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Abstract 

Visual-Inertial Odometry (VIO) has been developed from Simultaneous Localization and Mapping (SLAM) as a low-
cost and versatile sensor fusion approach and attracted increasing attention in ground vehicle positioning. However, 
VIOs usually have the degraded performance in challenging environments and degenerated motion scenarios. In 
this paper, we propose a ground vehicle-based VIO algorithm based on the Multi-State Constraint Kalman Filter 
(MSCKF) framework. Based on a unified motion manifold assumption, we derive the measurement model of manifold 
constraints, including velocity, rotation, and translation constraints. Then we present a robust filter-based algorithm 
dedicated to ground vehicles, whose key is the real-time manifold noise estimation and adaptive measurement 
update. Besides, GNSS position measurements are loosely coupled into our approach, where the transformation 
between GNSS and VIO frame is optimized online. Finally, we theoretically analyze the system observability matrix and 
observability measures. Our algorithm is tested on both the simulation test and public datasets including Brno Urban 
dataset and Kaist Urban dataset. We compare the performance of our algorithm with classical VIO algorithms (MSCKF, 
VINS-Mono, R-VIO, ORB_SLAM3) and GVIO algorithms (GNSS-MSCKF, VINS-Fusion). The results demonstrate that our 
algorithm is more robust than other compared algorithms, showing a competitive position accuracy and computa-
tional efficiency.

Keywords Sensor fusion, Visual-inertial odometry, Motion manifold constraint

Introduction
Accurate pose estimations are essential for abun-
dant robotic applications, such as autonomous driving 
(Xiong et  al., 2021), human navigation (Li et  al., 2020), 
unmanned drone delivery, automatic inspections, etc. 
Usually, vehicles can be positioned by carrying the Global 
Navigation Satellite System (GNSS) module or LiDARs 
which are also widely applied in robot navigation as 
useful range sensors (Nüchter et  al., 2007). Multi-layer 
LiDARs are heavy and expensive among many sensors. 

In comparison, Visual-Inertial Odometry (VIO) is more 
popular because it uses a small and lightweight sensor 
package and works well in environments where GNSS 
signals are rejected (Sun et al., 2018).

Although VIOs generally achieve high accuracy in 
indoor environments, achieving the same good perfor-
mance for ground vehicles in outdoor environments 
like urban areas is difficult. Firstly, outdoor environ-
ments typically lack reliable features, and rapidly mov-
ing vehicles can present a significant challenge for 
feature matching. Secondly, considerable noise can be 
generated while driving due to the ground’s unevenness 
and the vehicle’s vibration. In addition, the restricted 
motion on the ground may suffer from the additional 
unobservable Degree of Freedom (DOF) (Wu et  al., 
2017). To address the inadequacy of visual and inertial 
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sensors in the ground vehicle environment, additional 
observations are required to constrain the vehicle state 
and reduce the divergence of positioning error.

Integrating the GNSS sensor is an alternative sen-
sor fusion scheme for eliminating the accumulated 
errors (Li et  al., 2021). Utilizing the derived positions 
from GNSS, GNSS-VIO can become fully observable 
and realize a global drift-free localization. However, 
the integration with the additional sensor may increase 
the complexity of the navigation system, especially for 
a graph optimization-based framework (Gong et  al., 
2020; Cioffi & Scaramuzza, 2020). Some Kalman filter-
based methods like Multi-State Constraint Kalman Fil-
ter (MSCKF) (Mourikis et al., 2007) have demonstrated 
both precision and computational efficiency, thus we 
focus a filter-based scheme for sensor fusion.

The kinematic constraint is another effective auxil-
iary update information for improving error estima-
tion based on the fact that the robots are on the ground 
manifold (Li et al., 2012). It does not require additional 
sensors and has strong autonomy (Ning et  al., 2021). 
There are various descriptions of kinematic constraints 
such as the Non-Holonomic Constraint (NHC) and 
plane constraint, whose models depend on some spe-
cific motion manifolds. but they lack a unified repre-
sentation which can be extended to specific constraints 
easily. Meanwhile, although the measurement model 
can be derived theoretically, real world scenes may not 
satisfy the model assumption. It should be noted that 
the noise of motion manifold constraints is highly cor-
related with the vehicle’s motion. The model assump-
tion may not be satisfied when the vehicle bumps or 
turns. Therefore, adaptive filtering is a viable approach 
to tackling the challenge. Furthermore, its effect on the 
system observability should be investigated to guaran-
tee that it is beneficial for a new measurement.

