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Abstract 

Unmanned clusters can realize collaborative work, flexible configuration, and efficient operation, which has become 
an important development trend of unmanned platforms. Cluster positioning is important for ensuring the nor-
mal operation of unmanned clusters. The existing solutions have some problems such as requiring external system 
assistance, high system complexity, poor architecture scalability, and accumulation of positioning errors over time. 
Without the aid of the information outside the cluster, we plan to construct the relative position relationship with 
north alignment to adopt formation control and achieve robust cluster relative positioning. Based on the idea of bion-
ics, this paper proposes a cluster robust hierarchical positioning architecture by analyzing the autonomous behavior 
of pigeon flocks. We divide the clusters into follower clusters, core clusters, and leader nodes, which can realize flexible 
networking and cluster expansion. Aiming at the core cluster that is the most critical to relative positioning in the 
architecture, we propose a cluster relative positioning algorithm based on spatiotemporal correlation information. 
With the design idea of low cost and large-scale application, the algorithm uses intra-cluster ranging and the inertial 
navigation motion vector to construct the positioning equation and solves it through the Multidimensional Scaling 
(MDS) and Multiple Objective Particle Swarm Optimization (MOPSO) algorithms. The cluster formation is abstracted 
as a mixed direction-distance graph and the graph rigidity theory is used to analyze localizability conditions of the 
algorithm. We designed the cluster positioning simulation software and conducted localizability tests and positioning 
accuracy tests in different scenarios. Compared with the relative positioning algorithm based on Extended Kalman 
Filter (EKF), the algorithm proposed in this paper has more relaxed positioning conditions and can adapt to a variety 
of scenarios. It also has higher relative positioning accuracy, and the error does not accumulate over time.

Keywords:  Cluster positioning architecture, Cluster relative positioning, Multidimensional scaling, Multiple objective 
particle swarm optimization, Unmanned aerial vehicles positioning, Localizability analysis, Rigid graph

Introduction
At present, unmanned platforms with the characteristics 
of flexible configuration, multi-function, and miniaturi-
zation are widely used in detection, inspection, deliv-
ery, and other scenarios. However, due to the limitation 
of cost, volume, and other factors, one unmanned plat-
form is difficult to meet the requirements in complex 

environments and tasks. Unmanned cluster as an impor-
tant development trend, is more efficient through the 
collaboration among members (Gautam & Mohan, 2012; 
Tahir et al., 2019). The advantages of unmanned clusters 
are as follows:

(1)	 Parallel perception, distributed computing and 
execution capabilities, and better fault tolerance 
and robustness. Multiple Unmanned Aerial Vehi-
cles (UAV) can realize multi-dimensional parallel 
perception through the complementary collocation 
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among heterogeneous sensors and distributed exe-
cution of total tasks through task splitting and rea-
sonable allocation. In addition, when some UAVs 
fail, other UAVs in the cluster can replace them to 
complete the scheduled tasks, to improve the fault 
tolerance and robustness of the system.

(2)	 A higher capacity limit to complete the tasks that 
are difficult for a single machine to complete. 
Through collaboration, unmanned cluster systems 
achieve capabilities beyond the simple superposi-
tion of individual unmanned nodes, so it has better 
function expansion and can adapt to more types of 
tasks.

(3)	 First, through reasonable system design and coordi-
nation, a low-cost unmanned cluster system can be 
used to replace a single complex system with high 
cost, which is more economical. Secondly, based on 
the design concept of miniaturization, integration, 
modularization, and collaboration, it can greatly 
reduce the design cycle and the cost of building a 
new task platform.

Navigation and positioning are important for ensur-
ing the normal operation of unmanned clusters. They 
form the basis for the research and development of 
unmanned clusters together with cluster architecture 
design, task allocation, collaborative control, self-organ-
izing networks, and other technologies, and become a 
key research direction (Gyagenda et al., 2022; WU et al., 
2022). The existing cluster navigation and positioning 
methods mainly face the following problems:

1)	 Need the assistance of an external positioning sys-
tem, resulting in poor flexibility and easy interfer-
ence. For example, radio positioning based on Global 
Navigation Satellite System (GNSS) (Yoo & Ahn, 
2003) and road-based transmitters (Shamaei & Kas-
sas, 2019), and visual positioning based on landmarks 
(Conte & Doherty, 2008).

2)	 The constructed relative coordinate system has no 
physical meaning and cannot be used for cluster con-
trol and mission planning. For example, the position-
ing algorithm of principal components analysis, MDS 
(Strohmeier et  al., 2018), Fast Clustering MDS (Fan 
et al., 2020), vMDS (Kumar et al., 2016), etc.

3)	 The multi-source fusion algorithm can achieve high 
positioning accuracy but requires many types of sen-
sors, which leads to a complex system and high cost, 
and it is difficult to apply to large-scale clusters. For 
example, positioning systems based on binocular 
vision cameras/Inertial Measurement Unit (IMU)/ 

Ultra-Wide Band (UWB)/Lidar often need to be 
equipped with high-performance computing boards 
(Chen & Gao, 2019).

4)	 Accumulated errors during long-term operation can 
cause the divergence of positioning results. Most 
exist in the positioning algorithm based on the iner-
tial navigation system and without external informa-
tion assistance, such as the EKF positioning algo-
rithm based on IMU and relative distance or angle 
(Masinjila, 2016).

5)	 As the number of cluster nodes increases, the 
resource occupancy and computational complexity of 
the positioning algorithm will increase exponentially. 
This results in the poor scalability of the localization 
algorithm and cannot adapt to large-scale clusters, 
such as partially centralized algorithms (Panzieri 
et al., 2006).

Compared with traditional wireless sensor networks, 
unmanned cluster networks are more complex (Doriya 
et al., 2015), mainly reflected in the following points:

(1)	 Cluster nodes are often in a relative motion state, 
resulting in dynamic changes in the cluster geome-
try, and the relative position configuration between 
nodes will affect the overall positioning accuracy of 
the cluster.

(2)	 There is a conflict between the growing number of 
clusters and limited radio performance. With the 
increase of the number of cluster nodes, the dis-
tance between nodes becomes larger, but the com-
munication distance is limited, which makes it dif-
ficult for unmanned cluster networks to achieve 
global direct connectivity. The network structure 
is characterized by regionalization and multi-hop 
connectivity.

(3)	 With the movement between nodes, the topology 
relationship of the cluster network and the commu-
nication connection will change, and it is difficult to 
ensure that all nodes can establish stable connec-
tions.

(4)	 Relative positioning is more critical than absolute 
positioning for cluster control and maintenance. 
At the same time, the north and east directions of 
the relative coordinate system should be consistent 
with the geodetic coordinate system, such as the 
North East Down (NED) coordinate system

(5)	 Considering the robustness of cluster position-
ing and flexible deployment, the relative cluster 
positioning algorithm should use the observations 
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inside the cluster and avoid using external signal 
sources.

(6)	 Considering the economy, to adapt to large-scale 
cluster applications it is necessary to reduce the 
number and types of sensors on a single node as 
much as possible, as well as the computing power 
required for positioning solutions.

