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Abstract 

To achieve higher automation level of vehicles defined by the Society of Automotive Engineers, safety is a key require-
ment affecting navigation accuracy. We apply Light Detection and Ranging (LiDAR) as a main auxiliary sensor and pro-
pose LiDAR-based Simultaneously Localization and Mapping (SLAM) approach for Positioning, Navigation, and Timing. 
Furthermore, point cloud registration is handled with 3D Normal Distribution Transform (NDT) method. The initial 
guess of the LiDAR pose for LiDAR-based SLAM comes from two sources: one is the differential Global Navigation 
Satellite System (GNSS) solution; the other is Inertial Navigation System (INS) and GNSS integrated solution, generated 
with Extended Kalman Filter and motion constraints added, including Zero Velocity Update and Non-Holonomic Con-
straint. The experiment compares two initial guesses for scan matching in terms navigation accuracy. To emphasize 
the importance of a multi-sensor scheme in contrast to the conventional navigation method using the stand-alone 
system, the tests are conducted in both open sky area and GNSS signal block area, the latter might cause Multipath 
and Non-Line-Of-Sight effects. To enhance the navigation accuracy, the Fault Detection and Exclusion (FDE) mecha-
nism is applied to correct the navigation outcome. The results show that the application of NDT and FDE for INS/GNSS 
integrated system can not only reach where-in-lane level navigation accuracy (0.5 m), but also enable constructing 
the dynamic map.
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Introduction
To navigate a vehicle safely and autonomously from one 
place to another, its position shall be accurately local-
ized, even at lane level (Stephenson, 2016). The conven-
tional navigation method relies on Global Navigation 
Satellite System (GNSS) (Noureldin et  al., 2013) and 
Inertial Navigation System (INS) (Nassar, 2003). But 
the error of INS will accumulate over time; meanwhile, 

GNSS can’t provide accurate position in challeng-
ing environments, and its positioning errors affected 
by several factors, including the multipath effect and 
ionosphere errors (Groves & Jiang, 2013; Rahmani 
et al., 2020). To deal with these problems, several aux-
iliary sensors were tested, including camera (Mur et al., 
2015), Radio Detection and Ranging (Radar) (Wang, 
2016), Light Detection and Ranging (LiDAR) (Cheng & 
Wang, 2018; Gao et  al.,  2015), etc. However, the cam-
era might be affected by light conditions and weather 
events and the modeling definition of the radar is too 
low, while LiDAR can overcome the disadvantages 
that camera and radar might have. Therefore, we uti-
lize the INS and Differential GNSS (DGNSS) to out-
put an integrated navigation solution to initialize the 
LiDAR pose, yet apply Extended Kalman Filter (EKF) 

*Correspondence:
Kaiwei Chiang
p66081106@gs.ncku.edu.tw
1 Department of Geomatics, Taiwan Cheng Kung University, No. 1, Daxue 
Rd., East Dist., Tainan City 701, Taiwan, China
2 High Definition Map Research Center, Department of Geomatics, 
Taiwan Cheng Kung University, No. 1, DaxueRd., East Dist., Tainan City 701, 
Taiwan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43020-022-00092-0&domain=pdf
https://satellite-navigation.springeropen.com/
http://orcid.org/0000-0002-4176-3843


Page 2 of 15Chiang et al. Satellite Navigation             (2023) 4:3 

as framework. Note that there are other methods for 
updating other than the Kalman Filter used in this 
research. Yet, the EKF can deal with continuous-time 
system model since the measurements are nonlinear. 
To define the initial pose of LiDAR, one shall transform 
the initial guess to the center of LiDAR in the LiDAR 
frame by the transformation relationship of lever arm 
and boresight, which is the so-called Direct Georefer-
encing (DG) (Reshetyuk, 2009). After DG, the dynamic 
map can be built by matching consecutive frames of 
point cloud data. There are several registration meth-
ods, which can generally be divided into three cat-
egories, which are point-based, feature-based, and 
distribution-based. However, compared to the point-
based and feature-based methods  (Zhang et al., 2014), 
the distribution-based Normal Distribution Transform 
(NDT) (Magnusson, 2009; Magnusson et al., 2009) not 
only copes with a larger range of initial pose offset, but 
also needs less computational time than Iterative Clos-
est Point (ICP) method (Aghili & Su., 2016).

