimensional magnetic fingerprints is 
another method. The horizontal and vertical components 
of the magnetic field can be calculated using the attitude 
angles (Chen, et  al., 2018a). The following is the defini-
tion of a two-dimensional magnetic fingerprint.

The vertical component of the magnetic field is calcu-
lated as follows (Li et al., 2015a).

where the horizontal magnetic field is denoted by BH . 
Figure 5 depicts the magnetic field’s horizontal and ver-
tical components, commonly known as HV magnetic 
fingerprints.

(15)FMi,k =
{

posi,Bi,k

}

(16)FMi,k =
{

posi,B
H
i,k ,B

V
i,k

}

.

(17)
BV
i,k = − sin ϑ · Bx

i,k + sin ∅ cosϑ · By
i,k + cos ∅ cosϑ · Bz

i,k

(18)BH
i,k =

√

(

Bx
i,k

)2
+

(

B
y
i,k

)2
+

(

Bz
i,k

)2
− BV

i,k

Positioning in the online phase
WiFi matching
The goal of WiFi fingerprint matching is to find the 
most similar reference fingerprint in the database 
using the acquired WiFi fingerprint. The position cor-
responding to the most similar reference fingerprint is 
the matching result. Multi-dimensional WiFi finger-
prints are also used in the matching process to solve 
the mismatching of WiFi fingerprints. MD-DTW is the 
corresponding algorithm.

The improved magnetic matching
To determine the distance between online finger-
prints and the fingerprints in a database, the DTW 
method is commonly employed. The shorter the dis-
tance, the higher the similarity is. The HV fingerprint 
is directly engaged in fingerprint matching in the clas-
sic fingerprint matching process. However, the impact 
of magnetic field shape information on the fingerprint 
matching method is ignored. According to reference 
(Keogh & Pazzani, 2001), the derivative method is 
introduced, and the HV-DDTW algorithm is proposed. 
Figure 6 shows the HV magnetic field fingerprint in its 
derivative form, which is calculated as.

(19)
MH

k =
(

BH
k − BH

k−1

)

+
(

BHk+1−BHk−1

)

2

2
.

(20)
MV

k =
(

BV
k − BV

k−1

)

+
(

BVk+1−BVk−1

)

2

2
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where MH
k

 and MV
k

 represent the new magnetic field fin-

gerprint at the k-th epoch.
The new fingerprint is used as input information, and 

Algorithm 1 HV-DDTW shows the calculation process. 

The WKNN method is utilized to produce genetic field 
matching results, which involves calculating the weighted 
average of the k selected reference locations with the 
minimum Euclidean distance. The weighted average for-
mula is as follows.

where ci = 1/Di , C =
∑k

i=1
Di;

[

xi
yi

]

 is the position of the 

i-th selected reference point; 
[

x̂
ŷ

]

 is the estimated 

position.

An improved indoor fusion positioning algorithm
The PF, unlike the Kalman filter, can be used to analyze 
nonlinear systems and is frequently used in indoor navi-
gation applications. But the particle impoverishment 
problem is always of main concern. Different PF variants 

(21)
[

x̂
ŷ

]

=
k

∑

i=1

ci

C

[

xi
yi

]

have been proposed to solve the particle impoverishment 
problem. Although revised algorithms improve naviga-
tion performance in various ways, there are still some 
drawbacks, such as low positioning precision.

Chicken swarm optimization
Chickens like roosters, hens, and chicks have a hier-
archical structure and foraging activity that the CSO 
algorithm resembles. The CSO algorithm can quickly 
and easily solve all types of numerical problems in sci-
entific research, and has the advantages of high conver-
gence efficiency and fast convergence speed.

Update the position of the rooster
The rooster with a higher fitness value and a wider 
range of food searching has an advantage over the 
rooster with a lower fitness value and a smaller range 
of food searching during the food competition phase. 
Individual location i in the t-th iteration is indicated by 
Xt
i,j , where i ∈ [1, 2, 3, . . . ,N ], j ∈ [1, 2, 3, . . . ,Q] . The let-

ters N and Q stand for chickens and dimensional space, 
respectively. The following is a new position for the 
rooster.

where randn represents a normal distribution with 
a mean of 0 and a variance of σ 2 ; fi denotes the fitness 
value of the i-th rooster; except for fi , fk represents any 
fitness value of a rooster; ε denotes a small constant.