This paper focuses on the fusion of VIO, GNSS, and 
motion manifold constraints to cope with the chal-
lenges of accuracy and time efficiency. Our contribu-
tions are as follows:

• We provide a GNSS-aided filter-based VIO 
approach, which introduces multiple measure-
ments including visual measurements, GNSS posi-
tions, and motion manifold constraints.

• We provide a unified motion manifold measure-
ment model, including rotation, velocity, and trans-
lation constraints, and propose an adaptive filtering 
algorithm to promote the measurement robustness.

• By defining the local observability matrix, we ana-
lyze the impact of multiple constraints on the 
whole system.

The remaining paper is organized as follows: the second 
section discusses the related work. Then, we sort out the 
overall framework of the proposed algorithm, where the 
motion manifold constraint-based filtering method is 
detailed. The fourth section analyzes the system’s observ-
ability in an ideal model. In the evaluation section, our 
work is compared with different VIOs and GNSS-VIOs 
in the simulation and urban datasets. The final section 
concludes the paper.

Related works
Visual‑inertial odometry
As a multi-sensor fusion approach, VIO is applied to 
harsh scenarios such as texture-less, motion blur, and 
occlusions. In addition, it solves the scale estimation 
problem of monocular visual Simultaneous Localization 
and Mapping (SLAM) (Campos et  al., 2021b). In gen-
eral, VIO updates poses by filter-based methods (Ribeiro, 
2004; Wan, 2000) or graph optimization-based methods 
(Grisetti et al., 2011).

Several graph optimization-based VIO algorithms 
can significantly improve the accuracy. Representative 
approaches include OKVIS (Leutenegger et al., 2013) and 
VINS-Mono (Qin et  al., 2018), which develop an Iner-
tial Measurement Unit (IMU) pre-integration technique 
(Forster et  al., 2015), and ORB_SLAM3 (Campos et  al., 
2021b) introduces ORB corner extraction method.

As a tightly coupled approach, MSCKF inherits the 
filtering framework of EKF and solves the problem of 
excessive dimension growth in EKF, which has the great 
advantages of accurate positioning and light weight. 
MSCKF is further refined by deriving a closed-form IMU 
state transition equation and applying First Estimate Jac-
obian (FEJ) for improving consistency (Li & Mourikis, 
2013). MSCKF has also extended to a stereo version (Sun 
et  al., 2018), which is applied to Micro Aerial Vehicles 
(MAVs).

There are several works on GNSS-VIO fusion. Qin 
et  al. (2019) propose VINS-Fusion which is a loosely-
coupled estimator fusing GNSS relative poses based on 
VINS-Mono. Gong et  al. (2020); Cioffi and Scaramuzza 
(2020) adopt a loosely coupled graph optimization-
based approach using GNSS position and velocity. Cao 
et  al. (2022), Liu et  al. (2021), however, tightly couple 
raw GNSS data into the visual-inertial system. Li et  al. 
(2022) utilize Precise Point Positioning (PPP) in a factor 
graph framework and improves the accuracy through 
high precision carrier phase. Liu et al. propose g-MSCKF 
and emphasize its observability-aware advantage, while 
Lee et  al. (2022) optimize the spatiotemporal calibra-
tion between IMU-GNSS in the proposed GAINS. These 
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filter-based works show a comparable level of perfor-
mance compared to optimization-based methods, yet 
they have not taken into account manifold constraints in 
challenging environments.

Kinematic constraints in vehicle localization
Pose estimation can be optimized for vehicle localization 
with the prior constraint information on the vehicle body 
and the ground. Kinematic constraints are combined in 
filter-based (Ma et al., 2019) and optimization-based (Yu 
et al., 2021) VIO based on Ackerman steering model. In 
LARVIO proposed by Xiaochen et  al. (2020), the appli-
cation of Zero Velocity Update (ZUPT) is judged by the 
movement of the visual image pixels. ZUPT can prevent 
the divergence of filtering effectively, while it can only 
work in the scenario of a stationary vehicle. Tian et  al. 
(2021) recover the scale by optimizing the height differ-
ence between the vehicle and the ground. Zhang et  al. 
(2021) reconstruct the full three-dimensional value of 
angular velocity through mathematical derivation with 
the constraints of wheel odometer and ground manifold.