Numerous studies were conducted on the develop-
ment of NDT and its variants to deal with LiDAR data. 
Recently, some research tried to emphasize the initial 
pose correction ability of NDT and process experi-
ments took place in GNSS challenging areas, including 
indoor and urban environments (Chen et al., 2021; Wen 
et al., 2018; Zhou et al., 2017). While others conducted 
real-time Simultaneously Localization and Mapping 
(SLAM) (Chen et al., 2021; Deng et al., 2021). Further-
more, the concept of High Definition Map (HD Map) 
with dense and robust point cloud (Zhou et  al., 2017; 
Liu et al., 2020) was applied in LiDAR scan for HD map 
registration to output better initial pose correction.

Nevertheless, compared to camera and radar, LiDAR 
has a disadvantage that it is relatively expensive, mak-
ing its application to autonomous vehicles infeasi-
ble. Meanwhile, the construction of HD Map is costly, 
which is not applicable immediately over the world. 
In this research, we simulate the situation without HD 
Map, which means the navigation only can be con-
ducted by an initial guess from INS/GNSS, and the 
point cloud map is constructed frame by frame through 
NDT. For this purpose, it only relies on the initial guess 
of position, velocity, and attitude from INS/GNSS inte-
grated navigation solution or navigation solution from 
GNSS stand-alone system.

This paper has three contributions as follows: first, to 
meet the feasible cost in the application of LiDAR for 
future development in autonomous vehicle applications, 
the low-cost LiDAR “single VLP16” is selected. Sec-
ond, to provide not only reliable initial guess for LiDAR 
SLAM but also applicable for real-world coordinate sys-
tem, the INS/GNSS based integrated navigation solution 

is generated with EKF and in the Earth frame. Third, the 
Fault Detection and Exclusion (FDE) schemes are applied 
to reject false measurements to maintain the navigation 
accuracy. To sum up, a low-cost INS/GNSS/LiDAR inte-
grated system is proposed in this paper to conduct Posi-
tioning, Navigation, and Timing (PNT).

The structure of this paper is arranged in the following 
sequence. “Methods” section presents the PNT structure 
and the methodologies applied to fulfill multi-sensors 
integration scheme with different initial guesses. "Experi-
ments" section introduces the experiment setup, test field 
selection, and point cloud data preprocessing. The results 
and discussions of the experiments will be shown in 
“Results and discussion” section. Finally, the conclusion is 
made in “Conclusions” section.

Methods
Architecture design
The proposed LiDAR-SLAM-based structure for PNT is 
illustrated in Fig. 1. GNSS in Fig. 1 refers to the DGNSS 
with the measurements received from multi-constella-
tion system, which takes GPS, GLONASS, and BeiDou 
systems into consideration. The more measurements 
from multi-constellation system will result in more pre-
cise positioning solution in diverse scenarios. This is 
applicable for the following content as well. The initial 
guess for LiDAR-SLAM comes from two sources. One is 
the INS/GNSS integrated navigation solution with EKF 
after Rauch–Tung–Striebel (RTS) smoother (Chiang 
et  al., 2009; Särkkä, 2008), which predicts and updates 
the velocity, position, and attitude information and feed-
backs the bias and scale factor from EKF to INS mecha-
nism. The other is directly from DGNSS stand-alone 
system with the position and velocity information only. 
The whole LiDAR-SLAM process includes point cloud 
preprocessing, DG, 3D NDT scan matching, and FDE. 
Especially, the FDE mechanism involves the two-step-
functions, which are LiDAR Odometry (LO) and LiDAR 
Mapping (LM).

Initial guesses
INS/GNSS integrated navigation solution
In this research, the INS and DGNSS sensors integration 
system is developed utilizing the Loosely Coupled (LC) 
scheme, which needs an optimal estimator to compare 
the difference between each measurement with predicted 
variables and establish the error model, in order to esti-
mate the possible error. The Least-Square (LS) method is 
the most used optimal estimator (Parvazi et al., 2020). To 
deal with continuous measurements, the Recursive Least-
Square (RLS) method, the derivative of LS can update 
the previous optimal estimates with the current obser-
vations. However, RLS is only suitable for time-invariant 
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system, while the Kalman filter can cope with time-vary-
ing system (Zangeneh-Nejad et al., 2018). The fundamen-
tal equations of EKF based on RLS are as follows.

