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An efficient approach for anti‑jamming 
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Abstract 

The Indian Regional Navigation Satellite System provides accurate positioning service to the users within and around 
India, extending up to 1500 km. However, when a receiver encounters a Continuous Wave Interference, its position-
ing accuracy degrades, or sometimes it even fails to work. Wavelet Packet Transform (WPT) is the most widely used 
technique for anti-jamming in Global Navigation Satellite System receivers. But the conventional method suffers from 
threshold drifting and employs inflexible thresholding functions. So, to address these issues, an efficient approach 
using Improved Particle Swarm Optimization based Parametric Wavelet Packet Thresholding (IPSO-PWPT) is pro-
posed. Firstly, a new parameter adaptive thresholding function is constructed. Then, a new form of inertia weight is 
presented to enhance the performance of PSO. Later, IPSO is used to optimize the key parameters of WPT. Finally, the 
implementation of the IPSO-PWPT anti-jamming algorithm is discussed. The performance of the proposed technique 
is evaluated for various performance metrics in four jamming environments. The evaluation results manifest the 
proposed method’s efficacy compared to the conventional WPT in terms of anti-jamming capability. Also, the results 
show the ability of the new thresholding function to process various signals effectively. Furthermore, the findings 
reveal that the improved PSO outperforms the variants of PSO.
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Introduction
Global Navigation Satellite System (GNSS) provide the 
users with position, velocity, and timing services anytime 
and anywhere. The utilization of GNSS in diverse appli-
cations is growing rapidly due to the increasing demand 
for location-based services. At present, the United States’ 
Global Positioning System (GPS), Russia’s GlObal NAvi-
gation Satellite System (GLONASS), European Galileo, 
and China’s BeiDou Navigation Satellite System (BDS) are 
the fully operational GNSS. In contrast, Indian Regional 
Navigational Satellite System (IRNSS) and Japan’s Quasi-
Zenith Satellite System (QZSS) are independent and 

autonomous regional navigation systems. As GNSS uses 
spread spectrum technology, it possesses inherent anti-
jamming capability. However, as the GNSS satellites are 
placed at an altitude of nearly 20,000 km to more than 
30,000 km, the signal’s strength will be very weak when 
it reaches a receiver. Hence, the GNSS signals are eas-
ily prone to intentional (jamming) and unintentional 
interferences.

IRNSS, developed by the Indian Space Research 
Organization (ISRO), is a regional navigation satellite 
system. It utilizes the L5 band (1176.45MHz) and S-band 
(2492.028  MHz) frequencies for navigation solutions. 
However, the S-band of IRNSS is usually congested by 
the signals from various unintentional sources such as 
Wireless Fidelity (Wi-Fi), Bluetooth, and Industrial Sci-
entific Medical (ISM) band (Jagiwala & Shah, 2019). 
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Unintentional interference to the L5 band includes the 
pulsed signals from Tactical Air Navigation (TACAN), 
Distance Measuring Equipment (DME), Joint Tacti-
cal Information Distribution System (JTIDS), and Mul-
tifunctional Information Distribution System (MIDS) 
(Pena et  al., 2020). In contrast, civilian jammers like 
Personal Privacy Devices (PPD) act as intentional ones. 
These sources of interference will degrade the accuracy 
of the IRNSS system or disrupt the operation completely. 
Therefore, to enhance the performance, effective coun-
termeasures must be developed.

The literature reports several detection and mitigation 
techniques for the suppression of interference in GNSS 
receivers (Borio, 2021; Fadaei, 2016; Morales-ferre et al., 
2019; Silva Lorraine & Ramarakula, 2021a). In addi-
tion, many works were done to deal with the interfer-
ence of IRNSS signals (Dey et  al., 2019, 2021; Jagiwala 
& Shah, 2019, 2021; Lineswala & Shah, 2019; Lineswala 
et al., 2019; Silva Lorraine & Ramarakula, 2021b, 2021c). 
Recently, a new framework for detecting GNSS jam-
ming in moving platforms with a low computational 
burden was proposed (Sharifi-tehrani et  al., 2020). On 
the other hand, jamming mitigation techniques are com-
monly categorized into spatial domain (Li et  al., 2011; 
Jiaqi Zhang et al., 2019), frequency domain (Borio et al., 
2008; Capozza et al., 2000; Varshney & Jain, 2013), time-
domain (Anyaegbu et  al., 2008; Mao, 2008), and Time-
Frequency (TF) domain methods (Musumeci & Dovis, 
2013; Ouyang & Amin, 2001; Wang et al., 2019). Spatial 
domain methods that use antenna arrays effectively miti-
gate narrowband and wideband interferences. However, 
they suffer from high cost, additional hardware required 
in the GNSS receiver, and computational complexity. In 
adaptive filtering-based methods, the jamming is esti-
mated in frequency or time domain. These methods are 
suitable for the mitigation of narrowband jamming in 
low-power and low-cost applications. However, they 
require the prior knowledge about the jamming signal 
to have an acceptable anti-jamming performance. Also, 
single domain techniques like time or frequency domain 
are less effective in recovering the navigation signal, as 
the signal will be buried mostly in noise and interfer-
ence when a receiver is operating in a severe interfer-
ence environment. This could be resolved by TF domain 
techniques as the interfered signal could be represented 
in both domains. Wavelet Transform (WT) is the most 
prominent TF domain technique that has gained much 
attention in various applications like image processing 
(Nisha & Mohideen, 2016), signal processing (El-Dah-
shan, 2011; X. Zhang et  al., 2017), multipath mitigation 
in GPS receivers (Satirapod & Rizos, 2005), as well as to 
mitigate various types of interference in GNSS receiv-
ers (Chien, 2018; Chien et al., 2017; Mosavi et al., 2015; 

Musumeci & Dovis, 2013; Silva Lorraine & Ramarakula, 
2021b, 2021c).

WT is a well-known time scale transform. The signal 
received by WT is analyzed at various scales, and then 
its characteristics are extracted in both the time and 
frequency domains simultaneously. As a result, it works 
well against various types of jammers. Wavelet Packet 
Transform (WPT) is a generalization of the WT. It 
decomposes both the low-frequency and high-frequency 
components, thereby providing a uniform frequency 
band division. Hence, WPT is preferable to WT and it is 
the widely used technique as the information about both 
frequency components is vital in anti-jamming applica-
tions. However, the performance of wavelet-based meth-
ods is determined by the level of decomposition, wavelet 
function, threshold selection rule, and the thresholding 
function chosen. Among these parameters, the thresh-
old selection rule and thresholding function are the most 
significant ones, which determine how well the interfer-
ence can be suppressed while preserving the desired sig-
nal. The literature shows that the threshold obtained by 
the universal thresholding method drifts under different 
jamming scenarios (Chien, 2018). Furthermore, a higher 
threshold can compromise the desired components, 
while a lower threshold can retain the undesired com-
ponents. Hence, estimating a reliable threshold under 
all the jamming scenarios is needed as threshold estima-
tion significantly influences the anti-jamming effects of 
GNSS signals. Also, the works in the literature (Chien, 
2018; Mosavi et  al., 2015; Pashaian et  al., 2016) use the 
traditional non-parametric thresholding functions (like 
soft and hard), which shrink the signal coefficients based 
on a fixed structure and reduce the flexibility to process 
various contaminated signals. So, this has motivated the 
authors to propose an efficient approach to improve the 
adaptive performance of WPT for anti-jamming. Given 
the above concerns, the following are the main contribu-
tions of this paper

(a)	 To overcome the limitations of the traditional 
thresholding functions, a new parameter adaptive 
thresholding function is designed to induce the 
flexibility in processing various signals.