Update the position of the hen
The hens usually look for the food near the roosters in 
their offspring, and they can prevent other individuals 
from stealing the food they have found. The hens with 
high fitness values are more likely to win the feeding 
competition than the hens with low fitness values. The 
position of the hen has been updated as follows.

(22a)Xt
i,j = Xt−1

i,j ·
(

1+ randn
(

0, σ 2
))

(22b)σ 2 =
{

1 fi ≤ fk

e

(

fk−fi
fi+ε

)

fi > fk

(23a)
Xt
i,j = Xt−1

i,j + s1 · rand ·
(

Xt−1
r1,j − Xt−1

i,j

)

+s2 · rand ·
(

Xt−1
r2,j − Xt−1

i,j

)

(23b)s1 = e
fi−fr1
|fi+ε|

(23c)s2 = efr2−fi
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where rand represents a random number between 0 to 1. 
The subscript r1 represents the rooster corresponding to 
the i-th hen; r2 represents any individual of the hen.

Update the position of the chick
A chick chooses a hen at randomly as its mother 
to establish the link between mother and son, and 
searches for food under the hen’s direction. The chick’s 
position has been updated as follows.

where Xt−1
m,j  represents the hen, followed by the jth chick, 

and FFL is the following coefficient.

The improved particle filter
The following are the improved PF system equations

(24)Xt
i,j = Xt−1

i,j + FFL ·
(

Xt−1
m,j − Xt−1

i,j

)

(25a)ϕ(k) = ϕ(k − 1)+�ϕ + Gϕ

where ϕ is the pedestrian heading; the symbol for a 
change in pedestrian direction is �ϕ ; the pedestrian posi-
tion is represented by 

[

x(k) y(k)
]T ; and the comparable 

noise is represented by Gϕ , Gx and Gy.
The modified PF observation equations include WiFi 

and magnetic field fingerprint matching results, i.e.

(25b)x(k) = x(k − 1)+ SL ∗ sin (ϕ(k))+ Gx

(25c)y(k) = y(k − 1)+ SL ∗ cos (ϕ(k))+ Gy

a Laboratory b Building office
Fig. 7  Experimental scenarios
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where the subscripts WiFi and MM represent WiFi 
matching result and magnetic matching result, 

(26a)z1(k) =
[

x(k)
y(k)

]

WiFi

(26b)z2(k) =
[

x(k)
y(k)

]

MM

respectively. The weights for the WiFi and MM are 
defined as.

where R is the noise of the observation equation and �·� 
denotes modular operation; 

[

x
y

]

est

 represents the particle 

position estimated by the motion equation; 
[

x
y

]

WiFi

 and 
[

x
y

]

MM

 represent the results of WiFi and magnetic fin-

gerprint matching.
The particle weight of the improved PF is calculated as.

To solve the particle impoverishment problem, we 
modify the standard PF. Based on the chicken flock cat-
egorization method, all particles are divided into three 
groups. The categorization standard is determined by the 
total weight produced by the observation equation.

(27a)qWiFi =
1

√
�R�

√
2π

e
−
∥

∥

∥

∥

∥

[

x
y

]

WiFi

−
[

x
y

]

est

∥

∥

∥

∥

∥

(27b)qMM = 1
√
�R�

√
2π

e
−
∥

∥

∥

∥

∥

[

x
y

]

MM

−
[

x
y

]

est

∥

∥

∥

∥

∥

(28)q = qWiFi · qMM
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Fig. 11  Positioning trajectories with different modes for DR/WiFi
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Fig. 12  Positioning trajectories with different modes for DR/MM
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The chicken swarm algorithm is separated into three 
levels based on the type of a chicken, i.e., a rooster, 
a hen, or a chick. The fitness of roosters is the highest, 
that of hens is the second, and that of chicks is the low-
est, according to the fitness relationship. The particles are 
split into three levels as a result. The particles are sepa-
rated into flocks of chicks if they cross through the wall. 
The particles are split into flocks of roosters if they do not 
pass the wall and their weights above the set threshold. If 
not, they are divided into hen flocks. The following for-
mula is used to establish the threshold.