The state vector xk for EKF input is showed in Eq.  1 
(Shin and El, 2002; Shin, 2005), where each element 
involves the values in x, y, and z three axes.

where r is the position vector in the Earth frame (latitude, 
longitude, height); v is velocity vector recorded in North, 
East, and Downward sequence; ϕ is the attitude rotat-
ing from the body frame to mapping frame, while body 
frame is known as the vehicle frame, and mapping frame 
refers to the local level frame; ba is the bias of accelerom-
eter in IMU; bg is the bias of gyroscope in IMU; sa and 
sg are the scale factors of accelerometer and gyroscope, 
respectively.

With the state vector, we can construct two functions. 
One is function f, which utilizes the state vector at epoch 
k to predict the state vector at the next epoch k + 1. The 
other is function h, which can compute the measure-
ments updated at epoch k + 1 by multiplying the pre-
dicted state from function f with observation matrix H 
and adding the observation error vk.

Because the state transition and measurement 
update model are nonlinear, the previous functions 

(1)xk =

[

r v ϕ ba bg sa sg
]T

21×1

(2)x−k+1
= f (xk ,�k)+ wk

(3)zk+1 = h(xk)+ vk = Hxk + vk

shall pass through partial derivatives before putting 
them into Kalman Filter, which can be divided into two 
parts: prediction and measurement update. The pre-
diction process estimates the state and noise at epoch 
k + 1 from the observation at epoch k, and the esti-
mated value from prediction is denoted with super-
script (–).

The measurement update process is conducted by 
updating the state with the observation at epoch k + 1. 
It put the Kk+1 as Kalman gain into consideration. When 
the prediction model is more reliable, the weight for 
residual will be smaller, and vice versa. The combination 
and evaluation about the weights of observations from 
two sources (INS and GNSS) are critical (Teunissen & 
Amiri-Simkooei, 2008), while the suitable weight settings 
can improve the quality of unknown parameters. Mean-
while, the weighting should also take the grade of the 
sensor into consideration.
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Fig. 1  Overview of LiDAR-SLAM-based PNT system structure
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DGNSS stand‑alone navigation solution
The concept of DGNSS is that the base station and the 
rover station simultaneously receive GNSS signals, while 
the latter is mounted on the vehicle. By subtracting the 
positioning data of the base (also named as the reference 
station) and rover stations, it can turn out the differen-
tial GNSS data. Compared to real-time DGNSS, the post-
processing DGNSS applied in this research can achieve 
higher accuracy (Yoshimura & Hasegawa, 2004). The 
schematic diagram of DGNSS is shown in Fig. 2a. In this 
paper, the satellites’ data are continuously received by 
several Virtual Reference Stations (VRS), which therefore 
forms a GPS network to estimate the GPS error model 
in a specific area, the corrections will be send back to 
the rover station via the network to update the position 
of the vehicle. It is noteworthy that the established GPS 
network of multi reference stations can not only reduce 
the ionosphere and tropospheric delay errors, but also 
enhance the rover station’s ability to resolve phase ambi-
guity, increasing the positioning solution reliability.

Because the GNSS only provides position and velocity 
data, the initial heading at the first epoch comes from the 
reference, and the heading values at the following epochs 
are calculated by the positions at current epoch and pre-
vious epoch. The method is described in Fig. 2b.

Direct georeferencing
While each sensor is in different frame, the initial guess 
received by GNSS antenna is in Earth frame, and the 
point cloud is in LiDAR frame. To fulfill multi-sensors 
integration, it must transform them into a uniform frame 
by performing the translation and rotation with the three 
axes (Chiang et  al., 2019), the so-called DG process. In 
this research, we transform each frame into the mapping 

frame with the coordinate at the first epoch as the ori-
gin. The transformation relationship between each pair of 
sensor frames is shown in Fig.  3, while rmb  and Rm

b  rep-
resent the translation and rotation of body frame with 
respect to the mapping frame and so on.

After DG, it can define the initial pose and construct 
the environment where the vehicle is by the initial guess 
generated in previous sub-section after the compensation 
of lever arm and boresight. However, the distribution of 
the point cloud is based on the rough initial guess. To 
correct the initial pose of the vehicle, it shall go through 
scan to dynamic map registration to adjust it, which will 
be mentioned in the next sub-section.

