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Introduction
Quadrotor aircraft is an indispensable instruments in our 
daily life and industrial applications (Gadekar et al., 2022; 
Xu et al., 2021; Liu et al., 2021). The navigation and posi-
tioning accuracy is one of the most important—perfor-
mance indicators.

For improving the location accuracy, a variety of sen-
sor technologies have been put forward and applied. For 
instance, the Radio Frequency Identification (RFID) with 
single passive tag was used in the intelligent mobile robot 
navigation (Wu et  al., 2021; Gueaieb and Miah 2008), and 
the indoor mobile localization method based on Wireless 
Fidelity (WiFi) fingerprint was proposed by Bai et al. (2021). 
These localization technologies can provide the navigation 
information with meter level positioning accuracy. How-
ever, they cannot meet the needs of high-precision tasks. 
For improving the positioning accuracy, the Ultra-Wide 
Band (UWB) technology was proposed, which can provide 
decimeter-level positioning accuracy. For example, a UWB 
localization system was deigned for the underground coal 
mine application (Li et al., 2020) and the indoor quadrotor 
localization and so on (Xu et al., 2020a).

However, many problems are prone to occur in the use 
of sensors for quadrotors. For instance, it is not able to 
get the high precision navigation information when the 
Global Navigation Satellite System (GNSS) is not avail-
able in outdoor navigation. Therefore, many ways of inte-
grating multiple sensors have been proposed to enhance 
the positioning accuracy. Ma et al. (2019) used an Iner-
tial Measurement Unit (IMU) and UWB to realize the 
precise hovering at a certain position for a Mini-quad-
rotor. IMU and a sonar sensor were combined together 
in a real-time monocular visual navigation system for 
ensuring the robust and accurate navigation results for 

a quadrotor (Zheng et al., 2015). The Inertial Navigation 
System (INS) and Global Positioning System (GPS) was 
integrated by Dang et al. (2022). An integration of multi-
ple sensors takes full advantages of each sendor involved, 
improving the positioning accuracy. UWB and INS will 
be used together in a quadrotor aircraft.

In addition, an advanced filtering method is also an 
effective tool to improve positioning accuracy. The 
Kalman Filter (KF) and its variants based on the RFID, 
WiFi, and UWB localization technologies are the most 
used methods. For instance, the Kalman Filter based on 
a High-Frequency RFID (HF RFID) positioning meas-
urement system was employed to locate a mobile object 
has been considered in Shirehjini and Shirmohammadi 
(2020). A complementary Kalman Filter was proposed 
for the UWB-based indoor localization (Liu et al., 2019). 
Meanwhile, a federated derivative Cubature Kalman Fil-
tering (CKF) methodology was proposed for the UWB 
based an indoor localization system by the combination 
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Fig. 1  The scheme of the predictive model/ELM integrated assisted 
FIR filter for UWB-based quad-rotor aircraft localization
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of traditional KF and CKF (He et al., 2020). Wang et al. 
(2021) presented a relative position estimation algorithm 
based on an Extended Kalman Filtering (EKF) for the 
robot in the local reference frame. Unscented Kalman Fil-
tering (UKF) was modified in vehicular integration sys-
tem (Hu et al., 2020).

Since the Kalman Filter depends greatly on the model 
noise (Zhao and Huang 2020; Zhao et al., 2016), an Inter-
acting Multiple Model (IMM) was used to fit the current 
noise statistics (Liao and Chen 2006; Li and Bar-Shalom 
1994), and the Expectation-Maximization (EM) based KF 
approaches were designed (Huang et al., 2018; Cui et al., 
2019). Moreover, a Finite Impulse Response (FIR) filter 
was employed to robustly provide the robot’s accurate 
position by fusing the RFID based distance (Pomarico-
Franquiz and Shmaliy 2014). The Extended FIR Filter 
and Composite Particle/FIR Filter were designed for 
improving the localization accuracy (Xu et  al., 2018). 
The robustness of FIR were fully verified (Pak et al., 2017; 
Chandra et  al., 2021; Paka and Ahn 2021; Zhao et  al., 
2020). Although the FIR-based approach can improve 
the robustness, the accurate state and noise covariance 
matrices are still important factors affecting the position-
ing accuracy due to the truncation error in the nonlinear 
system.