Another kinematic constraint, namely NHC, is appli-
cable in Inertial Navigation Systems (INS) for land 
vehicles (Sukkarieh, 2000; Shin et al., 2002). 3D Auxil-
iary Velocity Updates (AVUs) encompassing NHC and 
odometer-derived velocity are used to improve the 
accuracy when GNSS signals are blocked (Niu et  al., 
2007). And Zhang et  al. (2021) propose a novel algo-
rithm to meet the need for all-wheel steering robot 
positioning, which extends the application of kinematic 

constraints. However, these works are often combined 
with GNSS sensors and are rarely associated with VIO. 
Apart from NHC, some works are trying to enhance 
localization accuracy by imposing plane constraints 
(Wu et  al., 2017; Panahandeh et  al., 2012), which can 
correct the system solution effectively. Nevertheless, 
these kinematic constraints have not been incorporated 
into a unified manifold representation, and most of 
them do not consider the adjustment of measurement 
noise, which has a great influence on the robustness of 
positioning in real scenarios.

Table 1 Glossary of notations

Symbol Meaning

G World frame

N East-North-Up(ENU) frame

b Body frame

I IMU frame

C Camera frame
B
A
q(B

A
R) Rotation from frame A to frame B

BvA Frame A’s velocity in frame B

BpA Frame A’s position in frame B

x̂ Estimated value of x

x̃ Error value of x

ei The ith column of I3

Fig. 1 M2C-GVIO system overview
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Filter description
Before describing the overall filtering algorithm, we fol-
low the notation in (Sun et  al., 2018). The coordinate 
frames and some notations involved are clarified in 
Table 1. The IMU frame and body frame are equivalent 
by default in the following discussion. Our system over-
view is illustrated in Fig. 1.

State definition
The state vector of the system is defined as:

where IGq is the rotation from the global frame to the 
IMU frame, bg and ba are the biases of the measured 
angular velocity and linear acceleration from IMU. GvI 
and GpI are the velocity and position of the IMU frame in 
the global frame. ICq,

IpC are the extrinsic parameters for 
online calibration, and NGq and NpG represent the trans-
formation from the global frame to the ENU frame. XC 
is the augmented state following (Mourikis et al., 2007), 
and M is the length of the sliding window. For accuracy 
and convenience, we introduce the error state vector in 
the description of the filter:

where X̃I and X̃C are the error IMU state vector and error 
camera state vector respectively. θ̃ comes from the first 
three dimensions of the quaternion:

where the quaternion δq describes the small rotation that 
makes the true and estimated attitude coincide.

State propagation
For a low-cost IMU, the continuous kinematic model is 
given by Eq. (4) ignoring the earth rotation effect.
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where ωm and am are the angular velocity and linear 
acceleration in the local IMU frame. Gg is the gravity. 
ng and na are white Gaussian noises of the gyroscope 
and accelerometer measurements. nwg and nwa are the 
random walk rates of the gyroscope and accelerometer 
measurement biases (Sun et al., 2018). �(ω) is defined as:

After linearizing Eq. (4), we can obtain the error state 
propagation equation:

where nI =
[
nT
g nT

wg nT
a nT

wa

]T
 is the process noise. F is 

the continuous state transition matrix and G is the input 
noise Jacobian, as shown in Eq. (8). And the state covari-
ance is obtained by the discrete time state transition �k 
and noise covariance matrix Qk with respect to F and G . 
Then the propagated covariance is:

where Pk is the state covariance matrix at time step k, 
and Pk+1|k is the predicted covariance matrix at time step 
k + 1 based on the IMU inputs at time step k.

(4)






G
I q̇ = 1

2
Ω(ωm−bg−ng)

G
I q

Gv̇I= G
I R(am−ba−na )+

Gg
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IṗC = 03×1

N
Gq̇ = 03×1
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â×

�
03×3 I3×3 −G

I R̂ 03×3 03×12

03×3 03×3 03×3 03×3 03×3 03×12

03×3 03×3 I3 03×3 03×3 03×12

012×3 012×3 012×3 012×3 012×3 012×12





G =





−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −G
I R̂ 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

012×3 012×3 012×3 012×3







Page 5 of 15Hua et al. Satellite Navigation            (2023) 4:13  

State augmentation
When detecting a new image, we add the new camera 
error state XCM+1 to the sliding window. The covari-
ance matrix is also augmented by the Jacobian matrix 
J where:

Visual measurement model
After initializing the three-dimensional coordinates of 
multiple observed features by the triangulation method, 
a two-dimensional projection z of a feature point Gpf  on 
the normalized image plane is given by Eq. (10).

where Cpf =
[
Gxf

Gyf
Gzf

]T denotes the feature posi-
tion in the camera frame. Once the feature projection is 
estimated, the linear model of reprojection error can be 
derived:

where n is the observation Gaussian noise. To eliminate 
the influence of pf  in measurement, we define a uni-
tary matrix V whose columns form the basis of the left 
nullspace of Hf  (Mourikis et al., 2007), and transform Eq. 
(11) into:

where rc is the projected residual. The measurement 
update of Kalman filter can be performed using Eq. (12).

