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Abstract 

Several Wireless Fidelity (WiFi) fingerprint datasets based on Received Signal Strength (RSS) have been shared for 
indoor localization. However, they can’t meet all the demands of WiFi RSS-based localization. A supplementary open 
dataset for WiFi indoor localization based on RSS, called as SODIndoorLoc, covering three buildings with multiple 
floors, is presented in this work. The dataset includes dense and uniformly distributed Reference Points (RPs) with the 
average distance between two adjacent RPs smaller than 1.2 m. Besides, the locations and channel information of 
pre-installed Access Points (APs) are summarized in the SODIndoorLoc. In addition, computer-aided design drawings 
of each floor are provided. The SODIndoorLoc supplies nine training and five testing sheets. Four standard machine 
learning algorithms and their variants (eight in total) are explored to evaluate positioning accuracy, and the best 
average positioning accuracy is about 2.3 m. Therefore, the SODIndoorLoc can be treated as a supplement to UJIIn-
doorLoc with a consistent format. The dataset can be used for clustering, classification, and regression to compare the 
performance of different indoor positioning applications based on WiFi RSS values, e.g., high-precision positioning, 
building, floor recognition, fine-grained scene identification, range model simulation, and rapid dataset construction.
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Introduction
The indoor positioning has thrived for more than twenty 
years, and various technologies and methods have 
emerged to meet the requirements of location-based 
services in Global Navigation Satellite System (GNSS) 
denied environments. According to the principles of 
indoor positioning technologies, they can be divided into 
wireless signal positioning (Alvarez-Merino et  al., 2021; 
Chen et al., 2021; Li et al., 2020; Poulose et al., 2020; Ye 
et  al., 2022), inertial navigation (Feng et  al., 2020; Liu 
et  al., 2021), computer visual positioning (Maheepala 
et al., 2020; Morar et al., 2020), and others (Huang et al., 
2022; Kunhoth et al., 2020; Li et al., 2016; Ruiz et al., 2011; 
Xu et al., 2021). Wireless Fidelity (WiFi) plays a vital role 
in wireless signal positioning technologies because of its 

wide applications and high commercial value (Liu et al., 
2020; Zhuang et al., 2015).

Received Signal Strength (RSS) (Poulose et  al., 2020; 
Tao & Zhao, 2021; Torres-Sospedra et al., 2014), Channel 
State Information (CSI) (Gönültaş et al., 2021; Rocamora 
et al., 2020; Tian et al. 2020), and Round Trip Time (RTT) 
(Cao et al., 2020; Guo et al., 2019) can be extracted from 
WiFi signals for fingerprint-based, range-based, and 
angle-based indoor localization. Due to the advantages 
of their diversity and easy access, WiFi indoor position-
ing methods, especially RSS-based, have attracted a great 
attention. RSS is the superposition of multipath signals 
at the same time. It is a kind of coarse-grained data. It is 
simple and easily accessible, while RTT and CSI are fine-
grained information that requires specialized equipment. 
Although RTT and CSI can achieve better positioning 
accuracy than RSS, they are still in the laboratory stage 
or limited by some devices, so they can’t be widely pro-
moted and applied at present.
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To improve network performance, security, and bat-
tery life, the Android Operating System (OS) restricted 
the permissions and the frequency of WiFi scans from 
Android 8.0, i.e. Application Programming Interface 
(API) level 26. Foreground application running on 
Android smartphone can scan four times in two minutes. 
All background apps can scan one time in thirty minutes. 
Android 9.0 (API level 28) and higher versions tight-
ened permission requirements limiting the frequency of 
WiFi scans. It seems that RSS is not available on Android 
native OS. However, running the developed app on many 
Android smartphones, we found that 29 phones could 
collect RSS data normally after granting permission in 
December 2021. These phone brands are Huawei, Oppo, 
Vivo, and Xiaomi. The OS of both Oppo and Xiaomi is 
Android, for Vivo is OriginOS, and for Huawei is Harmo-
nyOS. The details of the smartphones that can be used to 
collect RSS data are shown in Table 1.

The resources section of the official website of Indoor 
Positioning and Indoor Navigation (IPIN) listed several 
collected or crowdsourced WiFi RSS-based datasets 
in different environments. Lohan summarized twelve 
WiFi fingerprint datasets and reported the correspond-
ing limitations of these datasets (Lohan et  al., 2017). 
Montoliu et  al. (2017) released an IndoorLoc plat-
form to compare and evaluate several kinds of indoor 

positioning methods by using different datasets. These 
existing open-source datasets help researchers quickly 
carry out indoor localization experiments. However, 
they are not enough to deal with all the RSS-based posi-
tioning problems and some datasets are not accessible.

To the best of our knowledge, sampling points in the 
existing datasets were sparse, and the distance between 
two adjacent sampling points was usually too large to 
achieve high precision positioning. Besides, most of 
the datasets include only corridor and hall scenes, and 
a few datasets contain rooms with a small number of 
sampling points. In addition, all the open-source and 
available WiFi RSS-based datasets were constructed 
before September 2017, where most of the wireless 
Access Points (APs) were single-band, not the dual-
band used nowadays, i.e., an AP contains multiple 
Media Access Control (MAC) addresses. In this case, 
combining all MAC addresses in one dataset will cause 
a dimensional disaster. Moreover, APs are usually fixed 
within the building, whose locations are not provided 
in the previous datasets.

Therefore, the SODIndoorLoc was created, cover-
ing three buildings with multiple floors where there 
are corridors, office rooms, and meeting rooms. The 
SODIndoorLoc can be found on the GitHub website 
(Bi, 2022). And it can be treated as a supplement of UJI-
IndoorLoc. Expecting to record the same information 
as UJIIndoorLoc, the locations and channel informa-
tion of pre-installed APs and Computer-Aided Design 
(CAD) drawings of each floor are provided. Layouts 
of the above rooms are also preserved in CAD draw-
ings. Most importantly, the average distance between 
two adjacent Reference Points (RPs) is less than 1.2 m, 
which is smaller than those in existing datasets, and the 
locations of Testing (or validation) Points (TPs) are dif-
ferent from those of RPs. The main characteristics of 
the dataset are:

• It covers a total area of 8000  m2, including three 
buildings with one or three floors.