Accuracy, robustness, and efficiency are the most 
used requirements for quadrotor aircraft localization. 
Although many filtering methods can obtain the inno-
vative results in terms of accuracy and robustness, they 
still suffer from sensor unavailability and are prone to 
errors. For this case, there are many approaches for 
seamless localization. For example, the EKF and LS-
SVM were proposed (Chen et al., 2016)to achieve the 
seamless navigation, The decision tree method (Xu 
et al., 2020b) was used to compensate the outage of the 
UWB data, and the LS-SVM assisted UFIR filter was 
used (Xu et  al., 2020c) in seamless indoor pedestrian 
tracking. Moreover, the Extreme Learning Machine 
(ELM) has its advantage and can be factored as a com-
plement. For example, for handling the drift originated 
in severe occlusion, an online classifier based on ELM 
for reinitializing the object on the condition of track-
ing failure was used by Qu et al. (2019). Bi et al. (2022) 
proposed the ELM assisted particle filter for INS/
UWB integrated quadrotor positioning.

In this paper, for enhancing the accuracy of the UWB 
based quadrotor aircraft localization, a FIR filter aided 
with the integration of the predictive model and ELM is 
derived. The FIR filter estimates the quadrotor aircraft’s 
position by fusing the positions measured by the UWB 
and Inertial Navigation System (INS) respectively. When 
the UWB dada is unavailable, the ELM and the predictive 
model will together provide the measurements, replac-
ing those missing UWB data, for the FIR filter. ELM 
estimates the measurements via the mapping between 
the one step prediction from the state vector and the 
built measurements under the condition that UWB data 
is available. The predictive model will mathematically 
describe the missing UWB data. Then, both the meas-
urements provided by the ELM and predictive model 
are employed to estimate the observation via distance 
Mahalanobis.

The remainder of the paper is organized as follows. Firstly, 
we introduce the FIR filter assisted with the predictive 
model/ELM integrated. Then we compare the localization 
error of the proposed filter with the ELM assisted FIR filter. 
Finally, the results and conclusions are given.

The FIR filter assisted with the predictive model/
ELM integrated
In this section, we will design a FIR filter assisted with the 
predictive model/ELM integrated. Then scheme of the 
FIR filter assisted with the predictive model/ELM inte-
grated for UWB-based quad-rotor aircraft localization is 
first introduced. The FIR filter and the ELM method are 
then briefly introduced.

The scheme of the FIR filter assisted with the predictive 
model/ELM integrated for UWB‑based quad‑rotor aircraft 
localization
In this subsection, we will discuss the scheme of the FIR 
filter assisted with the predictive model/ELM integrated. 
The technical scheme of the proposed filtering method 
for UWB is shown in Fig. 1.

In this work, we employ the loosely integrated model to 
fuse the UWB and the INS data. Firstly, the UWB locali-
zation system measure the position PU

o  of a target quad-
rotor aircraft by fusing the distances between the UWB 
Reference Nodes (RNs) and the UWB Blind Node (BN). 
Meanwhile, the INS measures the position PI

o of the 



Page 4 of 12Xu et al. Satellite Navigation  2022, 4(1):2

target quad-rotor aircraft. With the difference between 
the PU

o  and PI
o , the proposed FIR filter assisted with pre-

dictive model/ELM integrated estimates the INS’s posi-
tion error δPI

o , which is designed as the main filter and is 
applied to correct the position error from INS. Finally, we 
can obtain Po = PI

o − δPI
o.

Data fusion model
In this subsection, the used FIR filter is introduced firstly, 
and the loosely-coupled integrated model is employed. 
The state equation used for the FIR filter is listed in Eq. 
(1), which is the same as the state equation proposed in 
Xu et al. (2019a).