For the particles divided into a flock of rooste, formula 
(22) is modified as follows.

where qmea represents the average weight.
For the particles divided into a flock of hens, formula 

(23) is modified as

(29)T
q
Th = (max(q)−min(q))× 0.75+min(q)

(30a)Xt
i,j = Xt−1

i,j ·
(

1+ randn
(

0, σ 2
))

(30b)σ 2 =
{

1 qi ≤ qk

e

(

qmea−qi
qi+ε

)

qi > qk

where Xmea1,j represents the average value of roosters, 
and Xmea2,j represents the average value of hens.

Experiment and analysis
Experimental scenarios
Two typical indoor environments were chosen for the 
tests, as shown in Fig.  7. A smartphone Honor 50 was 
utilized to acquire fingerprints in the offline phase. In the 
online phase, the data of acceleration, angular velocity, 
WiFi, and magnetic field were collected using a smart-
phone Nexus 5X. The walking speed was from 1 m/s to 
1.5 m/s. Smartphone posture included four modes: call-
ing, dangling, handheld, and pocketed.

Comparison of HV‑DDTW and MD‑DTW
Many studies employ the HV fingerprints to reduce fin-
gerprint mismatching (Li, et al., 2015b). The higher-level 
feature fingerprint is built using the fingerprint shape 

(31a)
Xt
i,j =Xt−1

i,j + s1 · rand ·
(

Xt−1
mea1,j − Xt−1

i,j

)

+ s2 · rand ·
(

Xt−1
mea2,j − Xt−1

i,j

)

(31b)s1 = e
qi−qmea1
|qi+ε|

(31c)s2 = eqmea2−qi

a calling mode b dangling mode c handheld mode d pocketed mode

Positioning trajectory for EDTW+REKF Positioning trajectory for EDTW+REKF Positioning trajectory for EDTW+REKF Positioning trajectory for EDTW+REKF

Fig. 13  Positioning trajectories with different modes for EDTW + REKF

a calling mode b dangling mode c handheld mode d pocketed mode

Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF

Fig. 14  Positioning trajectories with different modes for HV-DDTW + CPF
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information. MD-DTW was proposed in (Li, et  al., 
2016b). The cumulative distribution functions (CDFs) 
of MD-DTW and HV-DDTW are shown in Fig.  8. The 
higher-level feature fingerprints-based HV-DDTW algo-
rithm is clearly superior to the traditional MD-DTW 
algorithm.

Comparison of PF and CPF
Compared to PF, the effective improvement of CPF is 
illustrated in Fig. 9. It is selected as an example when the 
number of pedestrian steps k is equal to 200 and 300. The 
blue and red asterisks represent the posterior distribu-
tion of PF and CPF, respectively. The weights of many 
particles are so small that they contribute little to the 
posterior distribution, especially those in the ellipse. CPF, 
on the other hand, removes most of the small-weight par-
ticles. This is mainly due to the operation of the chicken 

swarm algorithm. On this basis, a lot of high-quality 
pedestrian position information is transferred from high-
quality particles to small-weight ones, and the chicken 
swarm algorithm is operated to increase the weights of 
particles and make them more uniform.

PF is prone to suffer from the particle impoverishment 
problem during the resampling process, making it dif-
ficult to accurately estimate pedestrian positions. CPF 
generates new particles using three mechanisms, effec-
tively increasing particle diversity. The position error of 
CPF is reduced compared to PF, as illustrated in Fig. 10. 
CSO is used to generate new particles when the parti-
cles cross the wall. The particle impoverishment problem 
is alleviated, and the diversity of particles is improved, 
thus reducing the position error of indoor pedestrian 
navigation.
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Laboratory experiment
Students can conduct experiments in the laboratory, 
which features desks, windows, pillars, and walls. From 
Figs.11, 12, 13, 14, 15, 16 illustrate the positioning tra-
jectories, position errors, and CDFs for DR + WiFi, 
DR + MM, EDTW + REKF (Chen, et al., 2021), and HV-
DDTW + CPF in the calling, dangling, handheld, and 
pocketed modes. The Average Error (AE), Root Mean 
Square Error (RMSE), Maximum Error (ME), and Cir-
cular Error Probability (CEP) are all shown in Table  1. 
Compared to DR + WiFi, DR + MM, and EDTW + REKF, 
HV-DDTW + CPF reduces errors by as follows: (a) for 
AE: 40%, 42.2%, and 19.23%, respectively; (b) for RMSE: 
39.34%, 34.51%, and 21.28%, respectively; (c) for ME: 
26.11%, 27.18%, and 27.88%, respectively; (d) for CEP of 
75%: 45.81%, 36.36%, and 19.23%, respectively; and (e) 
for CEP of 95%: 26.87%, 27.59%, and 28.64%, respectively. 