(b)	 To determine an optimum threshold that can mod-
ify the wavelet coefficients in a way that results in 
noise and interference cancellation, an Improved 
Particle Swarm Optimization (IPSO) algorithm is 
proposed.

(c)	 To enhance the performance of conventional PSO 
by providing a better trade-off between exploration 
and exploitation, a new inertia weight adjustment 
strategy is introduced in the proposed IPSO algo-
rithm.
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To the best of the author’s knowledge, the implementa-
tion of IPSO-based WPT with a parameter adaptive thresh-
olding function to mitigate jamming in IRNSS receivers has 
not been done. The remaining sections are arranged in the 
following order. In “Signal modeling” section , modeling of 
the received and jamming signals is discussed. “Theoretical 
background” section focuses on the basic concept of WPT. 
Section “Proposed anti-jamming methodology” intro-
duces the construction of the adaptive thresholding func-
tion, the adjustment strategy of inertia weight to modify 
standard PSO, the proposed anti-jamming scheme, and the 
computational complexity of the proposed algorithm. The 
findings are presented and discussed in “Results and dis-
cussions” section, and the conclusions are summarized in 
“Conclusion” section.

Signal modeling
Received signal model
The signal acquired at the receiver’s front end can be mod-
eled as

where r(t), i(t), and n(t) represent the received signal, 
jamming signal, and the Additive White Gaussian Noise 
(AWGN) with variance σ 2 , respectively, and s(t) is the 
broadcasted navigation signal, written as

where P0 denotes the GNSS signal power, D(t) repre-
sents the navigation data (± 1), and C(t) is the Pseudo-
Random Noise (PRN) sequence. For IRNSS, the PRN 
codes for Standard Positioning Service (SPS) are similar 
to GPS Code Acquisition (C/A) codes, with a chip rate 
of 1.023 MHz, f0, and θ represent the carrier center fre-
quency and phase delay, respectively.

The signal is then processed by a bandpass filter, ampli-
fier, and mixer. The mixer down-converts the signal to an 
Intermediate Frequency (IF). Later, the analog IF signal is 
converted into digital by the Analog to Digital Converter 
(ADC) at a sampling rate fs = 1

/

Ts , where Ts is the sam-
pling time. The digital IF signal can be represented as

(1)r(t) = s(t)+ i(t)+ n(t)

(2)s(t) =
√

2P0[D(t)⊕ C(t)] cos(2π f0t + θ)

(3)r[k] = s[k] + i[k] + n[k]

where r[k], s[k], i[k], and n[k] represent the digital ver-
sions of r(t), s(t), i(t), and n(t) respectively. k is the dis-
crete-time index.

The output of the ADC is then passed through the jam-
ming suppression unit, acquisition, tracking, and naviga-
tion units to process the signal further. Figure 1 shows the 
system architecture of an anti-jamming GNSS receiver. 
Jammer canceller uses signal processing techniques, like 
the proposed IPSO-based parametric WPT technique, and 
predicts the jamming signal ĩ[k] . Thereafter, the jamming 
signal is subtracted from the received signal to obtain the 
interference-free GNSS signal s̃[k].

Jamming signal model
To observe the robustness of the proposed anti-jamming 
algorithm, both stationary and non-stationary Continu-
ous Wave Interferences (CWI), which are commonly 
used against the GNSS receivers, have been considered. 
They are single-tone CWI (SCWI), multi-tone CWI 
(MCWI), and chirp CWI (CCWI).

SCWI is one of the most impactful stationary interfer-
ences because of its easy design and implementation. Its 
spectral bandwidth tends to zero. Hence, in the case of 
a constant jamming power, most of the power of SCWI 
will be centralized at a single frequency. Therefore, it 
affects the GNSS signal to the most extent.

MCWI is a type of interference in which more than one 
interferer disrupts the GNSS signal. As most of the exist-
ing techniques work less effectively in the case of a multi-
tone jammer, MCWI has been considered.

The non-stationary interference is usually character-
ized by linear CCWI. The frequency of the chirp signal 
increases (up-chirp) or decreases (down-chirp) with time. 
However, if the chirp frequency varies rapidly, some-
times, it can even make the jamming mitigation methods 
fail (Gao et  al., 2016). Hence, CCWI with two different 
sweep bandwidths has been considered to observe the 
effectiveness of the proposed technique against various 
frequency sweeps.

The jamming signals can be modeled as follows

+
-ADC

2cos(2πfLOt)

Jammer
predictor Acquisition Tracking Navigations(t)

n(t)

i(t)

r(t)

Front end Jamming suppression unit

i [k]
~

S [k]
~r [k]

Fig. 1  Block diagram of anti-jamming GNSS receiver
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(a)	 SCWI

where Pi represents the power of SCWI, fi denotes 
the jamming signal frequency, and θi is the jamming 
signal’s phase.

(b)	 MCWI

where Pin, fin , and θin represents the power, fre-
quency, and phase of the nth jammer, respectively, 
and N denotes the number of jammers.

(c)	 CCWI

where Pi represents the chirp jammer’s power, fi 
indicates the starting frequency (at time t = 0), θi is 
the chirp signal’s phase, and c denotes the chip rate. 
‘ + ’ is considered for an up-chirp, while ‘–’ is con-
sidered for a down-chirp.

Theoretical background
Transform Domain (TD) techniques are advanced signal 
processing techniques that represent the received signal 
in a different domain. Therefore, they can easily identify, 
isolate, process, and remove the interference in a better 
way while preserving the desired signal. TD techniques 
are usually implemented after the ADC stage in a GNSS 
receiver. A well-known transformation is a time-fre-
quency representation in which the signal can be repre-
sented over time and frequency simultaneously.