In the frontend implementation, we adopt the tech-
nology of contrast limited adaptive histogram equali-
zation (Zuiderveld, 1994) (CLAHE) to preprocess the 
image. This method not only enhances the image’s 
contrast so that the algorithm can be applied under 
weak light conditions but also reduces the noise, which 
is beneficial for feature matching. Similar methods 
are applied in (Campos et al., 2021b; Qin et al., 2018). 
Some VIOs use Fast detector (Sun et al., 2018; Bloesch 
et  al., 2015) to save computing resources. However, 
feature points such as ORB corners can achieve more 
accurate estimation if the vehicle has an aggressive 
motion in the outdoor scene. Finally, the KLT optical 
flow algorithm (Lucas & Kanade, 1997) and RANSAC 
method (Fischler & Bolles, 1981) are adopted to track 
the features and eliminate the outliers.

(9)
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Motion manifold measurement model
To describe the pose constraints of a robot on the 
ground, we model the ground as the general motion 
manifold (Zhang et al., 2021):

where p is the position of the ground robot. Meanwhile, 
when the ground robot is on the manifold, the z-axis 
in the global frame is collinear with the gradient of the 
motion manifold. Therefore the following equation holds:

Based on the above definitions and assumptions, some 
state constraints can be obtained.

Velocity constraints
When the ground vehicle is in close contact with the 
ground, the following equations can be derive from Eqs. 
(13) and (14):

A similar equation bvy = 0 holds since the vehicle is 
also on the motion manifold in the cross-track direc-
tion (y-axis). Assuming that the constraint in Eq. (15) is 
stochastic because of the deviation in the real world, the 
velocity measurement model can be obtained:

where rvel and Hvel are the residual and measurement 
Jacobian, respectively. �1 =

[
e2 e3

]T , nn is the observa-
tion noise, and the body frame is equivalent to the IMU 
frame. The noise setting of velocity constraints depends 
on the current motion, which will be elaborated in the 
adaptive filtering section.

A special scenario is that when there is no specific 
motion being detected which means p is constant in Eq. 
(13), and its first derivative (velocity) and second deriva-
tive (acceleration) should be zero. Thus we apply Eq. (17) 
as a pseudo-measurement of robot velocity and IMU 
acceleration bias:
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where rz is the velocity and acceleration bias residual, and 
am is the IMU acceleration measurement. Following Eq. 
(17), the corresponding measurement Jacobians are given 
by:

In the proposed scheme, we detect the static scene by the 
average moving pixel distance of features and the relative 
displacement of GNSS position measurements between 
two image frames. The constraint starts only when the 
calculated values are less than certain thresholds such as 
0.1 pixels for visual features or 0.005 m for GNSS meas-
urements, which depend on the image size and the noise 
of GNSS measurements.

Rotation & translation constraints
Assuming that the vehicle is running on the plane π (Wu 
et al., 2017), the motion manifold can be specified as:

where A =
[
a1 a2 a3

]
 . Furthermore, if π is set as the ini-

tial x-y plane of the global frame ( a0 = a1 = a2 = 0 ), the 
following equations hold:

where �2 =
[
e1 e2

]T . Thus a rotational roll-pitch con-
straint and a translation constraint on the z-axis can be 
obtained:

where zrot is the estimated roll and pitch, and ztran is the 
estimated translation on the z-axis. The corresponding 
measurement Jacobians are given by:

 where πGR is an identity matrix if π is the initial x-y plane 
of the global frame.
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GNSS position measurement model
Before constructing the GNSS measurement model, the 
frame transformation NGR and NpG is required. We ini-
tialize the transformation by a simple method.

We start by the GNSS position measurement:

The origin of the ENU frame is set as the first posi-
tion solution from GNSS sensor. We collect a sequence 
of VIO poses { GpI ,1, GpI ,2, ...,GpI ,n } and GNSS poses 
{ Gpgnss,1, Gpgnss,2, ...,Gpgnss,n } with a suitable traveling 
distance. By differentiating the poses, we can eliminate 
NpG:

We initialize the rotation NGR with the yaw angle by solv-
ing Eq. (25), and then the translation NpG can also be ini-
tialized following Eq. (24). Note that we do not require 
a least-squares method as Lee et  al. (2020) do since the 
simple initialization is reliable enough for ground vehi-
cles, which can be demonstrated in the experiment 
section.