Compared to the traditional magnetic field fingerprint 
matching, HV-DDTW can significantly reduce magnetic 
field fingerprint mismatching by introducing higher-level 
fingerprints. The CSO algorithm is used to overcome the 
particle impoverishment problem by effectively improv-
ing particle weights. As a result, CPF can improve the 
accuracy of indoor navigation significantly.

Office building experiment
One of the iconic indoor scenes is the office building’s 
corridor. There are classrooms, doors and windows, and 
numerous square columns along the corridor’s edge. In 
the calling, dangling, handheld, and pocketed modes, the 
positioning trajectories, position errors, and CDFs for 
Adaptive Particle Filter (APF) (Hu et  al., 2021), WiMag 
(Guo, et al., 2016), and HV-DDTW + CPF are shown in 

1 2 3 4 5
Position error (m)

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0

CDF of error for DR + WiFi
CDF of error for DR + MM
CDF of error for EDTW + REKF
CDF of error for HV-DDTW + CPF

1 2 3 4 5
Position error (m)

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0

CDF of error for DR + WiFi
CDF of error for DR + MM
CDF of error for EDTW + REKF
CDF of error for HV-DDTW + CPF

1 2 3 4 5
Position error (m)

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0

CDF of error for DR + WiFi
CDF of error for DR + MM
CDF of error for EDTW + REKF
CDF of error for HV-DDTW + CPF

1 2 3 4 5
Position error (m)

a CDFs of errors with calling mode b CDFs of errors with dangling mode

c CDFs of errors with handheld mode d CDFs of errors with pocketed mode

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

0

CDF of error for DR + WiFi
CDF of error for DR + MM
CDF of error for EDTW + REKF
CDF of error for HV-DDTW + CPF

Fig. 16  CDFs of errors with different modes



Page 13 of 18Chen et al. Satellite Navigation            (2022) 3:13 	

Figs.  17, 18, 19, 20, 21. Table  2 displays the AE, RMSE, 
ME, and CEP. Compared to APF and WiMag, HV-
DDTW + CPF reduces errors as by follows: (a) for AE: 
69.95% and 21.43%, respectively; (b) for RMSE: 71.43% 
and 16.56%, respectively; (c) for ME: 73.82% and 10.28%, 
respectively; (d) for CEP of 75%: 72.27% and 13.79%, 

respectively; and (e) for CEP of 95%: 71.35% and 6.36%, 
respectively. Compared to the other two fusion methods, 
the DR, WiFi, and magnetic field fusion strategies can 
effectively boost indoor positioning accuracy.

Figure  22 depicts the position errors of four walking 
experiments using the handheld mode as an example. In 

Table 1  Position errors for DR + WiFi, DR + MM, EDTW + REKF, and HV-DDTW + CPF (m)

Motion Modes Positioning Algorithm AE RMSE ME CEP of 75% CEP of 95%

Calling DR + WiFi 1.5 1.69 2.58 2.08 2.56

DR + MM 0.93 1.06 1.77 1.28 1.76

EDTW + REKF 0.92 1.08 2.15 1.29 2.12

HV-DDTW + CPF 0.74 0.86 1.57 0.98 1.52

Dangling DR + WiFi 1.01 1.1 1.77 1.34 1.72

DR + MM 0.84 0.99 1.71 1.38 1.72

EDTW + REKF 0.67 0.79 1.44 0.99 1.42

HV-DDTW + CPF 0.54 0.67 1.35 0.79 1.32

Handheld DR + WiFi 0.9 1.06 1.9 1.28 1.86

DR + MM 0.93 1.12 2.37 1.17 2.32

EDTW + REKF 0.89 1.05 2.57 1.09 2.52

HV-DDTW + CPF 0.61 0.74 1.82 0.79 1.82

Pocketed DR + WiFi 2.14 2.36 3.49 2.98 3.42

DR + MM 1.66 1.85 3.15 2.29 3.12

EDTW + REKF 1.85 2.03 3.35 2.58 3.32

HV-DDTW + CPF 1.64 1.79 2.47 2.26 2.47

General DR + WiFi 1.39 1.55 2.43 1.92 2.39

DR + MM 1.09 1.26 2.25 1.53 2.23

EDTW + REKF 1.08 1.24 2.38 1.49 2.35

HV-DDTW + CPF 0.88 1.02 1.8 1.21 1.78

a calling mode b dangling mode c handheld mode d pocketed mode

Positioning trajectory for APF Positioning trajectory for APF Positioning trajectory for APF Positioning trajectory for APF