3D normal distribution transform
Although the initial guess can estimate the pose of the 
point cloud, in GNSS challenging environment, the initial 
guess might lead to a large pose offset of the vehicle. To 
prevent the failure of scan matching caused by the initial 
pose offset, if the points of each frame are well-matched, 
it can correct the error in the initial guess. This paper 
applies NDT for scan matching, which is a distribution-
based registration method and more robust to deal with 
initial pose offset.

As we receive the consecutive frames of point cloud 
from LiDAR, the previous frame of point cloud is cut in a 
constant voxel size. Each voxel shall contain at least three 
points. Later, it processes the NDT by matching points 
after voxelization from moving frame (current frame) to 

(9)rml = Rm
b r

m
l + rmb

(10)Rm
l = Rm

b R
b
l

Fig. 2  Methods for producing GNSS-based navigation solution. a Schematic diagram of DGNSS; b Generation of estimated heading
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the distribution of the fixed frame (previous frame) and 
turns out the normal distribution modeling N (q,

∑

) for 
each voxel (Akai et al., 2017; Biber & Straßer, 2003).

where xi is the point in the voxel; n is the number of 
points in a specific voxel; q is the mean value and Σ is the 
covariance value of the voxel.

After registration, it can calculate the score value. To 
minimize the score value, it iteratively updates the rota-
tion and translation in three axes of consecutive frames 
and applies the Newton’s algorithm to optimize. It’s 
worth noticing that during the coordinate transforma-
tion process, the estimation of the weights for unknowns 
can enhance the registration results (Amiri-Simkooei., 
2018), such as the calculation of six Degrees of Freedom 
(6DOF) may refer to the slant distance from the center to 
each point to set the corresponding weight.

For the research settings, the iteration won’t stop until 
it meets some criteria, such as the iteration number of 
scan matching, or the rotation and translation differ-
ences between consecutive frames fall within a prede-
fined tolerance. To prevent the rotation and translation 
differences from falling into a local minimum, Iterative 

(11)q =

1

n

n
∑

i=1

xi

(12)
∑

=

1

n− 1

n
∑

i=1

(xi − q)(xi − q)T

(13)p(x) ∼ exp

(

−

(xi − q)T�−1
(xi − q)

2

)

Discretization Method-NDT (IDM-NDT) registers the 
point cloud in three rounds by iteratively decreasing the 
voxel size. The schematic diagram of the NDT process 
mentioned above is shown in Fig. 4.

Fault detection and exclusion scheme
While processing the NDT algorithm, the error in height 
and rotation angle will drift with time. It leads to error 
propagation and NDT failure, resulting from the miss-
registration caused by the large offset in translation and 
rotation output from previous NDT (Al et al., 2017). To 
this end, FDE mechanism (Akai et  al., 2017) is added 
after the NDT process to detect the faults and exclude 
them from LiDAR-SLAM-based navigation solution. 
The concept of FDE applied in this research is described 
in Fig. 5. The FDE mechanism operates in two steps: the 
LiDAR Mapping and LiDAR Odometry. Due to NDT 
being sensitive to the height offset, FDE for LiDAR Map-
ping can constraint the translation offset in height and 
the rotation in pitch and roll, then update the transfor-
mation matrix to register the point cloud again and build 
robust dynamic map for autonomous vehicle without HD 
map. For the FDE in LiDAR Odometry, it compares the 
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Fig. 3  Transformation relationship between each sensor frame
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initial guess and the initial guess added with NDT, then 
outputs a relatively accurate one which is treated as the 
navigation solution outcome of LiDAR-SLAM.

Experiments
Equipment setup
The sensors for experiment setup were mounted on the 
top of a vehicle as shown in Fig. 6, including LiDAR, the 
VLP16, and the antennas. The initial guesses of INS and 
GNSS were received by tactical grade IMU, the Novatel 
PwrPak7; while the reference was collected by the navi-
gation grade IMU GNSS, the iMAR-RQH. The reference 

was computed by commercial INS/GNSS processing 
software with EKF using the Tightly Coupled scheme in 
two-step smoothing, the forward and backward sequen-
tially. For more information about the performance of the 
two IMUs is shown in Table 1.