• 105 APs are pre-installed in three buildings, among 
which 56 are single-band and 49 are dual-band. The 
locations and channel information of these APs are 
summarized.

• 1802 points at different locations are arranged, and 
the number of RPs and TPs are 1630 and 272, respec-
tively.

• 23,925 samples are recorded, among which 21,205 
for training/learning and 2720 for testing/validation.

• The dataset contains three kinds of scenes, office 
room, meeting room, and corridor. Hall and corridor 
are seamless in these buildings, so there is no distinc-
tion between the two scenes.

Table 1 The details of the smartphones

Brands Models OS

Huawei Honor 10 HarmonyOS

Honor 20

Honor 30

Mate 30

Mate 40

Nova 4

Nova 5

Nova 7

Nova 8

P 30

Oppo A9 Android

A93

R15

Vivo iQOO OriginOS

S1

X27

Xiaomi Redmi Note 10 Pro Android

Redmi K20 Pro

Redmi K40

Xiaomi 8

Xiaomi 10

Xiaomi 11
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• The distance between two adjacent sampling points 
is about 1.2 m in two buildings with one floor, while 
about 0.5 m in a three-story building.

• At each RP in the two buildings with one floor, train-
ing data has thirty samples. In contrast, training data 
in the three-story building only contains one sample, 
a vector of average values throughout sampling time. 
All the testing data at each TP possesses ten samples.

The main contributions are as follows. We expect 
that the dataset can become a reference dataset and 
help researchers delve into WiFi RSS-based indoor 
localization.

• It is a dataset with dense RPs. The average interval of 
two adjacent RPs is smaller than 1.2 m, which could 
be used for high-precision positioning, scene identifi-
cation, and dataset construction.

• The locations and channel information of pre-
installed APs are provided in the dataset. This infor-
mation can be used for range model simulation, 
high-precision positioning, and dataset construction.

The rest of the paper is organized as follows: Section 
heading “Related work” introduces the related work of 
WiFi RSS-based datasets. Section heading “Description 
of SODIndoorLoc dataset” describes the presented data-
set in detail. Several experiments using the dataset with 
different machine learning methods are shown in Sec-
tion heading “Experiments based on the SODIndoorLoc 
dataset”. Discussions and conclusions are given in Section 
heading “Discussions and conclusions”.

Related work
Public WiFi RSS-based datasets have greatly facilitated 
the development of WiFi indoor localization to some 
extent. The well-known WiFi RSS-based dataset is UJI-
IndoorLoc (Torres-Sospedra et al., 2014), covering mul-
tiple buildings and floors, which was published in the 
University of California, Irvine (UCI) machine learning 
repository in 2014. It is available and utilized as a data-
set for competition by IPIN. More than 300 articles cited 
the UJIIndoorLoc dataset. And thousands of researchers 
carried out experiments by using the UJIIndoorLoc (Cao 
et al., 2021; Qin et al., 2021).

The coverage and data of UJIIndoorLoc are too large. 
Many researchers therefore studied the private dataset by 
collecting the local WiFi RSS data from small areas (Tao 
& Zhao, 2021). The IPIN 2016 tutorial provided a data-
set named IPIN2016 Tutorial, focusing on the study of a 
small scenario covering a small corridor with an area of 
approximately 120  m2. The dataset consists of 927 train-
ing records and 702 testing ones with 177 attributes. As 

a simplified version of the IPIN2016 Tutorial dataset, the 
Alcala Tutorial 2017 dataset is published with 670 train-
ing records and 405 testing ones with 154 attributes. 
These two datasets are evaluated by the IndoorLoc plat-
form (Montoliu et al., 2017), and only the training data-
sets are open source. If you want to obtain the testing 
datasets, you should contact the authors. The limitation 
has made many researchers split the training dataset into 
two parts, one for training and the other for localization 
(Qin et al., 2021).

During the off-site competition track three (smart-
phone-based) of IPIN 2016, accelerations, angular veloc-
ity, magnetic field strength, pressure, ambient light, 
orientation, sound level, WiFi RSS, and other informa-
tion from external devices were logged with a dynamic 
strategy in four buildings by multiple users and devices. 
Everyone can download the datasets and supporting 
materials from the IPIN resource section or the long-
term repository Zenodo, such as log files, files of floor 
maps and the visualization of training routes, evalua-
tion scripts, and some codes for reading and processing 
these files. The IPIN resource section contains the com-
petition results that Zenodo does not. The Zenodo con-
tains the ground truth of evaluation scripts, while the 
IPIN resource section does not. The number of MAC 
addresses detected at different points varies greatly, and 
few MAC addresses can be detected at many points. The 
best positioning accuracy of the IPIN2016 competition 
track three is about 5.85 m based on the 578 evaluation 
points by integrating all the collected information. The 
competition score metric is based on the 75th percen-
tile of the point error (Potortì et al., 2022). WiFi plays a 
minor role in the track three competition, even if IPIN 
2017 competition provided the locations of seven MACs, 
and IPIN 2019 competition recorded WiFi frequency 
corresponding to the detected MAC addresses.