The subsequent position measurements are converted 
from the Earth-Centered Earth-Fixed (ECEF) frame 
to the ENU frame and construct the hybrid measure-
ments. We loosely couple the GNSS position output 
in the measurement model. The measurement residual 
calculated in the ENU frame is given by:

with the Jacobian measurement matrix:

In Eq. (26), the global location is directly used as the posi-
tion measurement for each time step. The pose estima-
tion will be corrected by the motion manifold constraints 
in the GNSS-denied environment where GNSS measure-
ments may be inaccurate.

Adaptive filtering
For various scenarios, setting a fixed manifold con-
straint noise matrix in Eq. (16) is unrealistic and may 
worsen the pose estimation. We adopt an adaptive 
strategy to exploit the information on manifold con-
straints. It is noted from Eq. (15) that the derivative 
of the motion manifold is equivalent to the velocity 
in the body frame. Given a sequence of body velocity 
bvi, i = 1, 2, ..., n , we suppose the real-time observation 
noise matrix as:

(24)Npgnss = NpG + N
GR
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(25)Npgnss,n − Npgnss,1 = N
GR(

Gpgnss,n − Gpgnss,1)
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(27)H g =
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N
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where zn = [bvy bvz]T . In Eq. (28) bvy and bvz are 
assumed to be independent. We use Root Mean Square 
(RMS) as the criterion of the algorithm to evaluate R̂k 
assuming that the expectation of bvy and bvz is zero:

(28)R̂k = E
�
znz

T
n

�
=




E
�
bv2y

�
0

0 E
�
bv2z

�
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Therefore, we propose an adaptive filtering algorithm for 
the motion manifold, as shown in Algorithm. 1. For each 
iteration, we check four conditions from C1 to C4 . C1 means 
that the manifold constraints are not required under low 
speed motions, and C2 determines whether the current 
state conforms to the manifold assumption in Eq. (15). C3 is 

Fig. 2 Hybrid measurement update. Once comes a new image 
frame, the manifold noise is updated. However, the motion manifold 
constraint is only performed when the four conditions in Algorithm 1 
are met
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the most critical one. We take the RMS of Gvb computed in 
Eq. (29) as the evaluation standard of the filtering effect. In 
C4 we take the feature matching ratio rf  in the frontend as 
the criterion to measure the quality of visual observations. 
Manifold constraints are enabled when rf  is low enough, 
which means that visual observations may have large devia-
tions. These four conditions guarantee both effectiveness 
and precision in pose estimation. Intuitively, the RMS of 
Gvb should be reduced after the measurement update is 
completed. In the next stage of the hybrid measurement 
update (visual update and manifold constraint), the RMS 
is set as the new observation noise, as shown in Fig. 2. A 
Mahalanobis distance test (chi-square test) is employed 
for all the measurements to detect and eliminate potential 
outliers.

Observability analysis
Observability matrix
Observability reveals whether the information provided 
by the sensor measurements is sufficient to estimate the 
states without ambiguities (Huai & Huang, 2018). Since 
MSCKF and EKF-SLAM use the same visual measure-
ments and linearization operation, we can perform observ-
ability analysis from the perspective of EKF-SLAM, which 
has the same observability property as MSCKF. Among the 
estimated states of the algorithm we proposed, IMU biases 
can prove to be observable (Kelly & Sukhatme, 2011). Con-
sidering that the measurement model in Eq. (17) only takes 
effect in static scenes, we ignore it in the following analy-
sis. Lee et al. (2020) have proved that GNSS-VIO has the 
same four unobservable directions as VIO if estimating 
states in the VIO frame (i.e., the global frame). At the same 
time, it is fully observable if estimating states in the ENU 
frame. Hence we focus on the motion manifold constraints’ 
impact on observability. For the sake of simplicity, we only 
analyze the three state variables of rotation IGq , velocity GvI 
and translation GpI . The observability matrix in the period 
[ m,m+ n ] is defined as:

where Hk is the measurement matrix at time step k, and 
�k is the state transition matrix from k to k + 1 . At time 
step k, the state vector XI is defined as Eq. (31) if there are 
K features observed by the camera in the time interval 
[m,m + n] (Fig. 3):

The observation of the system includes visual measure-
ments and motion manifold constraints. We denote 
Hv = Hvel and Hp =

[
HT

rot HT
tran

]T for convenience. The 
measurement matrix is a stack of three Jacobian matrices:

The Jacobian Hc,k contains K block rows for the form of 
i-th block rows:

while Hv,k and Hp,k are given in Eq. (34) and Eq. (35):

Similarly, the block row Θk of the observability matrix 
encompasses three parts:

(31)X I =

[
I

Gq
T G

v
T

I

G
p
T

I

G
p
T

1
. . . G

p
T

K

]