Test field selection
The experiment took place around the Taiwan Cheng 
Kung University campus. To examine how the initial 
pose offset will affect LiDAR-SLAM-based PNT esti-
mation, two test fields were selected. One was in open 
sky area, which can receive steady GNSS signal as Fig. 7 

Fig. 4  Schematic diagram of the NDT process

Fig. 5  FDE strategy application
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shows, and the other was in the GNSS challenging envi-
ronment, which might lead to worse initial pose offset. 
The route is plotted in Fig.  8. The red line represents 
the reference, the blue line represents the INS/GNSS 
integrated navigation solution, and the green line rep-
resents the GNSS stand-alone navigation solution. To 
better show the GNSS positioning accuracy over time, 

the Position Dilution of Precision (PDOP) values were 
recorded in Fig. 9. It can tell that the PDOP values are 
relatively small in the open sky area, but large in the 
GNSS-challenging environment due to signals blocked 
by the surrounding buildings or the unevenly geometric 
distribution of the satellites.

Antenna

LiDAR
Tactical grade
IMU/ GNSS 

Navigation grade IMU/ GNSS

Tactical grade IMU/ GNSS

a b
Fig. 6  Sensors Installation. a Top view of the vehicle; b Interior view of the vehicle

Table 1  Comparison of IMU performance

(a) PwrPak7; (b) iMAR-RQH

(a) PwrPak7 Accelerometer Gyroscope

Bias instability 0.012 mg 0.8°/hour

Random walk noise 0.025 m/s/√hour 0.06°/√ℎour

(b) iMAR-RQH Accelerometer Gyroscope

Bias instability  < 10 μg  < 0.002°/hour

Random walk noise  < 8 µg/√Hz  < 0.0015°/√ℎour

Reference
INS/GNSS
GNSS

Fig. 7  Test field in open sky area
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Point cloud data preprocessing
To utilize the reliable point cloud to process NDT, for 
the points whose Euclidean distances to the transmitter 
are larger than a certain distance, the pulses are more 

possible be refracted by obstacles in line-of-sight dur-
ing emission and transmission. Meanwhile, the points 
that are too close to LiDAR also might be refracted by 

Reference
INS/GNSS
GNSS

Fig. 8  Test field in GNSS-challenging environment
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Fig. 9  PDOP value of the entire experiment
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Fig. 10  Dynamic map in open sky area. a Top view of INS/GNSS-based dynamic map; b Top view of GNSS-based dynamic map; c Perspective view 
of INS/GNSS-based dynamic map; d Perspective view of GNSS-based dynamic map
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adjacent sensors. Therefore, only the points within a pre-
defined distance are extracted to process NDT.

The fixed frame in this experiment was formed by 
merging the previous five frames as the sliding window 
to reduce computational time and constraint error prop-
agation. In the NDT process every frame of the point 
cloud was adopted to construct a more robust dynamic 
map, because the point cloud received by VLP-16 is too 
sparse. In this paper, the voxel size is decreased from 2.5 
to 1.5 m, and then to 1 m for each round of the NDT pro-
cess, sequentially.

Results and discussion
Results in open sky area
For mapping evaluation, Fig. 10 shows the dynamic maps 
built with two different initial guesses in the open sky 
area. Figure 10a and c is the dynamic map built with INS/
GNSS-based initial guess, while Fig.  10b and d is con-
structed with GNSS-based initial guess. As Fig. 10 shows, 
in the open sky area GNSS can provide a reliable initial 
guess for INS/GNSS integrated navigation solution and 
GNSS stand-alone navigation solution, although GNSS 
stand-alone system cannot provide rotation information. 
At the same time, FDE constraints the drift in height and 
the offsets in rotation, which turns out two initial guesses 
methods can help construct steady dynamic map. For 
statistical analysis, the mean errors of INS/GNSS-based 
and GNSS-based solutions generated from LiDAR SLAM 
in open sky area under three different mechanisms are 
given in Tables 2 and 3, where the percentage of improve-
ment for the mechanisms is also calculated by subtract-
ing and dividing the mean error of initial guess.