Before the release of the UJIIndoorLoc dataset, Lohan 
published a WiFi measurement dataset in the repository 
of her homepage (Lohan, 2013). The dataset covers two 
four-floor buildings, and all the measurements were done 
in 2013. But the format of the dataset is too complex to 
be conveniently used and not as straightforward as the 
UJIIndoorLoc. The crowdsourced WiFi dataset (Lohan 
et  al., 2017) covering a four-floor building was released 
in the Zenodo repository in 2017. The measurements 
were conducted using a visualized benchmark software 
in a crowdsourced mode via 21 different devices and 
users. Therefore, the testing data (3951 records) is about 
5.75 times more than the training data (687 records). 
Unlike other datasets, it provided elevations rather than 
floor numbers. A supplementary dataset (Richter et  al., 
2018) was published in 2018 for the crowdsourced WiFi 
dataset.
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An interesting dataset (Moreira et al., 2017) with multi-
ple simultaneous WiFi interfaces was released at the IPIN 
2017 conference. Many independent WiFi interfaces 
simultaneously collected WiFi measurements with a total 
area of around one thousand square meters. The experi-
mental results showed that positioning accuracy was 
greatly improved. An enhanced dataset (Torres-Sospe-
dra et  al., 2019) based on the above one by exploiting 
the combinations of complementary sensor’s data was 
displayed at the IPIN 2019 conference with a significant 
improvement in positioning accuracy. Moreover, some 
other WiFi RSS-based datasets (Nahrstedt & Vu, 2012; 
Parasuraman et al., 2016) are published on crawdad and 
are restricted to download.

Description of SODIndoorLoc dataset
In this section, the proposed dataset is described in 
detail. Section heading “Description of the testing area” 
briefly introduces three buildings, CAD drawings of each 
floor, and layouts.   Section heading “Description of data 
collection” interprets how to collect data. Then, Section 
heading “Description of data sheets” ultimately shows the 
information on the records in the dataset.

Description of the testing area
The total indoor area is about 8000  m2, covering three 
buildings in different cities. As shown in Fig.  1, a floor 
plan with a simple layout is overlaid on the satellite image 
of each building. And all the WiFi collecting areas are 
rendered in orange.

The CETC331 building has not been used for a long 
time, and it is an old building with three floors in Shiji-
azhuang city. The area of the 1st and 2nd floor is about 
830  m2 each, and the area of the 3rd floor is about 140 
 m2. The total area is about 1800  m2. The floor plan in 
Fig.  1a is for the 2nd floor. The collecting area includes 
corridor, office, and meeting rooms. There were no APs 
in the building until we deployed 26 dual-band ones in 
September 2018, seven APs for the 1st floor, twelve APs 
for the 2nd floor, and seven APs for the 3rd floor. All 
APs were fixed to the ceiling. The deployment scheme of 
APs is supported by using Cramér-Rao lower bound as 
the metric of positioning error, which could ensure high 
positioning accuracy in the whole building.

The HCXY building is an office building at a college in 
Xuzhou city. The floor plan in Fig. 1b is for the 4th floor. 
The total area of the 4th floor is about 3600  m2. The cor-
ridor with the width of 2.4  m was chosen as the WiFi 
collecting area in orange color. The length of the corri-
dor is about 211 m. Single-band APs were symmetrically 
deployed and distributed at a uniform height with the 
same distance interval. All of them were displayed on 
both sides of the walls. Because several APs were broken 

before the WiFi collection in July 2017, only 56 APs were 
available and labeled in the floor plant. Four APs were 
in an office room, and two APs were in a meeting room. 
There are many offices on both sides of the corridor, and 
the rest are glass curtain walls. Due to the difference in 
wall material and structures, the corridor can be divided 
into four parts.

The WiFi collecting area is also set on the 4th floor of 
the SYL building in Jinan city, as shown in Fig.  1c. The 
total area is about 2600  m2. It contains office rooms, 
meeting rooms, and corridors. 23 dual-band APs are 
deployed. The office room is the graduate student’s lab-
oratory with a complex layout. Six APs are fixed on the 
walls of the office room, and two APs are put on an iron 
chest and a wooden desk. Two APs are fixed on the wall 
of one meeting room, but no AP is in the other meeting 
room. The remaining thirteen APs are installed on both 
sides of the walls in the corridor; adjacent three APs can 

(a)

(b)
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Fig. 1 The testing area covers three buildings, a CETC331 building 
with the 2nd floor, b HCXY building, and c SYL building with the 4th 
floor



Page 5 of 15Bi et al. Satellite Navigation            (2022) 3:25  

form a triangle. WiFi RSS data were collected in January 
2022. The data were collected at each grid point in the 
corridor while they were on the path in the office and 
meeting rooms.

Unlike the other datasets, clear floor plans are provided 
in three CAD files, which are named depending on the 
buildings. An independent coordinate system is utilized 
in a CAD drawing. The coordinates of training and test-
ing points are processed. Everyone could render their 
own floor plan by themselves.

Description of data collection
Figure  2 clearly illustrates the procedure of data collec-
tion in a testing area. Several APs are installed on the 
walls or the ceiling. The pre-planned green solid point 
denotes RP or TP. The design location can be found with 
the help of tiles on the floor. The distance between two 
adjacent RPs is less than 1.2 m. The precise locations of 
APs and points are obtained using an electronic total sta-
tion, a precise surveying instrument that can measure a 
distance of one kilometer with an error less than 3 mm. 
So, the coordinates and localization results can be repre-
sented in the order of a millimeter, i.e., three decimals.

A user holding smartphone in hand moves from one 
point to another in the forward direction. During the 
data collection, the smartphone faces up to the ceiling. 
The forward direction is consistent with the orientation 
of the pedestrian movement. When the user walks to the 
RP or TP, the user should stay at the location for a while 
and operate the self-developed application to collect the 
data at the sampling frequency of 1 Hz. The application 

could set up the count parameter. Once the count opera-
tion is complete, the user can conduct a similar process 
to the next point until all data is collected in the testing 
area.

An uncertainty distance is the interval between RP and 
the smartphone, which is easy to ignore. In the process of 
data collection, the position of RP is usually taken as that 
of the smartphone. In addition, due to the high degree of 
freedom of the smartphone held by the user, the uncer-
tainty distance is dynamically changing and difficult to 
be compensated for, which leads to poor reliability and 
introduces positioning errors. However, the indoor posi-
tioning accuracy based on RSS is about 3–5 m, and the 
uncertainty distance is less than 0.5 m. So, the influence 
of the uncertainty distance on RSS-based localization can 
be ignored.

Description of data sheets
Like the UJIIndoorLoc dataset, the proposed SODIn-
doorLoc dataset also adopts sheets to store WiFi finger-
print records and other supplementary information. The 
most significant differences from the other existing data-
sets are the dense RPs, the addition of several attributes, 
and a sheet file containing APs’ location and transmission 
frequency.