In Eq. (1), the time index is denoted by q, φq , δV n
q , and 

δPn
q represent the attitude, velocity, and position error 

vector of INS, respectively. The 
(

χb
q , ε

b
q

)

 means the bias 
of accelerometers and drift vectors deduced from the 
gyroscope, �q is the sample time, ωq ∼ N

(
O,Qq

)
 is the 

system noise. ( f nUq, f
n
Eq, f nNq ) is the acceleration in up, east 

and north directions. Cn
b is rotation matrix, and the θ , γ , 

ψ denote rotation angle respectively.
The observation equation of the FIR filter is as follows:

where 
(

x
(I)
q , y

(I)
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q
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 is the position in east, north, and up 
of PI
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FIR filter
Based on the system described in Eqs.  (1)–(4), when 
the time index q ≥ N − 1 (the N means the FIR filter’s 
horizon length), the FIR filter compute two parameters: 
m = q − N + 1 and s = m+M − 1 (the M is the dimen-
sion of xq ) from the time index m+M to q and complete 
one-step estimation by using the Eq. (5).
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(5)x̃p|p−1 = Fp−1x̃p−1
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where p is the time index in the FIR filter’s horizon. Then, 
the Generalized Noise Power Gain (GNPG) is computed 
by using the Eq. (6).

 Thus, we can compute the bias correction gain by using 
the Eq. (7).

Finally, the x̂q = x̃q , and the x̃q is computed via the Eq. 
(8).

It should be noted that the Eqs. (5–8) work when 
q ≥ N − 1 , which means that the FIR filter has a dead 
zone. In this work, we employ the traditional Kalman Fil-
ter (KF) in the dead zone of the FIR filter. Moreover, the 
KF employs the error matrix Pq , but the FIR filter do not 
need this error matrix. One can see that the FIR filer is 
able to estimate the x̂q without the accurate description 
of B and Q , which indicates its robustness. The FIR filter 
for model (1)(4) is shown in Algorithm 1.

(6)Gp =

[

HTH +

(

Fp−1Gp−1F
T
p−1

)−1
]−1

(7)K p = GpH
T

(8)x̃p = x̃p|p−1 + K p
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]
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ELM
Base on the model (1)(4) and the scheme proposed in 
Section , the ELM method used in this work is intro-
duced in this subsection, which was introduced briefly in 
Zou et al. (2017). With the q − 1 arbitrary distinct sam-
ples, the ELM’s activation function G(x) can be computed 
as Eq. (9).

where I j =
[
I1, I2, ..., Iq−1

]T , yc ∈ R , L is the additive hid-
den nodes, ac , bc are the connection weights for input 
and hidden layer and output and hidden layer, respec-
tively. When L ≥ q − 1 , the ELM can achieve the 
q−1∑

c=1

∥
∥oj − yj

∥
∥ = 0 with the following equation:

The Eq. (10) can be written as

then, its least square solution βE can be computed as the 
following equation.

where the HE+ denotes the Moore–Penrose generalized 
inverse of matrix H (Zou et al., 2017).
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Then, we can compute the output function of ELM using 
Eq. (14)

The predictive model
The model (1)(4) do not consider the outage of the UWB. 
In order to reduce the influence of the data outage on the 
filter, the predictive model based on the model (1)(4) will 
be designed in this subsection. The core of the prediction 
model is the estimation when the UWB data is unavail-
able. In this work, we modify the Eq. (4) as the follow-
ing. In the prediction model, we use one-step prediction 
Hxq|q−1 to directly replace the filter’s observation when 
there exists UWB data outage.

When the UWB data is available,

When the UWB data is unavailable,

The predictive model/ELM integrated scheme
From the above sections, we can find that both the pre-
dictive model and ELM model are able to achieve the 
seamless navigation. However, the shortcoming of the 
ELM method is that outliers may exist in the estimated 
values, leading to the accumulation of the estimation 
error of the predictive model. In this work, we propose 
a model fusing the outputs of the predictive model and 
ELM method.