Some of the most used time–frequency anti-jam-
ming methods in GNSS receivers are Short-Time Fou-
rier Transform (STFT) (Abedi et  al., 2018; Ouyang & 
Amin, 2001), Matched Signal Transform (MST) (Shen 
& Papandreou-suppappola, 2005), Wigner Ville Distri-
bution (WVD) (Fadaei, 2016), and WT (Chien, 2018; 
Mosavi et  al., 2015, 2017; Musumeci & Dovis, 2013). 
In recent years, wavelet-based methods have also been 
used to mitigate CW jamming (Jagiwala & Shah, 2021; 
Silva Lorraine & Ramarakula, 2021b, 2021c) and out-
of-band Wi-Fi interference on IRNSS S-band signals 
(Jagiwala & Shah, 2019). STFT is a windowed-Fourier 
transform that uses a fixed window; hence, the time–
frequency resolution of STFT remains constant. There-
fore, it is not suitable for non-stationary signals. MST 
works well only when the interference characteristics 
are known a priori. Moreover, the computational com-
plexity of MST is higher than STFT. The WVD has a 

(4)iscwi[k] =
√

2Pi cos
(

2π fik + θi
)

(5)imcwi[k] =
N
∑

n=1

√

2Pin cos
(

2π fink + θin
)

(6)ichirp[k] =
√

2Pi cos
[

2π
(

fi ±
c

2
k
)

k + θi

]

good time–frequency resolution, but suffers from 
cross-term interference in the case of multi-compo-
nent signals. So, to reduce the cross-term interference, 
pseudo-WVD has been introduced; however, it suffers 
from energy leakage at the beginning and end of the TF 
plane (Lv & Qin, 2019). In wavelet transform, a scalable 
window is used, i.e., a wider window for low-frequency 
analysis and a narrower window for high-frequency 
analysis. Hence, WT is an excellent tool to deal with 
different kinds of interference as it provides a good 
trade-off between time and frequency resolution. WT 
is a linear, square-integrable transform that has a kernel 
(mother transform). All the other wavelets ψs,τ (t) can 
be obtained by shifting and scaling (compressing and 
expanding) the mother wavelet as

where ψ(t) represents the mother wavelet, s is the scaling 
parameter, and τ is the shifting parameter.

Continuous Wavelet Transform (CWT) is computed 
by continuously shifting the scaled analyzing function 
over a signal for each scale. As a result, it suffers from 
redundancy issues and is therefore unsuitable for prac-
tical applications. So, to overcome this, Discrete Wave-
let Transform (DWT), which uses discrete scales and 
translations, has been introduced. Discrete wavelets are 
obtained by shifting and scaling the mother wavelet as

where so is the dilation or scaling parameter, τo is the 
translation or shifting parameter that depends on the 
dilation parameter, i and j are both integers, and 1

√

si0

 nor-

malizes the energy across various scales.
DWT is implemented using a recursive filter scheme. 

First, the signal is sent through a High Pass Filter (HPF) 
and Low Pass Filter (LPF). The output of the HPF is 
known as the detail coefficient, while the output of the 
LPF is known as the approximation coefficient. The 
approximation coefficient is then further decomposed 
iteratively, whereas the detail coefficient is retained. 
Therefore, due to the non-uniform spectral decomposi-
tion, frequency localization at higher frequency levels 
is lost for time localization.

Wavelet packets were first introduced by Coifman 
and Meyer (Kaiser, 1994). In WPT, both the approxi-
mation and detail components are further decomposed 
at each level. Hence, the reconstruction of the signal 

(7)ψs,τ (t) =
1√
s
ψ

(

t − τ

s

)

(8)ψi,j(t) =
1

√

si0

ψ

(

t − jτ0s
i
0

si0

)
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is obtained by summing the approximation parts and 
detail parts as shown below

where r̃[k] indicates the reconstructed signal, L repre-
sents decomposition depth,al[k] and dl[k] are the approx-
imation and detail components at the level l .

WPT offers uniform spectral coverage, better fre-
quency resolution, and signal analysis. As the signal 
details of both the low and high-frequency components 
are desirable for interference suppression, WPT, which 
has a higher frequency resolution than DWT, is con-
sidered in this work. Fig.  2 shows the decomposition 
and reconstruction of the received signal using WPT at 
decomposition level 2. HP and LP stand for high pass and 
low pass. While g[k], h[k] symbolize LP and HP filters at 
the decomposition side, g1[k], h1[k] are LP and HP filters 
at the reconstruction side.

Proposed anti‑jamming methodology
Construction of parametric wavelet thresholding function
The thresholding function defines the various estimation 
approaches for the wavelet coefficients. The main idea 
behind the thresholding function is to remove the smaller 
wavelet coefficients and retain the larger ones. The two 
most prominent thresholding functions are hard and soft 

(9)r̃[k] =
L

∑

l=1

al[k] +
L

∑

l=1

dl[k]

thresholding. However, hard thresholding gets limited 
because of the discontinuity at the threshold value (±T ) . 
As a result, it causes fluctuation while reconstructing the 
signal. On the other hand, soft thresholding is better in 
continuity, but it gets limited by the deviation between 
the estimated and actual wavelet coefficients during the 
reconstruction (He et  al., 2015). Therefore, to obtain 
a trade-off between the two thresholding functions, a 
new parameter adaptive wavelet thresholding function 
based on the Softsign function has been constructed to 
have a better anti-jamming effect. The graph of the Soft-
sign function looks very similar to the hyperbolic tan-
gent function (tanh). However, the Softsign converges 
in a polynomial form, while the tanh function converges 
exponentially. Soft sign is expressed as

The properties of Softsign are defined as follows.

1.	 The range of the function is ( − 1, 1), and its domain 
is (−∞,+∞).

2.	 It obeys monotonicity.
3.	 It possesses two horizontal asymptotes at f (x) = 1 

and f (x) = −1.
4.	 It is differentiable in its domain.

Based on Eq. (10), the expression for the new Softsign 
Thresholding Function (SSTF) is constructed as

(10)f (x) =
x

1+ |x|

(11)C̃ = f (C) =















sgn(C)(|C| − T )+ T
�

(C−T )β/T
1+|(C−T )β/T |

�

, C > T

0, |C| ≤ T

sgn(C)(|C| − T )+ T
�

(C+T )β/T
1+|(C+T )β/T |

�

, C < −T

2

LP
2

2
HP

LP
2

2
HP

2

2

2

2

2
HP

LP
2

2

Decomposition ReconstructionDown sampling Up sampling

r[k]

g[k]

g[k] g1[k]

g1[k]

g1[k]

h1[k]

h1[k]

h1[k]

h[k]

g[k]

h[k]

h[k]

r [k]~

Fig. 2  Signal decomposition and reconstruction structure by WPT
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where C̃ is the thresholded coefficient, C is the wavelet 
coefficient on a particular band, and sgn represents the 
signum function whose value is 1 for C > 0, 0 for C = 0, 
and -1 for C < 0. T is the threshold, and β is the shape tun-
ing parameter that characterizes the function f(C). The 
value of β lies in the range of (0, + ∞ ). The shape param-
eter offers more adjustability to the function. When β 
approaches 0, this new function acts as a soft thresh-
olding function; when β approaches ∞ , it acts as a hard 
thresholding function.

The properties and proof of the new thresholding func-
tion are presented below.

Theorem  1  The SSTF function is continuous in its 
domain (−∞,+∞).