The division of data sheets
Three buildings are in different cities. The pre-installed 
APs operate three models of TP-Link, and the model of 
the pre-installed APs is the same in each building. For the 
convenience of presentation, the data sheets are discrimi-
nated according to buildings. The advantage of the divi-
sion in this way is that the dimensions in each sheet are 
not large enough to cause dimension disaster. For exam-
ple, the UJIIndoorLoc dataset is an aggregation of the 
data from three buildings, the dimension of the RSS vec-
tor is 520. If the researchers want to utilize the data from 
one of three buildings, they should be further conducted 
to filter and discard unwanted RSS elements. Table  2 
shows the dimensions of the RSS vector in different data 
sheets, which are less than the UJIIndoorLoc dataset. 
The last volume denotes the dimensions of the RSS vec-
tor in the UJIIndoorLoc dataset. If three data sheets are 
integrated into the form of the UJIIndoorLoc dataset, 

AP

AP

AP

Forward

Fig. 2 The illustration of data collection in a testing area

Table 2 Dimensions of RSS vector in different sheets

Buildings Dimensions

CETC331 52

HCXY 347

SYL 363

ESTCE-TI 520
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the dimension will reach 762, which will be a significant 
challenge in the data processing. And suppose you want 
to utilize these data sheets for buildings identification. In 
that case, data enhancement is required by increasing the 
attributes of the RSS vector and setting the empty value 
as 100 dB·m. In practice, data enhancement is much less 
complicated than data reduction.

Depending on the purpose, data sheets are divided into 
two different sets: the training set and the testing set. The 
training set contains large amounts of RSS vectors and 
other relevant information at RPs for offline model learn-
ing. The testing set provides the same records at arbitrary 
TPs, which are usually located differently from RPs, to 
evaluate the performance of different methods.

In the process of WiFi collection, the sampling fre-
quency is 1  Hz. The sampling time at each RP is thirty 
seconds and ten seconds at each TP. For a multi-story 
building, the volume of the CETC331 sheet will be very 
large if all thirty samples at each RP are stored. So, the 
CETC331 training sheet saves one sample, i.e., the aver-
age of thirty samples, corresponding to each RP. Never-
theless, all thirty samples at each RP are stored in HCXY 
and SYL training sheets. The number of TPs is smaller 
than that of RPs in three buildings. Ten samples at each 
TP are stored in three testing sheets. Table 3 shows the 
number of samples in the training and testing sheets. The 
total number of samples in three training sheets of the 
corresponding three buildings is 21,205, and that in three 
testing sheets is 2720. Both are larger than those in the 
UJIIndoorLoc dataset. Another HCXY and SYL training 
sheets also store the average sample corresponding to 
each RP, i.e., the average of thirty samples.

The corresponding numbers of RPs and TPs in differ-
ent sheets are shown in Table  4. Because the distance 
between two adjacent RPs is about 0.5 m, the number of 
RPs in the CETC331 building is huge. The total number 

of RPs and TPs are 1670 and 272, respectively. The num-
ber of RPs in the proposed dataset is larger than that in 
the UJIIndoorLoc dataset. And most of the RPs and TPs 
are at different locations.

As mentioned above, there are many pre-installed APs 
in three buildings. Dimension reduction for the HCXY 
and SYL sheets is conducted by filtering known MAC 
addresses to obtain corresponding simplified sheets. 
Table 5 shows the dimensions of the RSS vector in these 
simplified sheets.

Therefore, in the proposed dataset, there are nine 
training sheets and five testing sheets, as summarized in 
Table 6. Only a pair of training and testing sheets about 
the CETC331 building is provided, while there are four 
training sheets and two testing sheets for both the HCXY 
building and the SYL building. The letter “All” indicates 
all detected APs are adopted to build a whole RSS vector, 
and the letter “AP” denotes only pre-installed APs are uti-
lized for filtering the RSS vector. The number “30” means 
that thirty samples at each RP are stored in the sheet. The 
letter “Avg” indicates that the average of thirty samples at 
each RP is in the sheet.

The format of training and testing sheets
Each WiFi fingerprint is characterized by the detected 
MAC addresses and the corresponding RSS values. And 
most Wireless Access Points (WAPs) are with multiple 
bands. It is not appropriate to assign WAP as an attrib-
ute, as the UJIIndoorLoc dataset does. The detected 

Table 3 Number of samples in different sheets

Buildings Training sheets Testing sheets

CETC331 955 840

HCXY 11 370 1 020

SYL 8 880 2 720

Table 4 Number of points in different sheets

Buildings Training sheets Testing sheets

CETC331 955 84

HCXY 379 86

SYL 296 102

Table 5 Dimensions of RSS vector in simplified sheets

Buildings Dimensions

CETC331 52

HCXY 56

SYL 46

Table 6 Summary of training and testing sheets

Buildings Training sheets Testing sheets

CETC331 Training_CETC331 Testing_CETC331

HCXY Training_HCXY_All_30 Testing_HCXY_All

Training_HCXY_All_Avg

Training_HCXY_AP_30 Testing_HCXY_AP

Training_HCXY_AP_Avg

SYL Training_SYL_All_30 Testing_SYL_All

Training_SYL_All_Avg

Training_SYL_AP_30 Testing_SYL_AP

Training_SYL_AP_Avg
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MAC addresses are utilized for identifying RSS values 
in the proposed dataset. Regarding privacy, all detected 
MAC addresses in the building are sorted in the detected 
order. For example, the 1st attribute denotes RSS value of 
the 1st MAC address in the detected order, and the n th 
attribute is that of the n th MAC address. Because the 
numbers of detected MAC addresses in three buildings 
are different, n means different values in training and 
testing sheets for three buildings.