Based on the above analysis, we plan to construct 
the relative position relationship with north alignment 
to adopt formation control and achieve robust cluster 
relative positioning without the aid of the information 
outside the cluster. This paper proposes a hierarchical 
unmanned cluster positioning architecture based on the 
bionic concept of pigeon flock and adopts the design of 
virtual general leader + core cluster + follower cluster 
to realize a flexible and scalable unmanned cluster. At 
the same time, considering the robustness of position-
ing and limited hardware resources, this paper proposes 
a relative positioning algorithm for unmanned clusters 
that only relies on internal ranging and inertial naviga-
tion data. The algorithm uses the spatial–temporal cor-
relation information to solve the localization and reduces 
the dimension of the solution space through the MDS 
method. At the same time, the MOPSO algorithm is 
used to calculate the dimensionality reduction objective 
function to obtain the localization result. The algorithm 
constructs the relative coordinate relationship in the 
NED coordinate system, which is convenient for cluster 
control. At the same time, this paper uses hybrid graph 
theory to analyze the localizability of the proposed algo-
rithm and obtains the node state in the scene that meets 
the localization conditions, which can provide theo-
retical support for formation control. Finally, the paper 
selects some typical scenarios for simulation test analy-
sis. The simulation results show that the cluster relative 
positioning algorithm proposed in this paper has good 
positioning accuracy and error divergence suppression 
characteristics, and verifies the localizability analysis 
conclusion.

Cluster positioning architecture and model
Many creatures in nature show cluster phenomenon, 
such as fish, birds, wolves, insects, and so on. Individu-
als in a cluster exhibit certain group behaviors through 
mutual communication and cooperation, such as coop-
erative hunting by wolves, formation flying of birds, and 
nectar collection by bees. These biological swarm behav-
iors formed through long-term evolution provide inspira-
tion and reference for us to design the unmanned cluster 
positioning architecture.

Individuals in biological groups often follow simple 
behavioral rules and have only limited ability to sense, 

plan, and communicate. Individuals adjust their behav-
iors by interacting with neighboring peers and obtaining 
the information about the surrounding environment, and 
finally achieve a unified cluster behavior. The cluster sys-
tem has strong robustness and will not cause fatal effects 
to the whole system due to the failure of some individuals 
(Garnier et al., 2007).

A pigeon flock is a collection of a large number of 
autonomous individuals. Through the interaction 
between individuals, the entire pigeon flock presents a 
complex macroscopic emergent behavior. The position-
ing and navigation of the pigeon group show three char-
acteristics (Luo & Duan, 2017):

(1)	 Limited by the vision and communication distance 
of the pigeons, the individuals in the pigeon group 
follow a topological distance interaction method, 
that is, each pigeon only interacts with a certain 
number of individuals around it, which makes the 
information interaction of the whole pigeon group 
simple and efficient.

(2)	 The pigeon group presents as a hierarchical net-
work in the flight, high-level individuals play a 
leading role, and the behavior of low-level indi-
viduals is affected by high-level individuals. At the 
same time, the rule of the pigeon group formation 
is not a common single-leader system. The lower-
class pigeons only need to communicate in real-
time with the nearest higher-class pigeons and fol-
low. This network structure enables the group to 
respond quickly when dealing with external stimuli 
or avoiding obstacles.

(3)	 In high-level pigeons, a general leader will control 
the overall flight track of the cluster, that is, the 
absolute positioning and navigation of the cluster 
are often completed by the general leader pigeon. 
At the same time, pigeons have different navigation 
methods in different stages of flight. In the early 
stage, the geomagnetic field is used to determine 
the general direction, and the direction is corrected 
by landmarks in the later stage. The altitude of the 
sun will also affect its navigation.

Cluster hierarchical positioning architecture based 
on pigeon flock autonomous behavior
Inspired by the hierarchical behavior and naviga-
tion methods of pigeon flocks, we propose a bionic 
unmanned cluster localization architecture based on the 
autonomous behavior of pigeon flocks. The cluster uses a 
hierarchical architecture, and the nodes are divided into 
follower clusters, core clusters, and the general leader. 
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The meanings and interrelationships of each level are 
shown in the Fig. 1.

The spatial relationship between the core cluster and 
the follower cluster is not a fixed front-to-back forma-
tion, and the follower cluster can be distributed around 
the core cluster. The arrangement here is only to facilitate 
the description of the overall cluster hierarchical struc-
ture. The members of different clusters are marked with 
different colors. The connections between nodes repre-
sent interactions.

A core cluster is like a high-level pigeon in a flock, 
except that its responsibilities are carried out by a cluster 
of nodes rather than a single node. The reason is related 
to its cluster positioning algorithm, and the specific algo-
rithm will be explained in the following sections. The 
unmanned nodes of the core cluster establish and main-
tain a stable relative position relationship through mutual 
measurement and information exchange within the 
cluster. In the core cluster, all nodes can establish a sta-
ble pairwise communication relationship and exchange 
information. There can be multiple core clusters in a 
cluster, and connections can also be established between 
core clusters.

The nodes in the follower cluster are like the low-level 
pigeons. The nodes in each follower cluster need to be 
registered in a core cluster (often choose the closest one), 
and all the follower nodes of a core cluster form a fol-
lower cluster. In a follower cluster, a node does not need 
to interact with other follower nodes to locate itself but 
uses the core cluster to determine its position, and its 

track control and task assignment are also undertaken by 
the core cluster. The nodes in the core cluster and the fol-
lower cluster can be transformed into each other.

The general leader node is equivalent to the general 
leader pigeon in the pigeon group and at the highest level 
in the entire cluster. Because the core clusters are at the 
same level, we need a higher-level role to coordinate all 
core clusters, and this role also assumes the responsibil-
ity of absolute positioning of the entire cluster. However, 
considering the anti-interference and survivability of the 
cluster, it is defined as a virtual character in the architec-
ture of this paper. The reason why an entity node is not 
directly designated as the general leader node is that the 
attack or interference of the entity general leader node 
will cause confusion and failure in the entire cluster. This 
paper does not discuss the implementation of the leader 
node in detail.

The pigeon flock positioning architecture proposed in 
this paper adopts a heterogeneous layered networking, 
which not only has the robustness brought by decentrali-
zation, but also is easier to obtain global information than 
the distributed architecture. At the same time, compared 
with the traditional pigeon flock architecture, the archi-
tecture proposed in this paper has following advantages.

The traditional pigeon group architecture designates 
one node as the general leader node. The general leader 
node is in an absolute leadership position, can contrib-
ute the most weight to the decision-making of the clus-
ter, and has the most followers. Once the general leader 

General leader
(virtual node)

Core
cluster-1 Core

cluster-2 

Follower
cluster-1 

Follower
cluster-2 

Fig. 1  Cluster hierarchical positioning architecture based on pigeon flock autonomous behavior
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node fails or is attacked, the entire cluster will be greatly 
affected. In this paper, the functions of the general leader 
node, such as absolute positioning and navigation and 
formation configuration control, are shared by other core 
clusters to virtualize the general leader. The advanced 
node network composed of core clusters functions as 
the general leader, which can significantly improve the 
anti-damage ability of the entire cluster organization and 
avoid the overall collapse caused by the failure of the tra-
ditional physical general leader node.