Proof
From the definition of continuity, the new function should 
be continuous in the ranges of (−∞,−T ),(−T ,+T ) and 
(+T ,+∞) . Therefore, the continuity of SSTF at  − T 
and + T points can be proved as follows.

When C > T  the SSTF function can be rewritten as

So, 

So, from Eq.  (13) and Eq.  (15), we obtain that 
lim

C→T−
f (C) = lim

C→T+
f (C) = f (T ).

Hence at C = T, the function is continuous. Likewise, 
at C = -T, the function’s continuity can be verified. As a 
result, f (C) is defined as a continuous function in the 
domain (−∞,+∞).

Comment: It can be observed that the limitation of 
the hard thresholding function, i.e., discontinuity at the 
threshold ±T  , can be overcome by the SSTF function.

(12)f (C) = C − T + T

(

(C − T )β
/

T

1+ (C − T )β
/

T

)

lim
C→T+

f (C) = lim
C→T+

(

C − T + T

(

(C − T )β
/

T

1+ (C − T )β
/

T

))

(13)
= (T − T )+ T

(

0

1+ 0

)

= 0

(14)when |C| ≤ T , we get f (C) = 0

(15)Therefore, lim
C→T−

f (C) = 0 and f (T ) = 0

Theorem  2  The asymptote of the SSTF function is 
f (C) = C.

Proof
As per the definition, y = L is a horizontal asymptote of 
the function y = f (x) if lim

x→+∞
f (x) = L or lim

x→−∞
f (x) = L

Therefore, when C → +∞

Similarly, when C → −∞

So that

Hence, f (C) = C is an asymptote of SSTF. Similarly, it 
can be proved for the other case as well.

Comment: From theorem 2, it can be observed that as 
C increases, f (C) gradually approaches C. Hence, it over-
comes the limitation of the soft thresholding function 

(16)

lim
C→+∞

f (C)

C
= lim

C→+∞

C − T + T
(

(C−T )β/T
1+(C−T )β/T

)

C

lim
C→+∞

f (C)

C
= lim

C→+∞

[

1−
T

C
+

T

C

(

(C − T )β
/

T

1+ (C − T )β
/

T

)]

= 1

(17)
lim

C→−∞

f (C)

C
= lim

C→−∞

C − T + T
(

(C−T )β/T
1+(C−T )β/T

)

C
= 1

(18)

lim
C→+∞

(

f (C)− C
)

= lim
C→+∞

(

−T + T

(

(C − T )β
/

T

1+ (C − T )β
/

T

))

= 0
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Fig. 3  Comparison of thresholding functions: Hard, Soft and SSTF
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as it reduces the difference between the actual and esti-
mated coefficients.
Theorem 3  SSTF is a higher-order differentiable func-
tion in the domain (−∞,−T ] and [+T ,+∞).

Proof
Any function obtained by the mathematical operations of 
the elementary functions is an elementary function. So, as 
per the elementary function property, SSTF is a high-order 
differentiable function.

Comment: As SSTF satisfies theorem  3, it helps to 
reconstruct the signal smoothly.

Figure  3 shows the comparative analysis of hard, soft, 
and SSTF thresholding functions at a threshold value 
of 20. To observe the behavior of SSTF, the adjustable 
parameter β is varied. It can be perceived from Fig. 3 that 
the new function offers a trade-off strategy between the 
two traditional thresholding functions.

Improved particle swarm optimization (IPSO)
The determination of the threshold plays a major role 
in jamming signal estimation. If the threshold value is 
very small, it can retain the undesired components, and 
if the threshold is very large, it can filter out the desired 
components. The universal threshold rule is the most 
used one among all the threshold rules. However, it suf-
fers from threshold drifting (Chien, 2018). Similarly, the 
choice of the new thresholding function’s shape tuning 
parameter affects the reconstruction of the signal. Gen-
erally, the tuning parameter is selected iteratively. But 
as it adjusts the thresholding function, it is of utmost 
importance to find the shape tuning parameter. So, to 
address these issues, optimization algorithms have been 
employed. PSO has been chosen due to its simplicity, 
easy implementation, high accuracy, faster convergence, 
lesser control parameters, and computational efficiency 
(Zang et  al., 2021; Zhang et  al., 2014). Hence, owing to 
its numerous advantages, PSO has gained a lot of atten-
tion in many areas like signal denoising (Zhang et  al., 
2017), load forecasting (Kumar & Veerakumari, 2012), fil-
ter design (Sharma et al., 2016), image processing (Satish 
& Kumar, 2020), fault diagnosis (Zhang & Wang, 2020), 
etc. However, PSO suffers from the local optimum prob-
lem. Therefore, the strategy of adaptive inertia weight has 
been implemented to enhance the efficacy of conven-
tional PSO.

Standard PSO algorithm
PSO is the most extensively used swarm intelligence 
technique developed by Kennedy and Eberhart in 1995 
(Kennedy and Eberhart, 1995). The swarm behavior of 
birds flocking has been the inspiration for PSO. The bird 
is considered as a particle in PSO. Through its efforts and 
with the cooperation of the neighboring particles, the 
particle will search for its optimal solution. The process 
of the PSO is described as follows. First, the population 
size, velocity, position, and the number of iterations are 
initialized. The particles move through the dimensional 
solution space with randomly assigned velocities. Each 
particle’s performance is evaluated using a fitness func-
tion. Then, as per the local best ( Lbest ) and global best 
( Gbest ) fitness values, the particle’s velocity and position 
are updated as

where the pth particle’s velocity and position factor in 
the dth dimension is indicated by Vpd and Xpd , the cur-
rent iteration number is denoted by j, Lbest represents 
the particle’s best position, and Gbest is the swarm’s 
best position. c1 is the cognitive acceleration factor that 
pushes the particles towards Lbest, c2 is the social accel-
eration factor that pushes the particle towards Gbest, r1, 
r2 denotes the random numbers between 0 and 1, and w 
represents the inertia weight.

The PSO process is iterated until it reaches the maxi-
mum number of iterations or the termination criteria are 
met.

Modified inertia weight formulation
The inertia weight is an important parameter of PSO 
that governs the effect of the previous particle’s velocity 
on the current particle’s velocity. A larger inertia weight 
produces a better global search, whereas a smaller iner-
tia weight produces a better local search. A good global 
search prevents the particle from being stuck at the local 
optimum easily, and a good local search ensures faster 
convergence speed and better accuracy. So, to provide a 
better trade-off between exploration (global search) and 
exploitation (local search), inertia weight (w) must be 
chosen properly. In 1998, Shi and Eberhart (1998) first 
introduced a constant inertia weight into the original 
PSO to provide a balance between the global and local 
search. Many adaptive inertia weight strategies were 

(19)
V

j+1
pd = wjV

j
pd + c1r1(Lbest

j
pd − X

j
pd)+ c2r2(Gbest

j
d − X

j
pd)

(20)X
j+1
pd = X

j
pd + V

j+1
pd
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later reported in the literature for enhancing PSO perfor-
mance. Some classical strategies include random inertia 
weight (Eberhart & Shi, 2001), linear time-varying iner-
tia weight (Shi & Eberhart, 1999), and non-linear time-
varying inertia weight (Chatterjee & Siarry, 2006). In a 
random inertia weight, w changes randomly and can be 
adapted to dynamic systems (Eberhart & Shi, 2001).