If the number of all detected MAC addresses is n, the 
range from the 1st attribute to the n th attribute can be 
expressed by n RSS values. The (n + 1)th and the (n + 2)th 
attributes indicate the coordinates in the east and north 
directions, named ECoord and NCoord. Identifiers (Id) 
of floor level, building, scene, user, and phone are indi-
cated from the (n + 3)th attribute to the (n + 7)th attrib-
ute, named as FloorId, BuildingId, SceneId, UserId, and 
PhoneId in sequence. The (n + 8)th attribute indicates 
the counts of samples, named Counts. The header of a 
sheet is shown as the first row of Table  7. And the 2nd 
row of Table 7 is an example, i.e., the 12th sample of the 
Training_CETC331.

RSS vector
RSS vector is a set of RSS values in the order correspond-
ing to the first n attributes. MAC addresses and corre-
sponding RSS values can be obtained from the nearby 
APs in each scan. If the program aligns the scanned 
MAC addresses to the first n attributes and assigns the 
corresponding RSS values to the attribute values. In that 
case, it sets the attribute values of the undetected MAC 
addresses to a particular value, e.g., 100 dB·m, suggested 
by the UJIIndoorLoc dataset. A whole RSS vector can be 
obtained, as shown in Table 7.

The scanned RSS value is a negative integer in the unit 
of dB·m, where − 100  dB·m is equivalent to a weak sig-
nal, whereas 0 indicates an excellent signal. The prob-
ability distribution of RSS values from the training sheet 
and the testing sheet in three buildings is shown in Fig. 3. 
The minimum RSS value is − 104  dB·m, the same value 
in the UJIIndoorLoc dataset. The larger one is − 3 dB·m. 
The probabilities of maximum and minimum RSS values 
are tiny. Large amounts of RSS values are concentrated 
from − 85 to − 50 dB·m. RSS values conform to a Gauss-
ian distribution.

Local coordinates
The adopted coordinate system is a local independent 
coordinate system. All coordinates in the proposed data-
set are not the same as those in CAD drawings. They 
have been transformed for privacy reasons. The unit of 
local coordinates is in meters with three decimals.

Space identifiers
FloorId, BuildingId, and SceneId are referred to as space 
identifiers. They are set as positive integer values from 
one to four. FloorId ranges from 1 to 3 in CETC331 
sheets, and FloorId is four for HCXY and SYL sheets. 
BuildingId ranges from 1 to 3, and the CETC331, HCXY, 
and SYL buildings are set as 1, 2, and 3. There are three 
scenes in the WiFi collecting area, corridor, office, 
and meeting rooms. And they are set as 1, 2, and 3 in 
sequence. Hall and corridor are seamless in these build-
ings, so there is no distinction between the two scenes. 
Space identifiers in Table 7 mean that the WiFi collection 
is in a corridor on the 1st floor of the CETC331 building.

User identifier (UserId)
Ten students participated in the WiFi RSS collection in 
three buildings. They are marked with numbers from 1 to 
10 instead of names. The height of each user is provided 
because we think this information might be necessary 
for range model simulation and range-based localization. 
The coarse height of the user holding a smartphone is 
also supplied, as shown in Table 8. The unit of height is 
centimeter.

Phone identifier (PhoneId)
Nine Android smartphones were utilized to collect WiFi 
data, among which two phones were in the same model 
and brand, e.g., Xiaomi 6, but in different memory sizes. 
Three brands were Xiaomi, Huawei, and Samsung, 
respectively. The detail can be found in Table 9.

Figure  4 shows the RSS ranges detected by differ-
ent smartphones. The horizontal axis represents the 
identifier of smartphones, and the vertical axis denotes 
RSS values. Each bar represents the maximum and 
minimum RSS values detected by the smartphone. The 
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Fig. 3 The distributed probability of RSS values in three buildings
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maximum value is at the top of each bar, and the mini-
mum value is at the bottom. The number of RSS values 
larger than − 20  dB·m is very small. Each bar has a dif-
ferent range of RSS values, even if smartphones are the 
same brand and model, e.g., both the 5th and 7th bars are 
the RSS values detected by Xiaomi 6. Obviously, there are 
differences in RSS values due to device heterogeneity. The 
statistics of RSS ranges with different smartphones might 
be helpful in solving device heterogeneity.

Counts
The timestamp register was introduced in the UJIIndoor-
Loc dataset in Unix time format to represent the time of 
the WiFi collection. But the count is adopted in the pro-
posed dataset to record the times of WiFi samples, rang-
ing from 1 to 30. In the Training_CETC331 sheet and 
training sheets labeled “Avg”, the count is recorded as 
one at each sample. The counts range from 1 to 30 in the 
training sheets labeled by “30”. The counts range from 1 
to 10 for all the testing sheets.

Information of pre‑installed APs
Table  10 is an example of the information on a pre-
installed AP in the SYL building. It mainly contains 
space locations, MAC addresses, and channel frequen-
cies. A sheet file is provided about the information on 
pre-installed APs for each building. This information is 
vital for range model simulation and range-based locali-
zation. Space locations are recorded in the format of 
RPs and TPs using ECoord, NCoord, and FloorId. Cor-
responding attributes replace MAC addresses in the 
order. In Table  10, the MAC addresses in 2.4  GHz and 
5 GHz are the 125th and 340th ones, respectively. Chan-
nel frequency is the central frequency of the WiFi chan-
nel, which can reflect if the signal belongs to the 2.4 GHz 
band or 5  GHz band. The unit of channel frequency is 
MHz. For example, 2 437  MHz belongs to the 2.4  GHz 
band, while 5 220  MHz is the 5  GHz band. It is noted 
that the sheet of the HCXY building doesn’t have the last 
two columns because the pre-installed APs are single-
band. The height of an AP is not provided, and it can be 
customized.