The functions of high-level nodes in the traditional 
pigeon cluster architecture are also realized by a small 
cluster of UAVs, rather than a single physical node. This 
cluster is the core cluster mentioned in the article, which 
brings two benefits: (1) Multiple nodes bring redun-
dancy. Even if some nodes fail, the remaining nodes can 
still ensure the functional integrity of the core cluster. (2) 
In traditional methods, a single high-level node needs 
to carry high-precision inertial sensors to ensure high 
dead reckoning accuracy, to assist and improve the posi-
tioning accuracy of its following nodes. The core cluster 
composed of multiple nodes can build a stable relative 
position relationship through cooperative positioning 
without expensive and cumbersome high-precision 
inertial navigation devices. In this regard, we propose a 
cluster relative positioning algorithm based on spatial–
temporal correlation information, which is suitable for 
core clusters. See Sect.  Core cluster localization algo-
rithm for details.

The architecture design considers the positioning accu-
racy, communication load and system complexity. The 
core cluster composed of a small number of nodes adopts 
full connectivity networking mode to obtain the global 
information within the cluster, and it is easier to obtain 
the global optimal solution when positioning. We limit 
the number of the core cluster members to avoid the net-
work communication pressure caused by the full connec-
tivity networking mode. After the core cluster constructs 
a local relative positioning architecture, it can be used as 
anchor nodes to broadcast its own position information 
and ranging signals to the surrounding nodes, and the 
surrounding nodes calculate their own positions accord-
ingly and become the following nodes of the core clus-
ter. If one-way broadcast is used for positioning between 
core and follower cluster, theoretically, there is no upper 
limit for the number of follower nodes and no channel 
congestion caused by more nodes, and the system capac-
ity can adapt to the large-scale cluster nodes.

Parallel multiple core clusters are used to expand the 
coverage of clusters and improve flexibility. One single 
core cluster can only cover a limited range, and multiple 

clusters can cover more and control the member number 
of a single core cluster, relieving the communication pres-
sure brought by the full connecting networking mode. At 
the same time, more flexible formation configuration can 
be used among multiple clusters to adapt different task 
requirements, while single clusters are limited by the cov-
erage of communication equipment and tend to form a 
huge circle when the number of cluster nodes increases. 
Multiple core clusters are relatively independent and dis-
tributed computing, which reduces the complexity of the 
overall positioning solution of core clusters. Clusters are 
calculated independently, which reduces the complex-
ity of the overall clusters’ location. Multiple core clusters 
can also serve more follower nodes, facilitating cluster 
expansion. By merging coordinate systems, core clusters 
can form a unified relative coordinate system, which is 
explained in Sect. Core cluster localization algorithm (5).

Unmanned cluster observation model
Unmanned vehicles, ships, and other unmanned clusters 
are often at the same height, so system modeling is often 
analyzed in two-dimensional space, while unmanned 
aerial vehicles, underwater detectors, etc. have a higher 
degree of freedom in movement space and need to be 
modeled and analyzed in three-dimensional space. Since 
the height information of nodes can often be obtained 
through laser altimetry, air pressure/water pressure 
gauge, etc., the clusters in three-dimensional space can 
be transformed into those in two-dimensional space 
by eliminating the height information (Martinelli et  al., 
2005). To simplify the analysis model, this paper analyzes 
the cluster localization algorithm in a two-dimensional 
space.

Assuming that each node constructs a NED coordinate 
system with itself as the origin, and its north alignment 
can be achieved by using the strap-down compass. Each 
node is equipped with inertial sensors capable of meas-
uring angular velocity and acceleration and an onboard 
communication module, which can measure the dis-
tance to other nodes in addition to two-way information 
exchange with surrounding nodes.
dij(t) represents the distance between nodes i and j at 

time t.

Pi(t) = (xi(t), yi(t) ) represents the coordinates of node i 
at time t.

The NED coordinate system is established with the 
position at time t − 1 as the origin, and insN (t) repre-
sents the relative motion vector of node N  in this coordi-
nate system from time t − 1 to time t , that is, the relative 

(1)
dij(t) = dji(t) =

∣

∣Pi(t)− Pj(t)
∣

∣ =
∣

∣(xi(t)− xj(t), yi(t)− yj(t))
∣

∣
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displacement vector obtained by the inertial navigation 
system track reckoning at the adjacent positioning time.

where vN represents the vector of node N .
The observation model of the unmanned cluster is 

shown in the Fig. 2.
The notations used in this section and their meanings 

are summarized in Table 1.
This paper does not specifically define the network pro-

tocol implementation mode of the cluster system, but 
only makes a general assumption, that is, the nodes com-
plete time synchronization with the cluster while access-
ing the network. The ranging tasks at the same time are 
uniformly allocated to adjacent time slots to ensure that 

(2)insN (t) =
∫ t

t−1
vNdt

the required ranging information can be completed as 
quickly as possible, reducing the impact of incomplete 
synchronization of ranging.

Cluster relative positioning algorithm
From the positioning architecture proposed in 
Sect.  Cluster positioning architecture and model, clus-
ter positioning can be divided into relative positioning 
and absolute positioning. Absolute positioning is based 
on relative positioning and is mainly completed by the 
general leader node. The relative positioning of the core 
cluster is completed autonomously, and after the comple-
tion, it acts as an anchor node in the positioning of the 
follower cluster. Therefore, the key to cluster positioning 
is the relative positioning algorithm of the core cluster. In 
this regard, this paper proposes a positioning algorithm 
that uses spatial–temporal correlation information and 
solves it by the MDS + MOPSO algorithm.

Core cluster localization algorithm
Taking the core cluster composed of 3 nodes as an exam-
ple, the algorithm process, constraint relationship, objec-
tive function, and the number of unknowns of the entire 
relative positioning are summarized as follows. As shown 

dAC (t)

dAC (t−
1)

d BC
 (t

−1
)

d
AB (t)

d BC (t
)

PC (t)

PA (t)

PB (t)

ins
C (t)

ins
A (t)

ins
B (t)

dAB (t−1)

PA (t−1) PB (t−1)

PC (t−1)

Fig. 2  Observational model of a three-member unmanned cluster

Table 1  Notations used in this chapter

Notations Meaning

di j(t) Euclidean distance between nodes i  
and j

Pi(t) Coordinate (xi(t), yi(t) ) of node i  at time t

insi(t) Relative motion vector of node i  from 
time t − 1 to t  in NED coordinate system
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in the Fig. 3, based on the cluster observation model, we 
first build the core cluster positioning equations, which 
are composed of six objective functions. To reduce the 
difficulty of solution, we use MDS algorithm to lower the 
dimensions. The unknown parameters are changed from 
6 ( numberofnodes× 2 ) to 1 (rotation angle), reducing the 
search space dimension. At the same time, the objective 
functions of the equations are changed from 6 to 3. We 
use the reduced dimension objective function as the fit-
ness function of MOPSO algorithm to solve the rotation 
angle, and then the rotation matrix can be constructed. 
Finally, the relative positioning results are obtained by 
coordinate transformation using the rotation matrix. 
Next, we will introduce the location algorithm in detail.