Whereas in the time-varying inertia weight strategy, 
w varies linearly or non-linearly with time in a decreas-
ing or increasing manner. These strategies are useful 
in most applications for improving the performance 
of PSO. However, to have a better PSO performance, 
it was ascertained that inertia weight should be higher 
initially and decreased later (Shi & Eberhart, 1998). 
This facilitates a finer global exploration at the initial 
stages and local exploration at the latter stages. But, 
linearly decreasing inertia weight strategies were found 
to be ineffective for dynamic systems (Eberhart & Shi, 
2001). So, non-linear decreasing inertia weight strate-
gies have gained much attraction. Therefore, a new 
non-linear decreasing inertia weight strategy based on 
the Softsign function is developed in this work. As the 
Softsign function is simple and easy to implement, the 
Softsign Inertia Weight (SSIW) is considered in this 
paper and formulated as

where wmax denotes the maximum value of inertia 
weight, wmin is the minimum value of inertia weight, j is 
the current iteration number, and itermax represents the 
maximum iteration number.

(21)

w = wmin + (wmax − wmin)

[(

itermax − j
)

/itermax

]

1+
[(

itermax − j
)

/itermax

]

Figure  4 shows the variation of the proposed inertia 
weight with respect to the number of iterations. It can 
be observed that the SSIW strategy meets the demand 
of the global search at the initial stages and faster con-
vergence at the latter stages.

Proposed improved PSO‑based parametric WPT 
anti‑jamming algorithm
Steps for the implementation of the proposed anti-jam-
ming algorithm

Step 1: Wavelet packet decomposition

	 Initially, the wavelet function and decomposi-
tion level must be chosen. Then, WPT is used to 
decompose the received signal r[k] . The optimal tree 
structure of WPT is selected based on the Shannon 
entropy criterion.

	 The coefficients obtained after the decomposi-
tion process are represented as

where Cl[k] is the wavelet coefficient on a particular 
band, and wp is the wavelet packet operator.
Step 2: Determine the optimal threshold (T) and 
shape tuning parameter (β) using IPSO.

1.	 Set the population size, maximum iteration num-
ber, search space dimension, particle velocity, and 
position. The problem’s dimension is taken as the 
particle’s position.

2.	 Fitness function formulation: The particle’s fit-
ness value is evaluated using the fitness function. 
In this work, the fitness function is formulated 
based on performance metrics. The following 
performance indices are considered.

	 Mean Square Error (MSE): MSE defines the accu-
racy of the anti-jamming algorithm. The lower 
the MSE value, the lesser the variation between 
the two signals is. If s[k] is the original signal,s̃[k] 
represents the reconstructed signal, k and M 
denote the sample number and signal length, 
then MSE is represented as

	 Mean Absolute Error (MAE): It is similar to MSE. 
The lower the value of MAE, the better the accu-

(22)Cl[k] = wp(r[k])

(23)MSE =
1

M

M
∑

k=1

(s̃[k] − s[k])2

0 itermax

w
m

in
w

m
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In
er

tia
 w
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gh

t, 
w

Fig. 4  Performance of SSIW
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racy of the proposed technique is. It is repre-
sented as

	 Correlation Coefficient (CC): It measures the 
similarity between the reconstructed and origi-
nal signals. The closer to 1 the value of CC is, the 
more similar the reconstructed signal and the 
original signal will be.

where x[k] and y[k] are the two discrete 
sequences, x is the mean of x, y is the mean of y, 
and σx , σy denote the standard deviation of x and 
y, respectively.

	 Signal to Noise Ratio Improvement (SNRimp): It 
measures the variation between the output and 
input SNR. The higher the value of SNR improve-
ment is, the more accurate the anti-jamming 
algorithm will be. It is expressed as

	 Accordingly, the MSE based fitness function is 
formulated as

	 A similar formulation has been adopted for MAE, 
while for CC and SNRimp, PSO is used to find the 
maximum value.

	 3. Update the velocity and position using Eq. (19) 
and Eq. (20).

	 The inertia weight is calculated using the SSIW 
expressed in Eq. (21).

	 4. Update the swarm: The new position’s fitness 
value is computed. If the present value is better 
than the previous Lbest then it is taken as Lbest; 
otherwise, the previous value is retained. Simi-
larly, Gbest is updated accordingly.

(24)MAE =
1

M

M
∑

k=1

∣

∣s̃[k] − s[k]
∣

∣

(25)

CCX ,Y =
1

M − 1

M
∑

k=1

(

x[k] − x

σx

)(

y[k] − y

σy

)

(26)

SNRimp(dB) = 10 log

M
∑

k=1

(r[k] − s[k])2

M
∑

k=1

(s̃[k] − s[k])2

(27)fitness = min (MSE)

	 5. Steps 3 and 4 are repeated until the maximum 
number of iterations is reached.

Step 3: Thresholding using SSTF
	 The resulting coefficients Cl[k] are then thresh-
olded using the new SSTF with the obtained opti-
mal values (T ,β) of the thresholding function as 
follows

	 where C̃ represents the thresholded coefficient, 
T stands for the threshold, and TF denotes the 
thresholding operator.
Step 4: Signal reconstruction
	 Using inverse WPT, the signal is reconstructed 
from the thresholded coefficients as follows

Due to its low signal strength, the navigation signal 
will be buried in noise and interference when it reaches 

(28)C̃l[k] = TF(Cl[k],T )

(29)ĩ[k] = wp−1(C̃l[k])

Selection of wavelet function
and decomposition level  

Signal decomposition
Cl[k]=wp(r [k])

Initialize the threshold and
shape tuning parameter

Obtain optimal threshold (T) 
and shape tuning parameter (β)

Thresholding using SSTF

Jamming free signal 

Received signal 

Signal reconstruction 

PWPT
algorithm 

Initialize swarm and set
parameters of IPSO 

Calculate the fitness
value using performance

metric-based fitness
function approach   

Evaluate Lbest and
Gbest

Update velocity and
position

Update the swarm 

No

Yes

Cond.
met?

IPSO
algorithm

Calculate inertia weight
using SSIW  

Cl[k]=TF(Cl[k], T)
~

i [k]=wp−1(Cl[k])
~ ~

S [k]=r[k]−i [k]
~ ~

Fig. 5  Flow chart of the proposed IPSO-PWPT anti-jamming 
algorithm
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the receiver. Therefore, the jamming signal is estimated 
from the WPT process. Later, the jamming signal is 
subtracted from the received signal to get the desired 
IRNSS signal s̃[k].

The flowchart of the proposed anti-jamming approach is 
depicted in Fig. 5.