Experiments based on the SODIndoorLoc dataset
Localization experiments based on the SODIndoorLoc 
dataset were conducted by using four kinds of machine 
learning methods (Ji et al., 2021; Maw et al., 2020; Sala-
mah et al., 2016; Wu et al., 2019), i.e., K Nearest Neighbor 
(KNN), Support Vector Machine (SVM), Random Forest 
(RF), and Neural Network (NN). Both classification and 
regression algorithms are adopted to evaluate the per-
formance of localization based on the SODIndoorLoc 
dataset by using positioning accuracy and computational 
complexity. NN is implemented by the Multi-Layer Per-
ceptron (MLP) algorithm, which trains the model using 
back propagation with no activation function in the 

Table 8 Information of users

UserId Height (cm) Height 
of phone 
(cm)

UserId Height (cm) Height 
of phone 
(cm)

1 165 109 6 176 125

2 179 132 7 178 127

3 174 123 8 177 125

4 171 116 9 182 134

5 158 101 10 181 131

Table 9 Phone identifiers

Model Id Model Id Model Id

Xiaomi 8 1 Huawei Mate 8 4 Xiaomi 6 7

Xiaomi 11 2 Xiaomi 6 5 Redmi 4 8

Xiaomi 4 3 Samsung S7 6 Xiaomi 5X 9
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Fig. 4 RSS ranges vs. PhoneId

Table 10 An example of information of pre-installed APs

Id Coordinate value in east (E) direction 
(m)

Coordinate value in north (N) 
direction (m)

FloorId Attr_2.4 Freq_2.4 (MHz) Attr_5 Freq_5 (MHz)

1 50.600 12.600 4 125 2 437 340 5 220
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output layer. For the convenience of distinction, the above 
machine learning methods are referred to as K Nearest 
Classification (KNC), K Nearest Regression (KNR), Sup-
port Vector Classification (SVC), Support Vector Regres-
sion (SVR), Random Forest Classification (RFC), Random 
Forest Regression (RFR), Multi-Layer Perceptron Classi-
fication (MLPC), and Multi-Layer Perceptron Regression 
(MLPR). All simulations are carried out on MacBook (the 
central process unit is Intel Core M3 in 1.1 GHz) using 
Scikit-learn, an open-source machine learning toolkit. 
The coordinates are converted into labels to ensure that 
classification algorithms can be used for position estima-
tion, and then the prediction labels obtained from the 
training model are converted into coordinates. Since the 
purpose is not to propose a new localization algorithm, 
no parameter optimization is carried out. The critical 
parameters of the above algorithms are artificially speci-
fied, and the rest are by default. The critical parameters 
of the same machine learning method are the same. For 
example, classification and regression algorithms of KNN 
are separately implemented by ‘KNeighborsClassifier’ 
and ‘KNeighborsRegressor’, where the integer value k is 
set as five, the weights are assigned as the inverse of the 
distance from the query point, and the distance metric is 
Euclidean. For SVC and SVR, the regularization param-
eter is set as one, the kernel is chosen as radial basis 
function, the kernel coefficient ‘gamma’ is ‘scale’, and the 
tolerance for the stopping criterion is specified as 0.01. 
The number of trees in the forest is set as 100 for ‘Ran-
domForestClassifier’ and ‘RandomForestRegressor’. MLP 
contains one input layer, one output layer, and one hid-
den layer, where there are 100 neurons. MLPC and MLPR 
are implemented by ‘MLPClassifier’ and ‘MLPRegressor’, 
respectively.

In this section, experiments with different training 
sheets are utilized for training localization models. The 
Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), the 50th percentile error, the 75th percen-
tile error (suggested by IPIN competition as competi-
tion score), and 95th percentile error are introduced as 
positioning accuracy evaluation metrics, and the unit is 
meter. The computational complexity is indicated by the 
elapsed time, the summary of training and testing, and 
the unit is second.

Positioning experiments in the HCXY building
Positioning experiment with all MACs
Table  11 shows the statistics of positioning errors and 
elapsed time using the Training_HCXY_All_30 sheet, 
i.e., the 1st sheet. KNC, KNR, SVC, SVR, and RFR meth-
ods achieve good positioning accuracy with the MAE 
of around 2  m, while RFC, MLPC, and MLPR methods 
get poor positioning results. According to the suggestion 

of the IPIN competition, RFR will be treated as the best 
positioning algorithm because of the smallest 75th per-
centiles error. A set of boxes are utilized to show posi-
tioning errors of different methods in Fig.  5, where the 
red line in the blue box indicates the 50th percentiles 
error, the bottom and top edges of the blue box indicate 
the 25th and 75th percentiles error, the red square in the 
blue box denotes the MAE, and the red plus symbol out-
side of the blue box denotes the outliers with large errors. 
It seems that the RFR method may not have the best 
positioning accuracy, and SVC achieves better position-
ing accuracy than other methods by comparing Table 11 
and Fig. 5.

Positioning experiment with pre‑installed APs
Table  11 shows the statistics of positioning errors and 
elapsed time based on the Training_HCXY_AP_30 sheet, 
i.e., the 2nd sheet. The errors of the RFR method are 
obviously smaller than those of the other seven methods 
with the MAE of 3.198 m.

Although the elapsed time of methods with the train-
ing sheet only containing pre-installed APs are shorter 
than those containing all MAC addresses, the position-
ing errors basically become larger as the decrease of the 
number of MACs in the training sheet. The average posi-
tioning accuracy decreases by 41.6% from 347-dimen-
sion fingerprint data to 56-dimension one. It is hard to 
provide high-precision positioning results by vastly sim-
plifying high-dimensional data in the HCXY building. If 
positioning accuracy and computational complexity are 
considered, the number of MAC addresses can be appro-
priately increased.

Positioning experiments in the SYL building
Only regression methods are used for investigating posi-
tioning performance based on the training sheets with 
different samples and MACs in the SYL building, i.e., the 
four training sheets in Table 6. They are distinguished in 
order by using numbers from 1 to 4. 32 sets of position-
ing results can be obtained, as well as the corresponding 
statistics of positioning errors and elapsed time, as shown 
in Table 12. The best positioning accuracy for each train-
ing sheet can be found by comparing with metrics of dif-
ferent methods.