Fig. 17  Positioning trajectories with different modes for APF
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the four walking experiments, the largest AE is 1.52  m, 
the largest RMSE is 1.9 m, the largest ME is 4.15 m, the 
largest CEP of 75% is 1.83 m, and the largest CEP of 95% 
is 3.97 m. These results demonstrated the modified algo-
rithm is of high robustness.

Evaluation of the effectiveness of different smartphones
Two commonly used smartphones (i.e., Nexus 5X and 
Honor 50) were used for fingerprint collection. We 

assume that H-N represents the reference fingerprint 
collected using the smartphone Honor 50 and the meas-
ured fingerprint collected using the smartphone Nexus 
5. The effectiveness of different smartphones is evalu-
ated as shown in Fig. 23. It can be seen in the figure that 
the different smartphones used to collect fingerprints 
give similar position errors, except for the maximum 
error.

a calling mode b dangling mode c handheld mode d pocketed mode

Positioning trajectory for WiMag Positioning trajectory for WiMag Positioning trajectory for WiMag Positioning trajectory for WiMag

Fig. 18  Positioning trajectories with different modes for WiMag

Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF Positioning trajectory for HV-DDTW+CPF

a calling mode b dangling mode c handheld mode d pocketed mode
Fig. 19  Positioning trajectories with different modes for HV-DDTW + CPF
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Conclusion
To tackle the challenges of fingerprint mismatching and 
low fusion accuracy, an indoor fusion navigation solu-
tion is given. The attitude angles are utilized to extract 
the horizontal and vertical components of the magnetic 
field, and the HV fingerprint for magnetic fingerprint 
matching is created. The HV-DDTW algorithm for com-
puting magnetic fingerprint distance is suggested, which 
takes into account the fingerprint shape information and 
matches fingerprints using higher-level features. The 
chicken swarm algorithm is used to overcome the impov-
erishment problem of particles in the classical PF. The 

multi-sensor positioning data is fused using CPF. The 
algorithm’s superiority is demonstrated by the experi-
mental findings. The other merits of the indoor naviga-
tion algorithm include no need for a new infrastructure, 
inexpensive, and dependable.

Because smartphones will have more and more sen-
sors, indoor navigation solutions should include as more 
sensors as possible. The indoor navigation algorithm 
should be also integrated with machine learning to cre-
ate a mathematical model through multiple training to 
improve positioning accuracy.
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Fig. 21  CDFs of errors with different modes

Table 2  Position errors for APF, WiMag, and HV-DDTW + CPF (m)

Motion Modes Positioning Algorithm AE RMSE ME CEP of 75% CEP of 95%

Calling APF 3.74 5.18 12.71 5.13 11.17

WiMag 1.46 1.61 2.97 1.86 2.93

HV-DDTW + CPF 1.15 1.37 2.91 1.63 2.87

Dangling APF 5.16 6.34 13.58 8.93 10.77

WiMag 1.47 1.63 3.07 1.86 3.03

HV-DDTW + CPF 1.14 1.32 2.69 1.48 2.57

Handheld APF 1.37 1.79 5.62 2.13 3.17

WiMag 1.33 1.51 3.72 1.61 2.97

HV-DDTW + CPF 1.04 1.27 3.25 1.53 2.77

Pocketed APF 4.35 5.49 12.09 5.43 11.87

WiMag 1.34 1.46 3.07 1.61 2.37

HV-DDTW + CPF 1.06 1.24 2.62 1.36 2.37

General APF 3.66 4.41 11 5.41 9.25

WiMag 1.4 1.51 3.21 1.74 2.83

HV-DDTW + CPF 1.1 1.26 2.88 1.5 2.65
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