Computational complexity
The computational load of the proposed algorithm is 
induced mostly due to WPT (decomposition and recon-
struction), thresholding operation, and IPSO.

The computational complexity of the wavelet packet 
analysis is specified by the decomposition level L, signal 
length M, and the wavelet filter length lw. Signal recon-
struction also takes the same number of filtering opera-
tions. Therefore, the total number of the operations 
performed for decomposition and reconstruction can be 
expressed as (Musumeci & Dovis, 2014):

For the thresholding operation, assuming that the coef-
ficients to be thresholded are n digit numbers, Eq. (11) 
gives a computational complexity of O(n2).

The computational cost of IPSO is obtained as follows. 
The computational cost of the original PSO algorithm is 
specified by initialization, evaluation, velocity, and posi-
tion update (Song & Hua, 2020). Additionally, IPSO 
requires an inertia weight update. Therefore, their com-
plexities are O(Pd), O(Pd), and O(3Pd), where P and d 
represent the swarm size and the dimension of the solu-
tion space, respectively. Therefore, the total computa-
tional complexity of the IPSO algorithm is O(Pd).

Results and discussions
To analyze the performance of the proposed IPSO-based 
Parametric Wavelet Packet Thresholding (IPSO-PWPT), 
four types of jamming signals with different levels of 
Jamming to Signal power Ratio (JSR) were taken into 
account. For SCWI, the jamming offset frequency was 

(30)O(L,M, lw) = 2L+1M(1+ lw)

set close to the center frequency of the IRNSS signal 
to observe the jammer effect. MCWI was generated by 
combining four sinusoidal signals. For the generation of 
non-stationary signals, two types of CCWI were consid-
ered. In the first case, a linear CCWI with a sweep band-
width of 10.72 MHz was taken, and the sweep period was 
set to 5000 samples long. In the second case, the sweep 
bandwidth was set to 10KHz with the same sweep period. 
For the generation of the IRNSS S-band signal, D[k] was 
binomially distributed with values of ±1, and PRN1 was 
used to generate C[k]. Table 1 presents the design param-
eters of IRNSS signal and jamming signals. The IPSO 
parameters considered for the simulation are furnished 
in Table  2. All the simulation experiments were carried 
out on the same computer, which had a 3.6GHz CPU fre-
quency, 8GB of RAM, and MATLAB version of 2017b.

Selection of threshold
Traditional threshold selection rules like the universal 
threshold (Mosavi et  al., 2015), Rigrsure, Minimax, Sqt-
wolog, and other threshold selection methods mentioned 
in the literature for anti-jamming (Chien, 2018), (Pasha-
ian et  al., 2016) were considered to evaluate the perfor-
mance of the optimization-based threshold approach. 

Table 1  Simulation parameters for IRNSS and jamming signals

Parameter description Value

Signal (s) IRNSS S-band

Processed signal bandwidth 2.046 MHz

Sampling frequency 56 MHz

Digital IF 16.221 MHz

SCWI offset frequency 0.5 MHz

MCWI offset frequency 0.2 MHz, 0.8 MHz, 
1.3 MHz, 1.8 MHz

CCWI-1 sweep bandwidth 10.72 MHz

CCWI-2 Sweep bandwidth 10 kHz

Table 2  Simulation parameters of IPSO

Parameter Description Value

r1, r2 Random numbers Uniformly distrib-
uted in the range 
of [0,1]

c1,c2 Acceleration coefficients 2

P Population size 50

itermax Maximum iteration number 100

d Search dimension 2

Wmin Minimum inertia weight 0.4

Wmax Maximum inertia weight 0.9

T Threshold value [0,2]

β Shape tuning parameter [0,10]

Table 3  Summary of obtained threshold values

Threshold 
rule\type of 
jamming

Range of threshold values

SCW MCW CCW-1 CCW-2

Universal 6.37–7.81 6.15–7.79 5.88–6.99 5.49–6.91

Rigrsure 0.02–0.081 0.05–0.07 0.012–0.48 0.02–0.298

Minimax 2.8239 2.8239 2.8239 2.8239

Sqtwolog 4.2919 4.2919 4.2919 4.2919

Chien 0.01–0.075 0.049–0.065 0.011–0.449 0.024–0.276

Pashaian 7.95–9.74 7.67–9.72 7.34–8.72 5.70–7.17

SPSO based 1.85–2 1.7–2 1.86–2 1.84–2
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The thresholding function was chosen as soft threshold-
ing for all the threshold rule comparisons. Also, simu-
lations were run for all the wavelet families when JSR 
varied from 30 to 60  dB, and Discrete Meyer (Dmey) 
wavelet was chosen based on the performance indices 
as it appears to perform well under all the jamming sce-
narios. The decomposition level was set to 4 as per the 
reference (Silva Lorraine & Ramarakula, 2021c). The four 
metrics mentioned in Eqs. (23) to (26) were selected as 
the comparative indices. The range of threshold values 
obtained by each method under JSR of 30 to 60  dB are 
listed in Table 3 for comparative purposes. Table 3 shows 
that the resulting value of universal, minimax, sqtwolog, 

and Pashaian threshold methods are very high, mak-
ing the jammer parts to be compromised (Chien et  al., 
2017). Hence, the jamming signal cannot be estimated 
properly. Also, there seems to be threshold drifting for 
universal and Pashaian methods under various jamming 
scenarios. Minimax and sqtwolog are fixed form thresh-
olds that do not depend on the signal characteristics but 
instead only on the signal length. As a result, the thresh-
old is non-adaptive to the incoming signals. For rigrsure 
and Chien methods, the undesired components might 
be retained as the threshold is very low. Hence, they are 
ineffective in suppressing the jamming signal when only 
WPT technique is used. However, cascading WPT with 
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other techniques might improve the performance (Chien, 
2018). Therefore, in this paper, the feasibility of using 
optimization-based threshold selection is explored.

For the optimization-based threshold method, the 
threshold range was set to [0,2] as per the reference 
(Chien et  al., 2017), and standard PSO (SPSO) was 
selected as an optimization technique for the compari-
son of threshold selection methods. Table 3 shows that 
the threshold values obtained by the proposed method 
provide a trade-off between high and low threshold 
values under all jamming scenarios. In addition, it 
addresses the issues of fixed threshold and threshold 
drifting. Figs.  6, 7, 8, 9 displays the performance of 
various threshold selection rules. It can be observed 
that the proposed optimization-based threshold (SPSO 

based) performs significantly better under SCWI, 
MCWI, CCWI case 1 (CCWI-1), and CCWI case 2 
(CCWI-2) environments.