For the 1st sheet in Table 12, the SVR method achieves 
the best positioning accuracy with the MAE of 3.844 m, 
expressed as SVR_All_30. For the 2nd sheet, the RFR 
method achieves the best positioning accuracy with the 
MAE of 3.787  m, expressed as RFR_AP_30. The KNR 
method achieves the best positioning accuracy with the 
MAE of 3.782 m for the 3rd sheet and with the MAE of 
4.048 m for the 4th sheet. They are sequentially expressed 
as KNR_All_Avg and KNR_AP_Avg.
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The corresponding results can be illustrated as Cumu-
lative Distribution Function (CDF) for a comparison of 
positioning accuracy. The maximum errors are larger 
than 50  m, so the positioning errors are limited to the 
range from 0 to 10  m. CDFs of these four methods are 
shown in Fig.  6. The differences among the four curves 
are very small. And the trends of the four curves are 
consistent.

However, the elapsed time of four regression meth-
ods based on the four training sheets are quite differ-
ent. Compared with SVR_All_30 and RFR_AP_30, the 
elapsed time of KNR_All_Avg and KNR_AP_Avg are 

reduced by more than 99%. Adopting the average sam-
ple at each RP can significantly reduce the computational 
complexity with the consistent positioning accuracy in 
the SYL building.

Positioning experiments in the CETC331 building
Positioning experiments based on the training sheet in 
the CETC331 building were conducted using four regres-
sion methods to evaluate the impact of floor discrimina-
tion on positioning performance. According to whether 
floor discrimination is used for location estimation in the 
experiments, the experiments are divided into two cases. 
The  1st case is that the whole data are directly utilized 
in all calculations without floor discrimination. The 2nd 
case is that training models and further location estima-
tion are carried out after floor discrimination. In this sec-
tion, floor discrimination is not identified using the RSS 
vector but based on the FloorId attribute.

Table 13 summarizes the statistics of positioning errors 
and the elapsed time in two cases. The positioning effect 
of the KNR method is the same regardless of the adop-
tion of floor discrimination. Minor changes in position-
ing errors occurred when the SVR method adopted floor 
discrimination. And the elapsed time of KNR and SVR 
methods are greatly reduced by 55.5% and 66.9%, respec-
tively. There are slight changes in positioning errors and 
elapsed time when the RFR and MLPR methods adopt 
floor discrimination. MAEs and RMSEs decrease while 
the 50th, 75th, 95th, and elapsed time increase.

Figure  7 shows CDFs of positioning errors of four 
regression methods after floor discrimination. The red 

Table 11 Statistics of different methods based on the two sheets in the HCXY building

Sheets Methods MAE (m) RMSE (m) 50th percentiles 
error (m)

75th percentiles 
error (m)

95th percentiles 
error (m)

Elapsed time (s)

1 KNC 2.339 2.096 1.342 3.059 6.686 0.44

KNR 2.365 2.033 1.47 3.231 6.627 0.445

SVC 2.259 1.966 1.342 3.081 6.627 17.201

SVR 2.652 2.177 2.169 3.385 6.707 66.053

RFC 6.242 10.057 1.879 5.433 30.606 11.458

RFR 2.412 3.309 1.382 2.87 7.572 27.337

MLPC 29.411 25.435 21.054 42.957 79.122 71.15

MLPR 8.269 4.792 7.586 11.275 17.435 10.932

2 KNC 5.893 7.232 3.059 6.689 25.807 0.304

KNR 5.813 7.22 3.048 7.341 25.807 0.286

SVC 5.916 7.678 3 6.708 25.807 11.916

SVR 5.108 4.659 3.094 6.876 15.62 35.678

RFC 7.227 10.931 1.942 5.532 35.405 6.059

RFR 3.198 3.724 2.101 4.129 8.294 7.941

MLPC 6.955 9.531 3.547 7.58 30.606 40.914

MLPR 15.091 15.714 7.675 26.663 47.184 9.332
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Fig. 5 Positioning errors of different methods based on the training 
sheet containing all APs and thirty samples at each RP in the HCXY 
building
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line with circles indicates the CDF of the KNR method. 
It is always higher than the other lines. Considering 
Table  13 and Fig.  7 together, the KNR method achieves 
the best positioning performance with the MAE of 
2.876  m and the elapsed time of 0.015  s based on the 
CETC331 training sheet.

Discussions and conclusions
Discussions
Some details, such as machine learning methods, preci-
sion, parameters, and the conversion between coordi-
nates and labels, are not specified above. These issues are 
discussed and explained in this section.

Machine learning methods
Many machine learning methods can be used for finger-
print-based localization in indoor positioning and navi-
gation. And the Scikit-learn toolkit provides abundant 

Table 12 Statistics of regression methods based on training sheets containing different MAC addresses and samples in the SYL 
building

Sheets Methods MAE (m) RMSE (m) 50th percentiles 
error (m)

75th percentiles 
error (m)

95th percentiles 
error (m)

Elapsed time (s)

1 KNR 4.656 5.291 3.842 6.078 8.521 0.368

SVR 3.844 4.948 3.096 4.696 7.730 18.637

RFR 4.461 5.890 3.058 4.585 15.241 14.785

MLPR 6.624 5.153 6.318 8.209 12.143 7.474

2 KNR 4.752 5.369 3.667 5.532 9.232 0.238

SVR 4.427 4.980 3.412 5.419 9.753 10.983

RFR 3.787 5.094 2.785 4.551 8.122 4.199

MLPR 5.687 4.964 4.782 7.007 12.066 6.229

3 KNR 3.782 4.975 3.087 4.435 7.751 0.017

SVR 5.445 4.708 4.651 7.668 10.951 0.308

RFR 3.832 4.897 3.149 4.178 8.272 0.947

MLPR 11.007 6.392 10.284 14.018 22.954 0.764

4 KNR 4.048 4.970 3.544 4.810 7.922 0.014

SVR 5.772 4.921 5.113 7.871 11.414 0.222

RFR 4.011 5.625 2.655 4.607 11.736 0.473

MLPR 5.679 5.110 4.731 7.230 11.466 0.543
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Fig. 6 Positioning errors of several regression methods based on the 
four training sheets containing different MACs and samples in the SYL 
building