In this part, the predictive model/ELM integrated 
design scheme will be investigated, which is used to pro-
vide the measurement in the case of the UWB data out-
age. With the method proposed in Sections and , the FIR 
filter assisted with the predictive model/ELM integrated 
for models (1) and (4) can be computed as follows:

Firstly, the FIR filter completes one-step estimation by 
using the Eq. (17).
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Then, the bias correction gain by using the Eqs. (18) (19).

When the UWB data is available, the ELM is in the train-
ing stage. In this stage, the difference δPo between the 
PU
o  and PI

o is applied by the FIR filter for estimating the 
INS’s position error, and the target quadrotor aircraft’s 
position is computed by the Po = PI

o − δPo . Meanwhile, 
the δPo(t), t = 1, 2, ..., q − 1 are selected as the input and 
the target of the ELM. Here, the ELM is applied to build 
the mapping between the δPo(t), t = 1, 2, ..., q − 1 and 
x̂t|t−1,t=1,2,...,q−1 . Moreover, we compute the measure-
ment vector as the Eq. (20).

Under the condition that the UWB data is unavaila-
ble, the ELM is in the prediction stage. In this stage, we 
employ two methods to provide the measurement of the 
FIR filter. One is the ELM, with the mapping between 
the δPo(t), t = 1, 2, ..., q − 1 and x̂t|t−1,t=1,2,...,q−1 , the 
ELM is able to provide the δPE

o (q) by using the x̂q|q−1 . 
The other is we employ the x̂q|q−1 to compute the meas-
urement of the FIR filter δPP

o (q) at time index q by using 
δPP

o (q) = Hx̂q|q−1 . Then, the Mahalanobis distance is 
employed to evaluate the performance of the δPE

o (q) by 
using the Eq. (21). If the δPE

o (q) < door , which is the pre-
set threshold, we set Zq = δPE

o (q) . If the δPE
o (q) > d , we 

set Zq = δPP
o (q).
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Fig. 9  The localization errors measured by the FIR+ELM, 
FIR+predictive mode, and the FIR+predictive model/ELM in #3 UWB 
data missing region: a east direction, b north direction, c up direction
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With the Zq , the x̃q is computed via the Eq. (22).

The FIR filter assisted with the predictive model/ELM 
integrated for model (1)(4) is listed in Algorithm 2.

(21)
DE

q=

(

δPE
o (q)−Hx̂q|q−1

)E

R
(

δPE
o (q)−Hx̂q|q−1

)

(22)x̃p = x̃p|p−1 + K p

[
Zp −Hx̃p|p−1

]

Table 1  Position RMSEs estimated by the FIR+ELM, 
FIR+predictive mode, and the FIR+predictive model/ELM in the 
UWB data missing regions

UWB data RMSE for different models (m)

missing regions FIR+predictive 
model

FIR+ELM FIR+predictive 
model/ELM

#1 0.41 0.33 0.34

#2 2.21 8.43 2.21

#3 2.52 10.68 2.54
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Experimental verification
In this section, the performance of the raised algorithm 
will be evaluated by the experiment. The test setting and 
the structure of the filter will be introduced. Moreover, 

the performance of the proposed FIR filter assisted with 
the predictive model/ELM integrated will be assessed 
(Figs. 2, 3).

The test parameters
In this work, the test was done in No.2 teaching build-
ing of University of Jinan, China, which is shown in Fig. 4. 
And the frame of the testbed is given in Fig. 5. In the test, 
the six UWB RNs were mounted at the known positions, 
and one UWB BN was installed on the target quadrotor 
aircraft. The UWB localization system was used to meas-
ure the PU

o  of the target quad-rotor aircraft at the time 
index q. Meanwhile, the INS localization system, which 
employs the MPU9250, was used to measure the PI

o of 
the target quad-rotor aircraft at the time index q.