In Tables 2 and 3 the along-track means the longitudi-
nal or the movement direction of the vehicle, while the 

cross-track means the lateral direction with respect to 
the right-handed system. It can be found out that with 
the conventional navigation method both the initial 
guesses for INS/GNSS and GNSS stand-alone naviga-
tion solutions can provide accurate localization. While 
applying initial guesses with NDT, the errors in along-
track affect the 3D localization accuracy with worse by 
377.27% and 348.38% for INS/GNSS-based and GNSS-
based navigation solutions, respectively. Due to fewer 
features in the along-track direction for scan matching 
the errors are large, while cross-track errors can be con-
strained by man-made structures, e.g., walls, buildings, 
and curbs, which can provide robust features for NDT 
scan matching. It’s worth noting that due to the initial 
guesses with FDE mechanism in LM, the drift in height 
can be maintained to a certain extent. Finally, the previ-
ous outcome is added with the FDE mechanism in LO. 
However, the accuracy is not much improved much in 
both INS/GNSS-based and GNSS-based navigation solu-
tions. Theoretically speaking, the accuracy shall be fur-
ther improved, yet they are similar to initial guesses, it is 
because the conventional methods are reliable enough.

The trajectories of navigation solutions mentioned in 
Tables 2 and 3 are plotted in Fig. 11. The red line repre-
sents the reference, the purple line represents the initial 
guess, the green line represents the initial guess added 
with NDT and FDE (LM), and the blue dashed line rep-
resents the initial guess added with NDT and FDE (LM 
and LO).

Results in GNSS challenging environment
Mapping evaluation in GNSS challenging environment is 
depicted in Fig. 12, and the dynamic maps are built with 
INS/GNSS integrated navigation solution and GNSS 

Table 2  Error statistics of INS/GNSS-based estimated navigation solution in open sky area

E (m) N (m) U(m) Along-track (m) Cross-track (m) H (m) 3D (m) 3D
Improve (%)

INS/GNSS (initial guess) 0.04 0.21 0.06 0.21 0.03 0.21 0.22 –

INS/GNSS + NDT + FDE (LM) 0.20 1.02 0.15 1.04 0.13 1.03 1.05 –377.27

INS/GNSS + NDT + FDE (LM + LO) 0.04 0.21 0.06 0.21 0.03 0.21 0.22 0.02

Table 3  Error statistics of GNSS-based estimated navigation solution in open sky area

E (m) N (m) U(m) Along-track (m) Cross-track (m) H (m) 3D (m) 3D
Improve (%)

GNSS (initial guess) 0.03 0.29 0.09 0.29 0.30 0.29 0.31 –

GNSS + NDT + FDE (LM) 0.20 1.37 0.16 1.38 0.13 1.38 1.39 –348.38

GNSS + NDT + FDE (LM + LO) 0.03 0.27 0.09 0.27 0.01 0.27 0.28 9.67
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stand-alone navigation solution. In Fig.  12b and d, due 
to GNSS signal disturbance and lacking rotation infor-
mation from INS, the dynamic map built with GNSS-
based initial guess after NDT scan matching is unstable. 
The reason is probably caused by inaccurate heading 
angle based on GNSS position, while GNSS positioning 
is unreliable in this environment, which leads to large 
translation and rotation offsets at the same time. There-
fore, it causes NDT failure. Compared to Fig. 12b and d, 
the assistance of INS and EKF constrains the offsets to a 
certain extent in translation and rotation, then constructs 
robust dynamic maps in Fig. 12a and c, respectively.

The statistical analysis is given in Tables 4 and 5. One 
can find out the mean errors in the two tables remain a 
big gap compared with the results in the open sky area. 
Compared with the conventional methods, INS/GNSS 
integrated navigation solution performs steady, while 
the positioning errors of GNSS stand-alone system reach 
several meters, especially in height. Under the circum-
stance with the limitation set by the FDE mechanism in 
LM, it can significantly reduce the mean error in height 
of GNSS from 7 to 0.47  m with an improvement by 
69.62%. However, the application of NDT in the GNSS 
challenging environment shares the same characteristics 

Fig. 11  Trajectories of estimated navigation solutions in the open sky area. a With INS/GNSS-based initial guess; b With GNSS-based initial guess
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Fig. 12  Dynamic map in GNSS blocked area. a Top view of INS/GNSS-based dynamic map; b Top view of GNSS-based dynamic map; c Perspective 
view of INS/GNSS-based dynamic map; d Perspective view of GNSS-based dynamic map
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Table 4  Mean error statistic of INS/GNSS-based estimated navigation solution in GNSS-challenging environment

E (m) N (m) U(m) Along-track (m) Cross-track (m) H (m) 3D (m) 3D
Improve (%)