Table 13 Statistics of regression methods based on the training sheet in the CETC331 building

Case Methods MAE (m) RMSE (m) 50th percentiles 
error (m)

75th percentiles 
error (m)

95th percentiles 
error (m)

Elapsed time (s)

1 KNR 2.876 2.757 2.316 3.803 6.307 0.036

SVR 3.522 3.009 3.084 4.304 8.834 0.829

RFR 3.740 4.171 2.561 4.099 11.667 1.890

MLPR 5.152 3.626 4.379 6.166 11.837 1.274

2 KNR 2.876 2.757 2.316 3.804 6.306 0.016

SVR 3.567 2.991 3.143 4.421 8.643 0.274

RFR 3.579 3.631 2.683 4.265 9.241 1.922

MLPR 5.124 3.360 4.516 6.327 11.212 3.374
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interfaces, which can easily implement training models 
and predictions. In addition to the listed KNN, SVM, RF, 
and NN methods, several other methods have also been 
tried for location estimation, but their positioning accu-
racies are poor, and the corresponding training time is 
very long. Therefore, only four kinds of machine learning 
methods are listed.

Positioning accuracy and parameters
Positioning accuracy of each method depending to build-
ings or data sheets is separately provided. Due to the 
adoption of the default parameters for each method, the 
results obtained by many methods are not very accurate.

For example, the MLPR method achieves the MAE of 
11.007 m based on the Training_SYL_AP_30 sheet in the 
SYL building. But the MLPR method achieves a smaller 
MAE based on the Training_SYL_AP_Avg sheet, which 
is the simple version of the Training_SYL_AP_30 sheet. 
And KNR, SVR, and RFR methods achieve better perfor-
mance based on the Training_SYL_AP_30 sheet than the 
Training_SYL_AP_Avg sheet. The main reason for the 
MLPR method with large positioning errors is that the 
globally optimal model is not established within the finite 
iterations. The default value of iterations in the MLPR 
method is 2000. By constantly adjusting parameters and 
using optimization algorithms, these methods can obtain 
high-precision positioning results, but further research 
on positioning accuracy is not conducted because it is 
not the objective of this paper.

Positioning accuracy and MACs per unit area
Table  11 shows that positioning errors become very 
large when the training sheet changes from the 

Training_HCXY_All_30 to the Training_HCXY_AP_30. 
The number of MACs is changed from 347 to 56. For 
example, the MAEs of KNC, KNR, SVC, SVR, and MLPR 
methods are increased by 60.3%, 59.3%, 61.8%, 48.1%, 
and 45.2%, respectively. The RMSEs of KNC, KNR, SVC, 
SVR and MLPR methods are increased by 71%, 71.8%, 
74.4%, 53.3% and 69.5%, respectively. Outwardly, the rea-
son for large errors is the great decrease in the number of 
MACs. However, when the training sheet changes from 
the Training_SYL_All_30 to the Training_SYL_AP_30 in 
the SYL positioning experiment, the number of MACs is 
changed from 363 to 46, MAEs are increased by 2% and 
13% for KNR and SVR methods, MAEs are decreased by 
17.8% and 16.5% for RFR and MLPR methods, the trend 
of corresponding RMSEs is consistent. The coverage of 
the 4th floor in the HCXY building is much broader than 
in the SYL building. Therefore, the decrease in position-
ing accuracy is not due to the small amount of MACs but 
the small number of MACs per unit area.

Positioning accuracy and  the  conversion between  coor-
dinate and  label Some classification methods don’t 
support multiple outputs, which requires us to con-
vert coordinates into labels. In Table  11, the number of 
positioning errors of classification methods larger than 
those of regression methods is five. In the SYL position-
ing experiments, the number is fourteen. In other words, 
there is a high probability that the positioning error of the 
classification method is greater than that of the regression 
method. MAEs of classification methods are usually hun-
dreds based on the training sheets with the letter “Avg” 
in the HCXY building. It is also why not provide the sta-
tistics of positioning errors based on the training sheets 
with the average RSS vector at each RP in the HCXY 
building. However, high-precision positioning results are 
obtained by classification methods based on the training 
sheets with 30 samples at each RP in the HCXY building 
in Table 11. The problem has puzzled us for a long time. In 
future research, the provided classifier with multiple out-
puts by the Scikit-learn will be adopted for classification 
methods to estimate location, and the conversion between 
coordinate and label will be gradually abandoned.

Conclusions
A supplementary open dataset for WiFi indoor locali-
zation was created. The SODIndoorLoc is a dataset 
with dense RPs. And the locations and channel infor-
mation of pre-installed APs are provided. Therefore, 
it can be treated as a supplement to the UJIIndoorLoc 
dataset. It covers three buildings and multiple floors 
where there are corridors, office rooms, and meeting 
rooms. The total covered area is about 8000  m2. More 
than 1800 points at different locations were arranged, 
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sheet after floor discrimination in the CETC331 building



Page 14 of 15Bi et al. Satellite Navigation            (2022) 3:25 

and the number of RPs is about six times as many as 
TPs. 23,935 samples were recorded at these points with 
21,205 samples for training/learning and 2720 for test-
ing/validation. 105 single-band and dual-band APs 
were pre-installed in the three buildings. Given the dif-
ferences in the number of samples and MACs in the 
training data, there are nine training sheets and five 
corresponding testing sheets in the dataset. The dis-
tance between two adjacent sampling points is about 
1.2  m in two buildings, while about 0.5  m in a three-
story building. Four kinds of machine learning methods 
(eight variants in total) are introduced to estimate the 
locations of TPs with default parameters. The best aver-
age positioning accuracy is about 2.3 m.

Because of dense RPs, the locations of pre-installed 
APs, and CAD drawings of each floor, the SODIndoor-
Loc dataset can be used for clustering, classification, 
and regression to compare the performance of different 
indoor positioning applications based on WiFi finger-
print, e.g., high-precision positioning, building, floor 
recognition, fine-grained scene identification, range 
model simulation, and rapid construction of fingerprint 
datasets.
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