Constructing the cluster positioning equation
Based on the cluster observation model, we can give a set 
of equations for calculating the position of the core clus-
ter consisting of three nodes. By combining the distance 
observation information of the current and previous 
moment, the equations are obtained as follows:

PN (t − 1) can be calculated from PN (t) and insN (t) . So, 
the equation can be transformed into:

(3)

dAB(t) = |PA(t)− PB(t)|
dAC(t) = |PA(t)− PC(t)|
dBC(t) = |PB(t)− PC(t)|
dAB(t − 1) = |PA(t − 1)− PB(t − 1)|
dAC(t − 1) = |PA(t − 1)− PC(t − 1)|
dBC(t − 1) = |PB(t − 1)− PC(t − 1)|

In the equation constructed by motion vector and 
ranging information, the unknown variables are 
PA(t),PB(t),PC(t) . Because the analysis is performed in 
a two-dimensional space, there are 6 unknowns, and it is 
not easy to converge to the global optimal solution when 
solving in a high-dimensional solution space. Therefore, 
we introduce a multi-dimensional calibration method for 
dimensionality reduction, which makes it easier for the 
positioning results to be converged to the optimal solution.

Dimensionality reduction by MDS
The essence of MDS is to map the similarity measures of 
several analysis objects from a high-dimensional space of 
unknown dimension to a lower-dimensional space, and 
fit the similarity between them in the lower-dimensional 
space(Niu et al., 2010; Yi & Ruml, 2004). Corresponding to 
unmanned cluster positioning, that is, mapping the Euclid-
ean distance between nodes from the distance measure-
ment dimensional space to the two-dimensional coordinate 
space, and obtaining the relative coordinates of each node 
(Chen et al., 2013).

Firstly, the distance matrix D between nodes is con-
structed with the ranging information between nodes at 
time t . where dAB(t) is abbreviated as dAB.

(4)

dAB(t) = |PA(t)− PB(t)|
dAC(t) = |PA(t)− PC(t)|
dBC(t) = |PB(t)− PC(t)|
dAB(t − 1) = |(PA(t)− insA)− (PB(t)− insB(t))|
∣

∣dAC(t − 1) =
∣

∣|(PA(t)− insA(t))− (PC(t)− insC(t))|
∣

∣dBC(t − 1) =
∣

∣|(PB(t)− insB(t))− (PC(t)− insC(t))|
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Fig. 3  Flow chart of core cluster relative positioning algorithm
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Let the coordinates of node N be PN (t) = (xN (t), yN (t)) , 
abbreviated as PN = (xN , yN ) , then �
d2AB = x2A + y2A + x2B + y2B − 2xAxB − 2yAyB . I2N = x2N + y2N , and 
the matrix R can be constructed as.

The coordinate matrix X  of the nodes is constructed 
as.

And D2 = R + RT − 2XTX.
Dual centralized of D2 , and receive a positive definite 

symmetric matrix B (Borg & Groenen, 2005), which is.

where n = 3.

Because of RJ = 0, JRT = 0 , so

Eigenvalue decomposition of matrix B , because in two-
dimensional space, retain the two largest eigenvalues 
�1, �2 and corresponding eigenvectors q1, q2 to calculate 
the 2D coordinates of the node. The relative coordinates 
of each node after centralization are JXT = V

√
U  , 

where U = diag(�1, �2) and V = [q1, q2].
The coordinates obtained after MDS only represent the 

distance relationship between nodes, and its coordinate 
system will change per location calculation, which has no 
actual physical meaning, and is different from the NED 

(5)D =





0 dAB dAC
dBA 0 dBC
dCA dCB 0




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


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√
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(

V
√
U
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coordinate system by a rotation angle. Therefore, the 
original problem of solving 6 unknowns is transformed 
into solving a rotation angle, and the solution space 
dimension is significantly reduced.

The coordinates obtained by MDS are represented as 
PN

′(t) = (xN
′(t), yN ′(t)) , abbreviated as PN ′ = (xN

′, yN ′) , 
and the relationship between the target PN (t) can be 
expressed as follows.

where α is the rotation angle to be solved, and the objec-
tive function is rewritten as.

There is only one unknown variable (the rotation angle 
α) in the objective function.

Solution using MOPSO
In order to solve this multi-objective function com-
posed of nonlinear equations, we introduce the MOPSO 
algorithm.

Particle swarm optimization is an evolutionary algo-
rithm, which was originally inspired by the regularity 
of birds flocking activities, and then used swarm intel-
ligence to establish a simplified model (Shi & Eberhart, 
1998). It makes the movement of the whole group in the 
problem-solving space evolve from disorder to order. The 
advantage of Particle Swarm Optimization (PSO) is that 
it is not easy to fall into the local optimal solution, has 
strong versatility, and can solve complex optimization 
problems (Marini & Walczak, 2015).

The algorithm randomly distributes a certain number 
of particles in the feasible region of the problem space, 
and each particle flies at a certain speed. During the 
flight, the particle adjusts its own state by combining its 
current best position and the best position of the popula-
tion, and then flies to a better area to finally achieve the 
purpose of searching for the optimal solution (Wei & Li, 
2004).

In the single-objective PSO algorithm, since there is 
only one objective function, the position of the global 
best particle ( gbest ) and the best position of individual 
particle ( pbest ) can be uniquely determined simply by 
comparing their fitness values. In the MOPSO (Reyes-
Sierra & Coello, 2006), when selecting pbest , if each 
objective function value of the particle position is opti-
mal, it should be the optimal particle position. If it 
cannot strictly compare which is better, one of them is 
randomly selected as the optimal position. Regarding 

(13)
[

xN
yN

]

=
[

cosα sinα
−sinα cosα

][

xN
′

yN
′

]

(14)

f1 = dAB(t − 1) = |(RαPA′(t)− insA(t))− (RαPB′(t)− insB(t))|
f2 = dAC(t − 1) = |(RαPA′(t)− insA(t))− (RαPC ′(t)− insC(t))|
f3 = dBC(t − 1) = |(RαPB′(t)− insB(t))− (RαPC ′(t)− insC(t))|
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the selection of gbest , there are many non-inferior solu-
tions that can be used as the global optimal one. There-
fore, saving these non-inferior solutions and selecting a 
better one are the core of particle swarm optimization 
for multi-objective optimization problems. The choice 
of gbest is the core problem of multi-objective particle 
swarm optimization. Coello and Lechuga (2002) pro-
posed a method, where the objective space is divided 
into hypercubes,  and each hypercube is assigned a fit-
ness value depending on its particles number. The more 
particles, the less fitness value is. Then roulette-wheel 
selection is applied on the hypercubes to select one. At 
the end, gbest is randomly selected from this hypercube.

Meanwhile, MOPSO adopts an external repository 
(name is Archive) to maintain the diversity of the popu-
lation, Archive stores the non-dominated solution set 
for each iteration (Mostaghim & Teich, 2003). The algo-
rithm flow is as follows.