INS/GNSS (initial guess) 0.28 0.44 0.06 0.46 0.25 0.52 0.52 –

INS/GNSS + NDT + FDE (LM) 0.24 1.27 0.47 1.25 0.30 1.29 1.37 –161.97

INS/GNSS + NDT + FDE (LM + LO) 0.24 0.42 0.06 0.44 0.24 0.48 0.48 8.33

Table 5  Mean error statistic of GNSS-based estimated navigation solution in GNSS-challenging environment

E (m) N (m) U(m) Along-track (m) Cross-track (m) H (m) 3D (m) 3D
Improve (%)

GNSS (initial guess) 2.67 2.04 7.03 2.17 2.40 3.36 7.79 –

GNSS + NDT + FDE (LM) 0.43 2.28 0.47 2.26 0.53 2.23 2.36 69.62

GNSS + NDT + FDE (LM + LO) 0.43 1.95 0.42 1.97 0.31 1.99 2.04 73.81

Fig. 13  Trajectories of navigation solutions in the GNSS challenging environment. a With INS/GNSS-based initial guess; b With GNSS-based initial 
guess
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as the results in the open sky area. Lacking robust fea-
tures in the along-track direction leads to a relatively 
a large error in this direction in a comparison with the 
cross-track error. Finally, applying an aid with the FDE 
mechanism in LO, a significant improvement in accuracy 
can be achieved in the GNSS-challenging environment, 
8.33% for INS/GNSS-based navigation solution, while 
73.81% for GNSS-based navigation solution. The trajec-
tories of navigation solutions mentioned in Tables 4 and 
5 are plotted in Fig. 13.

To sum up, in the open sky area both the INS/GNSS 
integrated solution and the DGNSS solution can achieve 
the lane-level navigation grade accuracy (0.5  m) with-
out LiDAR assistance. However, in the GNSS challeng-
ing environment with unreliable initial guess, the FDE 
refuses to apply a false initial guess, and the LiDAR shows 
error constraint ability by scan to dynamic map. Mean-
while, the other application of the FDE effectively assist 
the system to output more accurate navigation solution, 
especially in GNSS challenging scenario.

Conclusions
This paper analyzes the performance with the different 
initial guesses for the LiDAR-SLAM-based PNT estima-
tion system through the NDT scan matching. The initial 
guesses for LiDAR SLAM are received by conventional 
sensors, one is the GNSS stand-alone navigation sys-
tem and the other is the integration of INS/GNSS after 
the EKF Loosely Coupled scheme. The low-cost LiDAR 
sensor, the VLP16, can only receive the sparse point 
cloud, so it has more limitations while doing scan match-
ing. Therefore, the NDT method is selected to realize 
distribution-based scan matching between consecutive 
point clouds. However, the height will drift with time in 
the raw NDT process, while NDT is sensitive to initial 
pose offset. To this end, the FDE mechanism is applied 
sequentially, which is for LiDAR Mapping and LiDAR 
Odometry.

To test the effect of the initial pose offset on the 
LiDAR-SLAM-based PNT system, the experiment was 
conducted with two scenes: an open sky area and GNSS 
challenging environment. The results turn out that con-
ventional navigation sensors can provide more accurate 
navigation solution than the one adding NDT in open 
sky area. As the conventional method can reach where-
in-lane level grade accuracy (0.5 m), and there are fewer 
robust man-made structures in along-track direction for 
NDT scan matching.

However, in GNSS-challenging environment, it’s obvi-
ous that in the environment with less reliable GNSS sig-
nal, the INS/GNSS integrated shows a better navigation 

result than DGNSS stand-alone solution, but it still falls 
within lane level navigation grade accuracy (1.5  m). 
Although with unreliable initial guess, the application 
with NDT and FDE works well with the accuracy of 
where-in-lane level grade (0.5  m) with the INS/GNSS 
integrated system and 74% improvement in the naviga-
tion accuracy with the DGNSS stand-alone system.

For future work, the FDE mechanism will be added 
before the initial guess is treated as the input of LiDAR-
SLAM-based PNT system, to remove unreliable posi-
tioning results in the GNSS-challenging area. It can also 
make the initial guesses more robust and, output a more 
accurate navigation solution after the LiDAR-SLAM-
based PNT system.
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