(32)Hk =
[
HT

c,k HT
v,k HT

p,k

]T

(33)H
(i)
c,k =

[
H

(i)
I ,k 03×3 . . . H

(i)
f ,k . . . 03×3

]

(34)Hv,k = �1

[⌊
Ik v×

⌋ Ik
GR 03×3 03×3K

]

(35)Hp,k =
[
�2

G
Ik
R⌊e3×⌋ 02×3 02×3 02×3K

01×3 01×3 eT3 01×3K

]

Fig. 3 State vector in the obervability analysis
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Θc,k can refer to the conclusion in (Li & Mourikis, 2013), 
while Θv,k and Θp,k are derived in Eq. (37):

(36)Θk =
[
ΘT

c,k ΘT
v,k ΘT

p,k

]T

(37)






Θv,k = Hv,kΦk−1Φk−2 · · ·Φm = �1

�
(
Ik
GR

�
(Gvg )×

�
G
Im
R

Ik
GR 03×(3+3K )

�

Θc,k = Hp,kΦk−1Φk−2 · · ·Φm =





�2(
G
Ik
R⌊e3×⌋IkImR) 02×3 02×3 02×(3+3K )

− eT3
�
�p×

�
eT3 �t eT3 01×(3+3K )





Φk =
�
ΦIk 09×3K

09×3K I3K×3K

�

where Gvg = GvIm + Gg�t,�p = GpIk − GpIm − GvIm�t

− 1

2

Gg�t2,�t = �tk−1 + ...+�tm . According to (Li 
et al., 2012), the nullspace matrix of Θck

 is given by:

It can be verified that N is also the nullspace of Θv,k , i.e., 
Θv,k ·N = 0 , which means velocity constraints do not 
change the unobservable dimensions ideally. And for 
rotation and translation constraints, Θp,k ·N �= 0 . Spe-
cifically, the z-axis of position is observable because of 
the plane assumption.

Observability measure
By establishing a local observability matrix in a short 
time, we can obtain the observability, and observable 
dimensions of the system (Butcher et al., 2017). Previ-
ous analysis indicates that the observable dimension 
of the system has not changed. The observability of 
the original observable dimensions can be measured 
by quantitative observability. Gramian matrix, which 
is a common measure of observability, is introduced 
to evaluate the observability of the EKF system with 
motion manifold constraints.

The Gramian matrix measures the sensitivity of the 
output concerning the initial condition. The discrete-
time Gramian matrix is defined as:

(38)N =





03×3
Im
G RGg

03×3 −
�
Gvm×

�
Gg

I3 −
�
Gpm×

�
Gg

I3 −
�
Gpf1×

�
Gg

I3 −
�
Gpf2×

�
Gg

...

I3 −
�
GpfK×

�
Gg





Table 2 Simulation configurations

Parameter Value

IMU frequency 100 Hz

Camera frequency 10 Hz

GNSS frequency 10 Hz

Gyroscope noise 0.0001 rad/s/
√
Hz

Acceleration noise 0.0005 m/s2/
√
Hz

Gyroscope random walk 0.000005 rad/s2/
√
Hz

Acceleration random walk 0.00004 m/s3/
√
Hz

GNSS position error 0.5 m

Image width 640 pixels

Image height 640 pixels

Feature observation noise 1.5 pixels

Fig. 4 True trajectory and landmarks
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We take the obsevability index (OI) in Eq. (40) as the 
obsevability measure:

Motion manifold constraints can enhance observability, 
which will be verified in the following section.

(39)

Wd =
r∑

k=m

Wd(xk ,tk)

=
r∑

k=m

ΦT (tk ,tm)H
T
k HkΦ(tk ,tm)

(40)OI = log10(max(σ (Wd)))

Evaluation
In order to validate the effectiveness of our proposed 
approach, we conduct the simulation and real world tests 
on different public datasets. Our experiments are con-
ducted on a laptop with Intel(R) Core(TM) i7-10710U 
CPU@1.10Ghz and 16 G RAM.

Simulation
In the simulation test, we assume that the car is mov-
ing along a circle on a plane. A total of 200 landmarks 
are scattered around the real trajectory, as shown in 
Fig. 4. The car loops three times in a circle with a radius 
of 100 m. The landmarks are generated along the inside 
cylinder wall with a radius of 90 m and outside cylinder 
walls with a radius of 110 m. The camera captures land-
marks in the field of view of the camera within a range 
of 20  m. We generate sensor measurements with noise 
according to the trajectory and landmarks. The yaw angle 
between the ENU and global frame is set as 10◦ . Specific 
configurations are shown in Table 2.