1)	 Initialize the particle swarm. Set the population size 
N  , factor parameters, etc. Randomly generate the 
position Xi and velocity Vi of each particle;

2)	 Divide the target space and calculate the crowding 
degree according to the number of particles in the 
grid;

3)	 Calculate the objective function value of the particle. 
Update the individual optimal position pbest of the 
particle;

4)	 Calculate the non-dominated solution of the popu-
lation and update the Archive set. If the number of 
non-dominated solutions exceeds the size of the 
external repository, random deletion is performed 
according to the degree of congestion;

5)	 Update the global optimal particle gbest;
6)	 Update the velocity and position of each particle. The 

particle velocity and position update equations are as 
follows (Fallah-Mehdipour et al., 2010):

Among them, ω is the inertia weight; c1, c2 are the 
individual experience coefficient and social experience 
coefficient, respectively; r1, r2 are random numbers in 
the range [0, 1]; p(t) and g(t) are the individual optimal 
solution and the global optimal solution, respectively.

7) Terminate the program if the termination condi-
tion is satisfied, otherwise go to step 3.

Use the objective functions after MDS dimensional-
ity reduction, that is, the equation set finally obtained 
in Sect. Core cluster localization algorithm 1(2), as the 

(15)
υ(t + 1) = ωυ(t)+ c1r1(p(t)− x(t))+ c2r2(g(t)− x(t))

(16)x(t + 1) = x(t)+ υ(t + 1)

fitness function of MOPSO, where only the rotation 
angle α is the unknown to be solved.

Relative coordinates calculation
Finally, target PN (t) can be obtained by constructing 
rotation matrix R and MDS coordinate PN ′(t) use Eq. 
(13).

So far, we have constructed the relative position rela-
tionship within the core cluster. The relative coordinate 
system is the NED coordinate system, which takes the 
centroid of the core cluster node as the origin.

Summary and discussion
Since MDS algorithm requires the complete rang-
ing information between two nodes to build a distance 
matrix, it is difficult to ensure this condition when there 
are many nodes involved. In two-dimensional space, the 
minimum number of nodes in the system is 3, and the 
number of ranging between nodes to be maintained is c2n , 
where n is the number of nodes.

When the fault of individual node in the cluster results 
in the loss or unreliability of ranging information, the 
common ideas are: 1) Discard the observations related 
to this node. 2) Use algorithm to estimate and recover 
the lost or damaged measurement information, for 
example, matrix completion algorithm based on norm 
regularization(Xiao et al., 2015), Multidimensional Scal-
ing Map (MDSMAP) (Shang et al., 2003), etc. 3) Improve 
the weight of reliable nodes in positioning, such as node 
reordering and edge reordering algorithms(Hamaoui, 
2019). Although ideas 2 and 3 can bring some compensa-
tion, they will also introduce errors to some extent. Since 
the positioning result of the core cluster will affect the 
following cluster, any error in the core cluster should be 
avoided as far as possible.

Considering the complexity and reliability of engineer-
ing implementation, we suggest that the number of nodes 
in the core cluster should be limited to about 3–5. More 
than three will bring some redundancy to the core clus-
ter positioning. When a node does not meet the condi-
tions, it will be discarded with the relevant observations, 
and the remaining nodes can still ensure the minimum 
demand.

Another issue worth discussing is the coordinate sys-
tem merging between multiple core clusters, coordi-
nate conversion can be performed through the common 
nodes. Compared with the traditional methods (Moore 
et al., 2004) which need 2 to 3 common points, because 
the coordinate system constructed by each core cluster in 
this paper is NED coordinate system, there is no need to 
consider the rotation and mirror of the coordinate system 
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in coordinate merging, so only one common point is 
needed to calculate the required translation.

Follower cluster localization algorithm
Considering that the number of nodes in the follower 
cluster is significantly larger than that of the core cluster, 
one should use a localization algorithm that is insensitive 
to the number of nodes.

For example, with the help of the robust relative coor-
dinate relationship of the core cluster, the core cluster 
nodes can be used as anchor nodes to broadcast ranging 
signals and self-position information. After receiving the 
location information and relative distances of multiple 
core cluster nodes, the follower cluster node uses the tri-
lateration method to calculate its own location. This algo-
rithm is simple and of good scalability, and not affected 
by the number of nodes to be located.

In addition to the above algorithm, other methods can 
also be used to locate the nodes in the follower cluster. 
Have given the relative coordinates of the core clusters, 
the positioning of the follower clusters will be easy. The 
positioning of the follower clusters is not the focus of this 
paper, so only a brief discussion is given.

Localizability analysis
The localizability is also called observability. Satisfying 
the localizability condition is the premise to ensure the 
reliable localization of the cluster. When the cluster state 
is fully observable, the localization problem has a unique 
and reliable solution (Arrichiello et  al., 2011). Since the 
formation configuration, motion state, and observa-
tion constraints of the cluster will affect the positioning 
results, it is necessary to clarify the conditions for effec-
tive cluster positioning and design a reasonable swarm 
distribution configuration and motion control strategy 
to avoid the unlocatable state. Furthermore, the clus-
ter observation information can be optimized through 
localizability analysis, and redundant observations can be 
eliminated while ensuring the cluster positioning capabil-
ity (Frew et al., 2005).

By abstracting the cluster network into an undirected 
graph consisting of nodes, directions and distance con-
straints, the cluster localization algorithm proposed in 
this paper is analyzed by the rigidity theory of graphs. 
Since the observation error does not affect the cluster 
localizability, to simplify the analysis process the system-
atic measurement error is not considered in this analysis.

Abstracted as a mixed direction‑distance graph
Rigid Graph is a special network configuration. Intui-
tively, a rigid graph maintains the stable structure of the 
entire graph by constraining some edges in the graph 
(Whiteley, 1996). In cluster localization, rigidity theory 
studies the relationship between the uniqueness of net-
work node location and network structure from the per-
spective of graph theory (Eren et  al., 2004). At present, 
some scholars have used graph theory for locatable anal-
ysis (Cano & Ny, 2021), but most of them build abstract 
graphs for a single type of distance/direction observation 
(Liu et  al., 2021; Yang et  al., 2013) without considering 
the constraints between nodes at different times, which 
has limitations and is difficult to apply to the cluster posi-
tioning algorithm proposed in this paper.

First, the cluster observation model is abstracted into 
an undirected graph composed of distance constraints, 
direction constraints, and nodes. The specific methods 
are as follows.

Taking the core cluster consisting of three nodes 
as an example, due to the joint analysis of spatiotem-
poral information, the node set V  consists of 6 nodes 
at time t and t − 1 , V = {v1, v2, ..., v6} . The observa-
tion information between nodes is abstracted as the 
edge of the graph, and the set of edges is defined asE
,E = {(vi, vj)|vi, vj ∈ V , i �= j} . The cluster network 
can be represented by an undirected connected graph 
G = (V ,E).