SCWI environment
Under the SCWI scenario, it is observed that the optimi-
zation-based threshold approach has an average improve-
ment of 47% over universal, 70% over rigrsure, 16% over 
minimax, 30% over sqtwolog, 70% over Chein, and 54% 
over Pashaian threshold methods in terms of MSE. Simi-
larly, an average improvement of 15%, 53%, 5%, 9%, 53%, 
and 19% in terms of MAE and 23%, 32%, 4%, 9%, 35%, 
and 40% in terms of CC over the respective threshold 
rule methods are noticed. In terms of SNR improvement, 

a MSE vs JSR b MAE vs JSR

c SNR improvement vs JSR d Correlation coefficient vs JSR
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a gain of 2.9 dB, 5.4 dB, 0.8 dB, 1.6 dB, 5.4 dB, and 3.4 dB 
over universal, rigrsure, minimax, sqtwolog, Chein, and 
Pashaian methods, respectively, is observed when the 
optimization-based threshold is used.

MCWI environment
Under multi-tone jamming environment, an average 
improvement of 30%, 69%, 11%, 18%, 69%, and 36% in 
terms of MSE, similarly, an average improvement of 10%, 
51%, 5%, 6%, 51% and 11% in terms of MAE and 12%, 
39%, 3%, 5%, 41% and 16% in terms of CC over universal, 
rigrsure, minimax, sqtwolog, Chein and Pashaian meth-
ods are noticed. In terms of SNR improvement, a gain of 

1.7 dB, 5.1 dB, 0.5 dB, 0.9 dB, 5.1 dB, and 2.1 dB over the 
respective threshold rule methods is observed.

CCWI environment
An average improvement of 50%, 66%, 14%, 33%, 66%, 
and 55% under CCWI-1, and 45%, 68%, 17%, 31%, 69%, 
and 44% under CCWI-2 in terms of MSE is observed. 
Similarly, an average improvement of 22%, 50%, 3%, 8%, 
50%, 25% under CCWI-1 and 10%, 52%, 5%, 8%, 52%, 
14% under CCWI-2, in terms of MAE and 31%, 23%, 
3%, 8%, 23%, 43% under CCWI-1 and 14%, 30%, 3%, 7%, 

a MSE vs JSR b MAE vs JSR

c SNR improvement vs JSR d Correlation coefficient vs JSR
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Fig. 8  Comparison of various thresholding rules under CCWI-1
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30%, 16% under CCWI-2 in terms of CC over universal, 
rigrsure, minimax, sqtwolog, Chein and Pashaian meth-
ods are noticed. In terms of SNR improvement, a gain 
of 3.1  dB, 4.8  dB, 0.6  dB, 1.7  dB, 4.9  dB, 3.6  dB under 
CCWI-1 and 2.6 dB, 5.2 dB, 0.8 dB, 1.6 dB, 5.3 dB, 2.5 dB 
under CCWI-2 over the respective threshold rule meth-
ods are observed.

Selection of thresholding function
The Softsign thresholding function constructed in this 
paper was compared with the well-known non-para-
metric thresholding functions such as soft (Chien, 2018; 
Mosavi et al., 2015; Pashaian et al., 2016), hard (Mosavi 

et al., 2015; Pashaian et al., 2016), and parametric thresh-
olding functions such as trimmed (Sumithra & Thanush-
kodi, 2009), Sigmoid (Yi et al., 2012) and hyperbolic (He 
et  al., 2015) to validate the reliability of the proposed 
function. For all the previous thresholding functions, 
the threshold was obtained using the minimax threshold 
rule as it displays better performance than the other con-
ventional thresholding rules as depicted in Fig. 6, 7, 8, 9. 
However, for the parametric SSTF, the optimal threshold 
and shape tuning parameter were obtained by the SPSO. 
Figures 10 and 11 show the comparative analysis of all the 
thresholding functions in terms of MSE and MAE. While 
Table  4 and Table  5 summarize the results obtained in 
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Fig. 9  Comparison of various thresholding rules under CCWI-2
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terms of SNR improvement and CC. It can be seen from 
the results that the MSE and MAE values obtained by the 
SPSO-based SSTF are smaller, while the SNR improve-
ment and CC values obtained are greater when compared 
with the other thresholding functions. This demonstrates 
that the proposed SSTF works well to modify the wavelet 
coefficients in a way that reduces noise and SCW, MCW, 
CCW-1, and CCW-2 jammers. That is, the optimization-
based parametric wavelet packet thresholding works bet-
ter than the wavelet packet thresholding approaches by 
Chien (2018); Mosavi et  al. (2015); and Pashaian et  al. 
(2016) under all jamming scenarios, as it induces the flex-
ibility to process various signals.

The proposed SSTF shows an average improvement of 
23% over soft, 19% over hard, 6% over trimmed, 46% over 
sigmoid, and 39% over hyperbolic thresholding func-
tions in terms of MSE. Similarly, an average improve-
ment of 10%, 12%, 4%, 24%, and 20% in terms of MAE 
is observed. Significant improvement is also observed in 
terms of SNRimp and CC.

Selection of optimization algorithm
Six optimization algorithms were taken to validate the 
performance of the proposed Improved PSO algorithm. 
They are Firefly Algorithm (FA) (Jones & Boizanté, 
2011), Differential Evolution (DE) (Jones & Boizanté, 
2011), hybrid PSO and Gravitational Search algorithm 
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(PSO-GSA) (Mirjalili & Hashim, 2010), SPSO (Bansal 
et  al., 2011), Random PSO (RPSO) (Bansal et  al., 2011) 
in which a random inertia weight is considered, and 
Linear decreasing inertia weight PSO (LPSO) (Bansal 
et  al., 2011). The thresholding function for all the com-
parisons was taken as SSTF, and the simulation param-
eters were taken as that of IPSO, as presented in Table 2. 
The comparative analysis of IPSO with the well-known 

optimization algorithms and variants of PSO is sum-
marized in Tables 6, 7, 8, 9. The optimal values obtained 
have been bolded. In terms of MSE, the IPSO algorithm 
shows an average improvement of 2.7% over FA, 2.2% 
over DE, 2.4% over PSO-GSA, 1.9% over SPSO, 2.7% over 
RPSO, and 2.6% over LPSO. In terms of MAE, it shows 
1.9%, 1.6%, 1.6%, 0.5%, 1.5%, and 1.7% average improve-
ment over the respective optimization algorithms. The 

Table 4  SNRimp vs JSR comparison for various thresholding functions

Jamming type JSR (dB) Soft 
Thresholding

Hard 
Thresholding

Trimmed 
Thresholding

Sigmoid 
Thresholding

Hyperbolic 
Thresholding

SPSO 
based 
SSTF

SCWI 30 36.42 35.72 36.66 34.50 35.25 37.16
40 45.58 45.11 46.13 43.41 44.39 46.50
50 53.87 54.12 54.47 52.96 53.20 54.73
60 63.58 64.10 64.47 62.69 62.83 64.67

MCWI 30 36.50 35.30 36.50 34.11 35.24 36.80
40 44.52 44.28 44.68 43.54 43.87 45.15
50 54.21 54.14 54.51 53.25 53.50 54.76
60 63.87 64.15 64.49 62.97 63.25 64.66