Position accuracy
The forward direction of the car corresponds to the 
y-axis of the IMU frame and the camera frame, so the 
body velocity in the x-axis and y-axis is constrained. In 
the simulation test, four algorithms are compared: stand-
ard MSCKF (benchmark), MSCKF+MC(Manifold con-
straints), MSCKF+GNSS, and MSCKF+GNSS+MC. 
The pose errors and trajectories are illustrated in 
Fig. 5 and Fig. 7. From Fig. 7a and b, we notice that the 
drift of pose error is bounded in MSCKF+GNSS and 
MSCKF+GNSS+MC due to the global measurements. 
The pose error is reduced when introducing manifold 
constraints, especially in the yaw and z-axis position 
estimation (see Fig. 7c and d), which confirms the effec-
tiveness of the manifold constraint. Table 3 lists the total 
Average RMSE (ARMSE) and Reduction Rate (RR) com-
pared to MSCKF. We can note that MSCKF+GNSS+MC 
achieves the highest reduction rate for the position error, 
which outperforms the algorithms that only combine 
GNSS or manifold constraints.

Fig. 5 Top view of the simulation trajectory

Table 3 Comparison of average RMSE on different algorithms in 
the simulation

Position(m)/ Orientation(deg)/
RR(%) RR(%)

MSCKF 1.40 0.13

MSCKF+MC 1.35/3.57 0.11/15.38

MSCKF+GNSS 1.23/12.14 0.12/7.69

MSCKF+GNSS+MC 1.00/28.57 0.12/7.69

Fig. 6 Comparison of oberservability w.r.t. motion manifold 
constraints
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Table 4 Trajectory RMSE(m) on the Brno urban dataset

a × means VIO fails to initialize or track features, and bold value means the best result

Sequence(Brno‑) Distance (m) Alogorithm

Ours Ours(w/o 
adaptive)

MSCKF VINS‑Mono R‑VIO ORB_SLAM3

1_1_6_1(loops) 1480 25.37 41.07 38.75 13.78 30.06 32.23

1_2_1_1(turnings) 1570 22.66 23.02 30.24 138.80 51.70 46.09

1_2_1_2(turnings) 1570 8.45 15.42 51.52 24.98 57.12 ×
1_2_6_1(parkings) 730 35.26 40.29 45.38 43.33 29.78 ×
2_1_10_1(turnings) 3700 15.04 35.41 31.62 ×a 82.44 ×
2_1_10_3(bumps) 1150 16.06 19.45 32.23 185.76 29.04 ×

Fig. 7 Comparison of pose errors in 50 Monte Carlo runs. a Position ARMSE; b Orientation ARMSE; c Position ARMSE on the z-axis; d Yaw ARMSE
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Observability measures
We compare the observability index in Eq. (40) by cal-
culating the Gramian matrix. We calculate the Gramian 
matrix for each time step, and the result is shown in 
Fig. 6. The observability index of MSCKF+MC is higher 
than that of MSCKF, indicating better observability.

Real world test
VIO+Manifold constraints
We compare the performance of motion manifold con-
straint-aided VIO without GNSS measurements. Both 
filter-based (MSCKF, R-VIO (Huai & Huang, 2018), 
and our algorithm without adaptive filtering strat-
egy) and optimization-based methods (VINS-Mono, 
ORB_SLAM3) are included in our comparison test 
on Brno Urban Dataset (Ligocki et  al.,  2020), which 
provides data from four WUXGA RGB cameras with 
1920×1200 pixels and 400Hz IMU. We intercept parts 
of datasets lasting for about three minutes, including 
parking, turnings, loops, bumps, and other scenes. The 
scenarios of sequence Brno-2_1_10_1 and sequence 
Brno-2_1_10_3 are at night, as shown in Fig.  8. For 
each trial, estimated trajectories are aligned with the 
ground truth trajectories using Umeyama’s method 
(Umeyama, 1991). Table  4 concludes the errors of 
aligned trajectories on Brno Urban datasets, and Fig. 9 
shows the estimated trajectories on a typical sequence 
Brno-1_2_1_2.