There are two types of observations, the ranging infor-
mation dAB(t) and dAB(t − 1) between nodes at time t 
and t − 1 , and the motion vector insA(t) of the node from 
time t to time t − 1 . The set of distance constraints that 
define the graph is L, and the direction constraint is D . 
Then the ranging information can be abstracted into 
elements in L. The motion vector contains both the dis-
tance and direction information between the two nodes. 
Therefore, a motion vector observation is abstracted 
as a distance constraint plus a direction constraint. Set 
E = {L,D} , use |N | to denote the number of elements in 
the set, and |L| = 9, |D| = 3.

The frame Fp represents the mapping pair (G,P) from 
the abstract set G to R2 . It corresponds to an implemen-
tation of the graph. where P = (p1, p2, . . . , p6) is the map-
ping of node V  in R2 space, that is, the coordinates of the 
node in two-dimensional space, and the mapping satisfies 
the constraints in E.

From the perspective of graph theory, the problem 
of cluster localizability is whether the unique realiza-
tion of the graph of a given network structure can be 
obtained through the distance information and direction 
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information between nodes. A sufficient and necessary 
condition for a cluster to be uniquely localized is that 
(G,P) is globally rigid, and the problem of cluster localiz-
ability is transformed into a global rigidity determination 
problem based on distance and direction constraints.

The notations used in this section and their meanings 
are summarized in Table 2.

Rigidity matrix and rigidity analysis
For a direction-length framework (G,P) , we obtain a dot 
product for each equation of distance constraints and 
direction constraints (Clinch, 2018). By taking derivatives 
of these dot products at t = 0 , we obtain the Jacobian 
matrix R(G,P) , which is the rigidity matrix of (G,P) . 
The matrix R has 2|V | columns and |E| rows, one row for 
each constraint, and one pair of columns for each node, 
as shown in the Fig. 4. The row identified by Ln on the left 
corresponds to the distance constraint, and the row iden-
tified by Dn corresponds to the direction constraint. In 
the column where the corresponding nodes ( V1 and V2 ) 
are located, the pair of columns’ elements of the Ln row 

are(pi − pj),(pj − pi) , the pair of columns’ elements of the 
Dn row are (pi − pj)

⊥, (pj − pi)
⊥ , where

(

x, y
)⊥ = (y,−x).

The abstract rules for the linear dependencies between 
rows or columns in matrices are described in the theory 
of matroids proposed by Whitney(1992). Given a matrix 
M , if the linear combination of row vectors is not zero, 
then the subset of rows of M is linearly independent.

Looking for the row subset of R whose linear combina-
tion is zero, after excluding the case where the nodes are 
in the same position, we can get the following 3 combina-
tions: ( wherej, k ,m, n are unknowns)

After linear combination of the equations, we get:

After further derivation:

(1) L1 + jL7 + kL8 +mD1 + nD2 − L4

(17)

�xAB + j�xAA′ +m�yAA′ = 0

�yAB + j�yAA′ −m�xAA′ = 0

−�xA′B′ − j�xAA′ −m�yAA′ = 0

−�yA′B′ − j�yAA′ +m�xAA′ = 0

−�xAB + k�xBB′ + n�yBB′ = 0

−�yAB + k�yBB′ − n�xBB′ = 0

�xA′B′ + k�xBB′ − n�yBB′ = 0

�yA′B′ + k�yBB′ + n�xBB′ = 0

(18)

1+ 5 : j�xAA′ +m�yAA′ + k�xBB′ + n�yBB′ = 0

2+ 6 : j�yAA′ −m�xAA′ + k�yBB′ − n�xBB′ = 0

1+ 3 : �xAB −�xA′B′ = 0

2+ 4 : �yAB −�yA′B′ = 0

(19)

�xAA′ = �xBB′

�yAA′ = �yBB′

m+ n = 0

j + k = 0

Table 2  Notations used in this section

Notations Meaning

G Abstract diagram of cluster

V Set of all nodes

E Set of all edges,E = {L,D}
L Set of all distance constraints

D Set of all directional constraints

|N| Number of elements in set N

vi Node i

Ln Distance constraint n

Dn Directional constraint n

pi Mapping coordinates of node i  in R2  
space

R(G, P) Rigid matrix of frame (G, P)

Fig. 4  Rigidity matrix R(G, p)
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After linear combination of the equations, we get:

After further derivation:

After linear combination of the equations, we get:

After further derivation:

So, it is known that when insA(t) = insB(t) , the rank of 
matrix R is 11, that is, there are 11 linearly independent 
observations.

(2) L1 + jL7 + kL8 − L4

(20)

�xAB + j�AA′ = 0

�yAB + j�yAA′ = 0

−�xA′B′ − j�xAA′ = 0

−�yA′B′ − j�yAA′ = 0

−�xAB + k�xBB′ = 0

−�yAB + k�yBB′ = 0

�xA′B′ − k�xBB′ = 0

�yA′B′ − kyBB′ = 0

(21)

1+ 5 : j�xAA′ + k�BB′ = 0

2+ 6 : j�yAA′ + k�yBB′ = 0

1+ 3 : �xAB −�xA′B′ = 0

2+ 4 : �yAB −�yA′B′ = 0

(22)
�xAA′ = �xBB′

�yAA′ = �yBB′

j + k = 0

(3) L1 +mD1 + nD2 − L4

(23)

�xAB +m�yAA′ = 0

�yAB −m�xAA′ = 0

−�xA′B′ −m�yAA′ = 0

−�yA′B′ +m�xAA′ = 0

−�xAB + n�yBB′ = 0

−�yAB − n�xBB′ = 0

�xA′B′ − n�yBB′ = 0

�yA′B′ + n�xBB′ = 0

(24)

1+ 5 : m�yAA′ + n�yBB′ = 0

2+ 6 : −m�xAA′ − n�xBB′ = 0

1+ 3 : �xAB −�xA′B′ = 0

2+ 4 : �yAB −�yA′B′ = 0

(25)
�xAA′ = �xBB′

�yAA′ = �yBB′

m+ n = 0

In the same way, insA(t) = insC(t) can be deduced from 
(L2 + jL7 + kL9 +mD1 + nD3 − L5), (L2 + jL7 + kL9 − L5)  , 
(L2 +mD1 + nD3 − L5) , insB(t) = insC(t) can be 
deduced from (L3 + jL8 + kL9 +mD2 + nD3 − L6) , 
(L3 + jL8 + kL9 − L6) , (L3 +mD2 + nD3 − L6).

Since any non-empty frame can be translated in two-
dimensional space, the rank of the rigid matrix R of a 
rigid frame is 2|V | − 2 , i.e. guaranteeing a unique solu-
tion requires 2|V | − 2 independent constraints, or 
requires 2|V | − 2 equivalent spanning constraints (Jack-
son & Keevash, 2011). Knowing that |V | = 6 , to ensure 
the rigidity of the frame Fp , the rank of the rigid matrix R 
needs to be 10. From the above inference, when any pair 
of motion vectors in insA(t), insB(t), insC(t) are equal, the 
rank of R is 11, then (G,P) is redundant rigidity. When 
the three motion vectors are all equal, the rank of R is 
9, and the frame Fp is non-rigid, that is, the localization 
solution of the cluster cannot be uniquely determined.