For the filter, we set �q = 0.02 s , x̂0 = O15×15 , 
P̂0 = I15×15 , M = 15 , N = 16 , d = 0.2 , Q = I15×15 , 
R = I3×3 . In this work, we simulated three UWB data 
missing regions with the length of 150, 300, 200 sampling 
points respectively.

Localization error
This subsection investigates the performances of the pro-
posed method. In order to display the performance, we 
employ the FIR+predictive mode which is proposed in , 
and FIR+ELM as the comparison method. For the UWB 
data missing regions, we set the Zp = Zp−1 directly. Fig-
ure  6 displays the reference paths and the paths meas-
ured by the FIR+ELM, FIR+predictive mode, and the 
FIR+predictive model/ELM. The figure obviously shows 
that when the UWB data is available, all the methods 
can estimate the target quadrotor aircraft’s position. 
When the UWB data is unavailable, the results of the 
FIR+ELM has large error. The localization errors meas-
ured by the FIR+ELM, FIR+predictive mode, and the 
FIR+predictive model/ELM in #1, #2, and #3 UWB data 
missing regions are shown in Figs.  7, 8 and 9, respec-
tively. From the figures, one can easily see that in #1 
UWB data missing region, the localization errors meas-
ured by the FIR+ELM, FIR+predictive mode, and the 
FIR+predictive model/ELM are quite similar. However, 
in #2 and #3 UWB data missing regions, there is one big 
localization error when compared with the FIR filter and 
the FIR+predictive mode method. The FIR+predictive 
mode methods have error accumulations. The proposed 
predictive model/ELM can improve the estimation accu-
racy of observations when comparing with the methods 
mentioned above. And one can infer that the result of 
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the proposed method will be close to that of the methods 
with better performance.

The Cumulative Distribution Function (CDF) of 
the localization errors measured by the FIR+ELM, 
FIR+predictive mode, and the FIR+predictive model/
ELM in UWB data missing regions are shown in Fig. 10. 
From the figure, the solutions with the proposed 
FIR+predictive model/ELM method are close to the bet-
ter solutions of the ELM and predictive model. The posi-
tion Root Mean Square Error (RMSEs) estimated by the 
FIR+ELM, FIR+predictive mode, and the FIR+predictive 
model/ELM in the UWB data missing regions are given 
in Table 1. It shows that the localization errors of the pro-
posed method in three UWB data missing regions are 0.35 
m, 2.21 m, and 2.53 m, respectively. Compared with the 
FIR+ELM method, the localization errors are reduced by 
−4.25%, 73.77%, and 76.26% , respectively, which show the 
effectiveness of the proposed method when the outliers 
appear in the predicted value of FIR+ELM method.

The CDF of the localization errors measured by the 
KF and FIR+predictive model/ELM are listed in Fig. 11. 
From this figure, the KF’s localization error is larger than 
that of the FIR’s solution in the test, which indicates that 
the proposed FIR filter has the robustness when com-
pared with the KF.

Conclusion
Based on the UWB-based quad-rotor aircraft localization 
system, we proposed a FIR filter assisted with the predic-
tive model/ELM integrated. In this method, the FIR filter 
estimates the quad-rotor aircraft’s position by fusing the 
UWB’s and INS’s positions. When the UWB data is una-
vailable, both the ELM and the predictive model are used 
to provide the measurements, replacing the UWB missing 
data, for the FIR filter. The ELM estimates these measure-
ment via the mapping between the one-step prediction 
of the state vector and the measurement built when the 
UWB data is available. While the predictive model mathe-
matically describes the missing UWB data. Then, both the 
measurements estimated by the ELM and predictive model 
are employed to estimate the observation via Mahalanobis 
distance. The test results show that the FIR filter assisted 
with the predictive model/ELM integrated has better per-
formances than the FIR filter with ELM when the UWB is 
unavailable. Compared with the ELM assisted FIR filter, 
the proposed FIR filter assisted with the predictive model/
ELM integrated can reduce the localization error by about 
48.59 %, meanwhile, the integrated method can be close to 
the method with better solution.
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