It can be noted that motion manifold constraints reduce 
the divergence of pose estimation effectively under spe-
cial scenarios. In night scenarios (Brno-2_1_10_1, Brno-
2_1_10_3) with scarce visual information, VINS-Mono 
and ORB_SLAM3 have a worse performance due to the 
difficulty in the convergence of visual error, while our 
work can make up for this disadvantage well. And in the 
textureless and weak light scenario (Brno-1_2_6_1), our 

Fig. 8 A sample in Brno-2_1_10_1 (night scenario)

Fig. 9 Trajectories on Brno-1_2_1_2

Fig. 10 A challenging section sample and the feature extraction in 
Kaist Urban sequence 38

Table 5 Trajectory RMSE(m)/backend processing time per frame(ms) on the Kaist Urban dataset

Bold values mean the best one of RMSE for each sequence

Kaist 30 Kaist 31 Kaist 32 Kaist 33 Kaist 38

VINS-Mono 201.44/20.02 343.69/14.18 34.72/11.29 23.07/21.29 88.00/23.90

Pure GNSS 10.53/× 7.47/× 4.85/× 9.01/× 15.26/×
GNSS-MSCKF 9.88/4.65 25.44/3.90 8.33/6.18 10.88/5.21 10.41/5.12

VINS-Fusion 39.63/27.52 23.47/18.17 6.79/14.65 5.25/27.6 10.28/27.93

Ours 6.92/5.01 4.46/4.73 2.65/6.59 3.80/5.66 7.89/6.34
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method also achieves a small gain with the assistance of 
motion manifold constraints compared with MSCKF. 
And in some sequences (Brno-1_1_6_1, Brno-2_1_10_1) 
which incorporate drastic driving motions like bumps or 
fast turns where fixed kinematic noise can not guarantee 
a positive constraint effect, whereas adopting an adaptive 
strategy is more reasonable. In general, our algorithm can 
handle different types of motion better and report more 
accurate results than other algorithms for most cases.

VIO+GNSS+Manifold constraints
We use Kaist Urban dataset (Jeong et al., 2019) to evalu-
ate the performance of VIO with GNSS measurements. 
Kaist Urban dataset is collected with a 100Hz IMU, a 
10Hz stereo camera, a commercial GPS sensor measur-
ing the positions, and a high-precision RTK. We select 
the left camera, IMU, and GPS sensors for our test, as 
shown in Fig. 11. Originally the ground truth is generated 

by graph SLAM, and we transform its local coordinate 
into the ECEF frame by aligning it with RTK data in fixed 
status and further transforming the coordinate to the 
ENU frame. We compare our algorithm with pure GNSS, 
VINS-Mono, MSCKF with GNSS, and VINS-Fusion 
(Qin et al., 2018) on five Kaist Urban sequences, among 
which Kaist 31 and 38 have a long distance of 10.7  km 
and 11 km respectively. Note that we select the first static 
scene as the starting point of the trajectories because of 
the requirement for static initialization in MSCKF. Fig-
ure  10 shows an example of challenging sections and 
feature extraction in Kaist Urban dataset. For time effi-
ciency comparison, we count the total processing time of 
the algorithms in the backend for each trial and calculate 
the average time per image frame. The trajectories and 
numerical results are reported in Fig. 12 and Table 5.

It is noted that the VIO pose estimation achieves a 
higher accuracy with GNSS measurements. Compared 
with VINS-Fusion which does not explicitly initialize 
the ENU to VIO frame transformation, our algorithms 
demonstrate its comparative effect on both accuracy 
and time efficiency. There are some cases that VINS 
Fusion’s performance is much worse than pure GNSS 
(Kaist 30, Kaist 31) since the VIO pose has a large devi-
ation dragging down the fusion accuracy with GNSS. 
Compared with GNSS-MSCKF, our proposed algo-
rithm shows a moderate decrease in RMSE in Kaist 31 
and Kaist 38, which demonstrates the effectiveness of 
the motion manifold constraints. In terms of backend 
processing time, optimization methods like VINS-
Mono and VINS-Fusion are much more time-consum-
ing compared with filtering methods (GNSS-MSCKF 
and our proposed method). Although our methods 
consume more time (about 1.2ms per frame) than 

Fig. 11 Selected sensors (green boxes) in the Kaist Urban dataset 
Choi et al. (2018)

Fig. 12 Trajectories on Kaist Urban sequences with the start (red triangle) and the end (black triangle). a Kaist 31; b Kaist 38



Page 14 of 15Hua et al. Satellite Navigation            (2023) 4:13 

GNSS-MSCKF, the extra time spent is acceptable. To 
sum up, our algorithm strikes a better balance between 
accuracy and time efficiency.

Conclusion
This paper presents a GNSS-aided VIO which loosely 
couples the GNSS position measurements. We formu-
late a unified framework on motion manifold to repre-
sent multiple motion manifold constraints which are 
specified under additional conditions. To address the 
challenge of time-varying noise for ground vehicles, 
we propose an adaptive filtering method for motion 
manifold constraints and derive the observability of the 
system, including the observability matrix for motion 
manifold constraints. Simulation and real world tests 
demonstrate the effectiveness of our system. In the 
future, we will introduce more robust visual estimation 
methods and achieve better scenario adaptability.
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