Results
Rough the above analysis, to ensure the localizability of 
the cluster relative localization algorithm proposed in 
this paper, the situation of same motion vectors of mul-
tiple nodes at the same time should be avoided. When 
the rank of the rigid matrix R is less than 2|V | − 2 , the 
clusters are not localizable. As a special case, when all 
nodes remain stationary, the motion vector is zero, and 
the localizability condition cannot be satisfied either.

Experiment
To verify the localizability and positioning accuracy of 
the proposed cluster positioning algorithm, we designed 
a cluster positioning simulation software and conducted 
localizability tests and positioning accuracy tests in dif-
ferent scenarios. Through the simulation software, 
the motion trajectory of the cluster nodes is designed 
first, and the trajectory is imported into the analy-
sis unit to generate the status information of the nodes 
at each moment. Further modeling and simulation of 
the observations are performed to obtain gyroscope 
and accelerometer measurements, magnetic compass 
measurements, and wireless ranging values. The cluster 
positioning algorithm unit uses the observation data to 
calculate the relative positioning result. The UI interface 
of the software can easily display and debug the simula-
tion and help evaluate the results.

In the localizability simulation, we selected typical 
cluster motion scenarios for verification, such as par-
allel formation (constant velocity), parallel formation 
(non-constant velocity), cross-line formation, circular 
formation, and collinear formation (non-constant veloc-
ity). In the positioning accuracy simulation, we choose a 
three-node circular motion cluster scene to analyze the 
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accuracy of the core cluster relative positioning algo-
rithm proposed in this paper and compare it with the 
traditional pure inertial navigation-based and EKF-based 
relative positioning algorithms.

Simulation platform
The architecture of the software simulation platform 
includes a user interface, a simulation data processing 
unit, and a positioning solution unit. The user interface 
includes input function panels such as parameter setting, 
file input/output, motion trajectory design, debugging 
buttons, and output function panels such as position-
ing result display and trajectory display. The simulation 
data processing unit can analyze the trajectory data and 
generate the original observation data. The relative posi-
tioning algorithm unit performs positioning operations 
according to the obtained observation information and 
state information and can select different positioning 
algorithms. The simulation platform can verify cluster 
positioning capability under various task scenarios. The 
overall architecture is shown in Fig. 5.

The soft interface of the simulation platform is shown 
in the Fig. 6.

Localizability simulation
In this section, we test the localizability of the proposed 
algorithm in different scenarios, prove the algorithm 
adaptability to multiple scenarios, and confirm the 

conclusion of the localizability analysis in Sect. Localiz-
ability analysis.

Simulation scene
In the scenario design, we selected several typical 
formation scenarios for verification, including paral-
lel formation (constant velocity), parallel formation 
(non-constant velocity), cross-line formation, cir-
cular formation, collinear formation (non-constant 
velocity) and random sports formation. The various 
motion trajectories are shown in the Fig. 7. Different 
nodes in the figure are marked with different colors, 
and the start and end points of the trajectory are also 
marked.

Simulation parameters
Observation noise is not added to the simulation to avoid 
interference with the localizability analysis. The simula-
tion interval is 1 s, and the output frequency of the posi-
tioning result is 1  Hz. The number of cluster nodes is 
three, and they are always at the same height.

Evaluation indicators
We choose the objective function curve and the two-
dimensional positioning result plan to judge the local-
izability. By drawing the objective function curve 
participating in the MOPSO solution, we can judge 
whether there is a solution to the objective function 
equations. The two-dimensional positioning result 

Trajectory 
data analysis

User interfaceSimulation data process

Relative positioning algorithm

Status data

Observation 
generation

Observation
data

MDS MOPSO

Input

Trajectory 
design

Simulation
parameter

settings

File input and
output

Real track
display

Error index
calculation

Obj-function
curve display

Output

Debug button

Positioning
result display

Other algorithm

Fig. 5  Cluster positioning simulation platform architecture



Page 14 of 21Deng et al. Satellite Navigation             (2023) 4:1 

plan is compared with the real position plan to verify 
if the relative positional relationship between nodes is 
consistent.

Simulation results
Limited to the length of the article, we only list the simu-
lation results at time t = 1 in each scenario, and the com-
plete results can be found in this url: https://​github.​com/​

Debug
buttons

File IO

Parameter
setting 

Motion trajectory design

Positioning result
(single step) 

Obj-function
curve 

Positioning error
curve 

True position
(single step)

Motion
trajectory

Positioning
error (RMSE)

a Interactive window

b display window
Fig. 6  Cluster positioning simulation platform user interface

https://github.com/chgmqh/relative-positioning-simulation-results
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chgmqh/​relat​ive-​posit​ioning-​simul​ation-​resul​ts (Figs.  8, 
9, 10, 11, 12, 13).

From the simulation results, one can see the two-
dimensional position result in the first scenario is quite 
different from the real position, and the objective func-
tion curve is disorganized. It suggests that the proposed 

algorithm cannot effectively locate in this scenario. In 
other scenarios, the positioning is successful according 
to the objective function curve graph and the two-dimen-
sional positioning results. The simulation results can cor-
roborate the conclusion in Sect. Localizability analysis.
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Fig. 10  Cross-line formation scenario, simulation results at time t = 1
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Fig. 11  Circular formation scenario, simulation result at time t = 1
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Liu analyzed the locatable conditions of the main-
stream EKF collaborative location algorithm based on 
ranging and IMU (Liu, 2015). Compared with the algo-
rithm based on EKF, the proposed algorithm has more 
relaxed localizable conditions and can adapt to more sce-
narios, as shown in Table 3.

Positioning accuracy simulation
This experiment conducts a comparative analysis and 
verification of the performance of cluster relative posi-
tioning algorithm. The information required for position-
ing is obtained by using the motion trajectory simulation 
and observation volume generation functions of the 
simulation platform. In addition to the relative position-
ing algorithm proposed in this paper, the EKF position-
ing algorithm based on ranging and IMU and the relative 
positioning algorithm based on pure Inertial Navigation 
System (INS) are selected for comparison.

Simulation scene
We designed a cluster scene consisting of three nodes. 
They start from the origin and perform circular motions 
of different radii after a short acceleration motion. The 
simulation time is 210  s, and the five-pointed star and 
the cross star represent the starting and ending points, 
respectively. The motion trajectory of the node is shown 
in the Fig. 14.

Simulation parameters
The measured values of the inertial device and the rang-
ing device are all obtained by applying the error model 
to the true value. The constant bias of the gyroscope is 
0.01◦/h , the random walk error is 0.001◦/

√
h , the con-

stant bias of the accelerometer is 100ug, and the random 
walk error is 10ug/

√
Hz . The sampling frequency of the 

inertial device is 10 Hz. The wireless ranging accuracy is 
0.1  m, and the sampling frequency is 1  Hz. The output 
frequency of the positioning result is 1 Hz.