CCWI-1 30 35.67 36.24 37.80 33.22 34.30 37.84
40 45.19 45.92 47.30 42.86 43.72 47.34
50 54.54 55.85 57.11 52.49 53.19 57.17
60 64.10 65.57 66.88 62.25 62.64 66.91

CCWI-2 30 36.37 36.91 36.83 34.63 35.17 37.18
40 44.91 45.42 45.58 43.12 43.91 46.10
50 54.22 54.86 54.99 53.04 53.49 55.15
60 63.72 63.71 63.90 62.64 63.05 64.52

Table 5  CC vs JSR comparison for various thresholding functions

Jamming type JSR (dB) Soft 
thresholding

Hard 
thresholding

Trimmed 
thresholding

Sigmoid 
thresholding

Hyperbolic 
thresholding

SPSO based SSTF

SCWI 30 0.880 0.856 0.886 0.811 0.841 0.901
40 0.855 0.832 0.870 0.760 0.809 0.882
50 0.774 0.783 0.802 0.719 0.734 0.812
60 0.759 0.782 0.802 0.703 0.714 0.810

MCWI 30 0.882 0.840 0.882 0.793 0.841 0.892
40 0.805 0.792 0.812 0.752 0.770 0.840
50 0.790 0.784 0.804 0.736 0.750 0.813
60 0.774 0.785 0.803 0.720 0.737 0.812

CCWI-1 30 0.854 0.875 0.914 0.740 0.799 0.916
40 0.838 0.864 0.904 0.720 0.774 0.905
50 0.813 0.861 0.899 0.699 0.749 0.902
60 0.795 0.852 0.893 0.686 0.723 0.894

CCWI-2 30 0.879 0.893 0.890 0.818 0.838 0.898
40 0.835 0.852 0.854 0.750 0.776 0.867
50 0.795 0.823 0.827 0.730 0.756 0.836
60 0.766 0.775 0.780 0.697 0.724 0.789
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summarized results show that the proposed IPSO-based 
PWPT outperforms the other optimization-based PWPT 
algorithms under all jamming environments in terms of 
all the performance metrics.

Conclusions
CWI is the most indigenous threat to the GNSS sys-
tem. In this paper, a novel parametric wavelet packet 
thresholding based on IPSO is proposed to mitigate 
CWI in IRNSS receivers. A simple parametric wavelet 
thresholding function based on the Softsign function is 

constructed, and its properties are also proven math-
ematically. Also, a new non-linear decreasing inertia 
weight modifying strategy is employed to overcome the 
local optimum problem of conventional PSO. Then, the 
improved PSO is used to determine the optimal thresh-
old and shape tuning parameter of SSTF. The results indi-
cate that the optimization-based threshold estimation 
overcomes the thresholding drifting issue encountered 
with the universal threshold proposed in the Mosavi 
method. Besides, the newly designed parameter adaptive 

Table 6  MSE vs JSR comparison for PWPT approach based on various optimization algorithms

Jamming type JSR(dB) FA DE PSO-GSA SPSO RPSO LPSO IPSO

SCWI 30 0.2012 0.1940 0.1929 0.1903 0.1942 0.1950 0.1896
40 0.2227 0.2247 0.2229 0.2225 0.2190 0.2221 0.2185
50 0.3415 0.3419 0.3386 0.3430 0.3369 0.3391 0.3365
60 0.3462 0.3373 0.3405 0.3388 0.3441 0.3388 0.3355

MCWI 30 0.2051 0.2069 0.2055 0.2096 0.2091 0.2086 0.2030
40 0.3041 0.3015 0.3074 0.3032 0.3073 0.3070 0.2960
50 0.3394 0.3367 0.3356 0.3375 0.3390 0.3358 0.3317
60 0.3381 0.3426 0.3431 0.3379 0.3421 0.3419 0.3370

CCWI1 30 0.1602 0.1619 0.1636 0.1614 0.1610 0.1605 0.1598
40 0.1770 0.1756 0.1748 0.1782 0.1808 0.1778 0.1744
50 0.1917 0.1942 0.1930 0.1925 0.1902 0.1932 0.1885
60 0.2008 0.2050 0.2029 0.1999 0.2054 0.2036 0.1993

CCWI2 30 0.2029 0.1981 0.2003 0.2018 0.1988 0.2027 0.1924
40 0.2466 0.2415 0.2419 0.2526 0.2510 0.2474 0.2369
50 0.3058 0.3057 0.3091 0.3062 0.3061 0.3078 0.3044
60 0.3897 0.3798 0.3843 0.3508 0.3864 0.3839 0.3465

Table 7  MAE vs JSR comparison for PWPT approach based on various optimization algorithms

Jamming type JSR(dB) FA DE PSO-GSA SPSO RPSO LPSO IPSO

SCWI 30 0.3395 0.3397 0.3344 0.3366 0.3399 0.3384 0.3342
40 0.3607 0.3604 0.3619 0.3564 0.3563 0.3580 0.3545
50 0.4746 0.4746 0.4718 0.4729 0.4751 0.4747 0.4694
60 0.4742 0.4699 0.4732 0.4704 0.4774 0.4790 0.4680

MCWI 30 0.3542 0.3550 0.3530 0.3518 0.3488 0.3499 0.3486
40 0.4322 0.4313 0.4297 0.4268 0.4303 0.4317 0.4236
50 0.4710 0.4714 0.4719 0.4725 0.4737 0.4702 0.4696
60 0.4760 0.4747 0.4744 0.4747 0.4745 0.4758 0.4716

CCWI1 30 0.3163 0.3154 0.3142 0.3118 0.3148 0.3159 0.3100
40 0.3269 0.3222 0.3275 0.3221 0.3259 0.3268 0.3212
50 0.3400 0.3392 0.3389 0.3299 0.3405 0.3414 0.3307

60 0.3487 0.3466 0.3499 0.3432 0.3477 0.3472 0.3424
CCWI2 30 0.3438 0.3407 0.3435 0.3305 0.3410 0.3455 0.3304

40 0.3790 0.3750 0.3773 0.3763 0.3718 0.3734 0.3719

50 0.4406 0.4414 0.4383 0.4397 0.4399 0.4372 0.4370
60 0.5000 0.5024 0.5027 0.4784 0.5001 0.5037 0.4779
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thresholding function, i.e., SSTF, overcomes the limita-
tions of hard and soft thresholding functions. Therefore, a 
smooth signal can be reconstructed without discontinu-
ity at the threshold value and reduced deviation between 
the estimated and original wavelet coefficients. Also, 
SSTF outperforms the well-known parametric threshold-
ing functions like trimmed, sigmoid, and hyperbolic. In 
addition, the previous WPT-based jamming mitigation 
techniques require 7–10 decomposition levels to have 
acceptable interference mitigation, whereas the proposed 
method seems to work well at a lower decomposition 

level of 4 under all the jamming scenarios. The results 
show that the proposed IPSO-based PWPT approach has 
better capability to combat both stationary and non-sta-
tionary jammers than the conventional WPT.
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