Y (m)

X
 (m

)

Y (m)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

α (°)
a True position (t)-(t-1) b Positioning result c Objective function curve

300

200

100

0

−100
−1000 −200 −300 −400

X
 (m

)

100

50

0

−50

−100

−150

600

500

400

300

200

100

100 0 −100 0 400002 003

a-b
a-c
b-c

100

Fig. 12  Colinear formation (non-constant velocity) scenario, simulation results at time t = 1

Y (m) Y (m)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

α (°)
a True position (t)-(t-1) b Positioning result c Objective function curve

200

100

0

−100

100

50

0

−50

−100

−150

300

250

200

150

100

50

200 100 0 −100 001 05 0 −100 400002 003100

a-b
a-c
b-c

0−50

X
 (m

)

X
 (m

)

Fig. 13  Random sports scenario, simulation results at time t = 1



Page 18 of 21Deng et al. Satellite Navigation             (2023) 4:1 

Evaluation indicators
The relative positioning error evaluation index is to cal-
culate the modulus of the difference between the relative 
position of the two nodes under the positioning result 
and the real coordinates. The formula is expressed as 
follows

PAB and PAB′ respectively represent the relative posi-
tions of the two nodes under the real coordinates and the 
positioning result.

At the same time, the Root Mean Square Error (RMSE) 
of the positioning is calculated to evaluate the overall 
positioning accuracy.

Simulation results
The comparison of relative positioning accuracy over 
time between INS, EKF-based collaborative algorithm, 
and the proposed algorithm is shown in Fig. 15.

From the simulation results, the relative positioning 
error of the INS accumulates with time, showing a diver-
gent state. The relative positioning algorithm based on 
EKF can reduce some positioning errors, but only sup-
press the speed of error divergence. Compared with the 
previous two methods, the proposed algorithm does not 
have the problem of error accumulation over time, and 
the overall positioning accuracy is higher. The Root Mean 
Square Error (RMSE) indicators in Table  4 of the three 
positioning algorithms can also confirm this.
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∣
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t=1 εAB(t)

N

Time‑consuming simulation
Although the simulation is not a real-time demonstra-
tion system, we can still estimate the single shot time 
consumption by dividing the total operation time by the 
number of simulation steps.

The simulation platform uses Lenovo PC, i5-10400 
CPU, 8G memory, runs simulation program we designed, 
and calculates the execution time. Taking a 3 nodes core 
cluster as an example, the number of simulation steps is 
5 and the simulation interval is 1 s. The relative location 
algorithm proposed in this paper takes 1.16 s in total, and 
0.23 s in a single shot, which can fully meet the require-
ments of 3 Hz real-time positioning. However, the opera-
tion speed of EKF algorithm is obviously faster, and the 
single shot location takes about 0.024 s.

Conclusion and future work
Aiming at the problems in the localization of moving 
time-varying cluster networks, this paper proposes a 
hierarchical unmanned cluster localization architecture 
based on the concept of pigeon flock bionics. The design 
of virtual general leader + core cluster + follower cluster 
is adopted to realize a flexible and scalable unmanned 
cluster positioning system. At the same time, a new 
relative positioning algorithm based on spatial–tem-
poral correlation observation for unmanned clusters 
is proposed, which only relies on mutual ranging and 
inertial measurement within the cluster for positioning 

Table 3  Algorithm localizability condition comparison

Colocalization algorithm based on EKF Proposed algorithm

Unlocatable case
(Two nodes as an example)

(1) Two nodes move at the same speed along a linear path parallel to 
each other
(2) Two nodes move along the same straight path

Two nodes move in the same direction and speed
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Fig. 14  The trajectory of cluster
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calculation. No external signal source is needed, which 
improves the deployment flexibility and system robust-
ness of the cluster positioning system. The MDS algo-
rithm is introduced to reduce the dimension of solution 
space and simplify the objective function as much as pos-
sible, which can shorten the subsequent calculation time 
and make it easier for the optimization search algorithm 
to find the optimal solution. The introduced MOPSO 
algorithm is suitable for solving multi-objective function 
problems and hardly falls into the local optimal solution.

We introduce the mixed graph rigidity theory to ana-
lyze the localizability of clusters, which can analyze 
abstract graphs with both distance and direction con-
straints. At the same time, we abstract the inertial naviga-
tion data as a mixed constraint of direction and distance, 
which expands the application object of localizability the-
oretical analysis based on graph theory. Therefore, graph 
theory can now be used to analyze the localizability of 
the abstract maps constructed by continuous observa-
tion. In this paper, the method is applied to analyze the 
locatable conditions of the proposed relative location 
algorithm and verified by simulation.

To verify the performance and localizability of the clus-
ter location algorithm, we designed a cluster location 
simulation software, which can generate simulation data 

and display the location results. Based on this, we carried 
out localizability simulation and positioning accuracy 
simulation under different scenarios.

The simulation results show that compared with the 
traditional pure INS algorithm and EKF based algo-
rithm, the proposed algorithm has better positioning 
accuracy in long run and produces the positioning error 
not diverging over time, which is applicable to the tasks 
under the condition of satellite rejection. The proposed 
algorithm cannot be located if the two nodes have the 
same direction and speed of movement, and the locatable 
constraints are more relaxed, which can adapt to more 
cluster motion scenes.

Of course, the proposed algorithm also has some 
limitations. The time consumption of the algorithm is 
improved compared with the traditional algorithm, but it 
can still meet the real-time positioning requirements of 
larger than 3 Hz; Because the complete distance informa-
tion between all nodes is required, the number of nodes 
participating in core cluster location is limited, otherwise 
it will bring a large communication load. It is necessary 
to ensure the communication between two nodes, which 
limits the spatial distribution of nodes.

The future works are summarized as follows:

(1)	 This paper initially proposes a hierarchical 
unmanned cluster positioning architecture design 
based on the concept of pigeon flock bionics, but 
only provides specific algorithm implementation 
and simulation analysis for the core cluster level. 
Further research should be carried out on the leader 
node and follower cluster, and more detailed analy-
sis and algorithm implementation should be given. 
We will carry out the research on the leader node 
and follower cluster, and give more detailed analysis 
and algorithm implementation. This includes, but is 

a Relative positioning accuracy
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Fig. 15  Comparison of relative positioning error ε(t) of each algorithm over time

Table 4  Comparison of RMSE index of three relative positioning 
algorithms

Node pair RMSE / m

INS EKF Proposed

ε12 130.76 60.63 11.45

ε13 262.30 131.13 8.60

ε23 132.06 67.38 8.96
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not limited to, the virtualization method, selection 
strategy, and absolute positioning method of the 
leader node, the positioning method and the anchor 
point selection strategy of the follower cluster.

(2)	 The core cluster level currently only analyzes the 
positioning of a single cluster and needs further 
study on the positioning and coordinate system 
merging algorithms between multiple clusters.

(3)	 Improve the simulation platform to support a com-
plete cluster positioning architecture. Carry out a 
cluster positioning simulation experiment under 
the leader node + core cluster + follower cluster 
architecture to evaluate its absolute positioning and 
relative positioning capabilities.

(4)	 On the basis of the simulation test, carry out the 
test based on the unmanned car platform to verify 
the effectiveness of the cluster positioning algo-
rithm.
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