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Abstract 

Single receiver positioning has been widely used as a standard and standalone positioning technique for about 
25 years. To detect the slowly growing faults caused by satellite and receiver clocks in single receiver positioning, the 
Autonomous Integrity Monitoring with an Extrapolation method (AIME) was proposed based on the Kalman filter 
measurement domain. However, AIME was designed with the assumption of there is the same number of visible 
satellites at each epoch, which limits its application. To address this issue, this paper proposes a state-domain Robust 
Autonomous Integrity Monitoring with the Extrapolation Method (SRAIME). The slowly growing fault detection 
statistics is established based on the difference between the estimates of the state propagator and the posterior state 
estimation in Kalman filtering. Meanwhile, singular value decomposition is adopted to factor the covariance matrix 
of the difference to increase computational robustness. Besides, the relevant formulas of the proposed method are 
theoretically derived, and it is proven that the proposed method is suitable for any positioning model based on the 
Kalman filter. Additionally, the results of two experiments indicate that SRAIME can detect slowly growing faults in 
single receiver positioning earlier than AIME.
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Introduction
In the 1980s, single receiver positioning based on pseudo-
range measurements was the mainstream dynamic posi-
tioning, while the carrier phase measurements were 
mainly used for static geodetic surveys. With the further 
development of the Global Navigation Satellite System 

(GNSS), the carrier phase-based positioning has been 
widely used. It is acknowledged that ambiguity resolution 
is the key to high-precision positioning. Real-Time Kin-
ematic (RTK) technique can quickly fix ambiguity by per-
forming double-difference processing of the observations 
of the reference station and the rover (Gao et  al., 1997; 
Wanninger, 1995). Compared with the RTK position-
ing that requires two receivers, Precise Point Positioning 
(PPP) can achieve high-precision positioning with only 
one receiver, and also provide high-precision services 
to the users in the environments and scenarios such as 
gobi, mining, and offshore, where RTK services are not 
applicable. The concept and model of PPP were first 
proposed in 1997 (Zumberge et al., 1997). Meanwhile, a 
precise data processing software GIPSY was developed 
with a plane accuracy of 1 cm and an elevation accuracy 
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of 2 cm. Besides, by combining PPP and RTK, PPP-RTK 
can achieve fast convergence (Li et al., 2022a, b). It was 
confirmed that attributed to the reduction of the mul-
tipath effect, the application of a survey-grade antenna 
instead of the patch one can significantly improve the 
performance of low-cost receiver Single-Frequency 
Ionospheric-Free Precise Point Positioning (SF-IF PPP) 
(Paziewski, 2022). Moreover, the PPP technique on 
smartphones has attracted increasing interest in recent 
years (Li et al., 2022c; Shinghal et al., 2021), and a Mixed 
Single- and Dual-frequency Quad-constellation Precise 
Point Positioning (MSDQ-PPP) model was developed to 
improve the positioning performance on smartphones by 
exploiting all available GNSS observations (Li and Cai, 
2022). The BeiDou Navigation Satellite System (BDS) has 
obtained global service capability since the launch of the 
55th BeiDou-3 Navigation Satellite System (BDS-3) sat-
ellite on June 23, 2020. A model of the multi-frequency 
kinematic PPP of Global Positioning System (GPS), Bei-
Dou-2 Navigation Satellite System (BDS-2), and BDS-3 
based on vehicle-borne data was evaluated to fully utilize 
BDS-2 + BDS-3 signals (B1I, B2I, B3I, B1C, and B2a) (Bu 
et al., 2020; Lv et al., 2022).

The Kalman filter plays an important role in GNSS 
data processing. A basic assumption for the application 
of standard Kalman filtering is that both the dynamic 
model and the stochastic information provided to the fil-
ter are accurate (Hide et  al., 2003). Any deviation from 
this assumption or the existence of many outlying obser-
vations can result in poor performance such as abrupt 
faults and slowly growing faults in the filtering result 
(Geng et al., 2008; Wang 2009). Therefore, it is necessary 
to conduct fault detection to ensure the positioning reli-
ability and precision (Bruggemann et al., 2011; Du et al., 
2021; Liu et al., 2016).

In fault detection, the chi-square test methods are the 
classical ones and have been widely used, because they 
can detect the faults caused by the outliers in the meas-
urements and inaccurate dynamic models or random 
information of the Kalman filter. The methods determine 
the fault detection threshold based on the probability of 
a False Alarm (FA), so they do not require any user inter-
action. The Residual Chi-square Test Method (RCTM) 
detects faults based on the innovation of the Kalman fil-
ter (i.e., the measurement prediction error), and it can 
detect abrupt faults with a small amount of calculation 
(Zhu et al., 2016; Wang et al., 2020; Wang 2008; Gao et al., 
2021; Chen et al., 2021a). However, this method directly 
assesses the measurement prediction error, but indirectly 
the filtering state estimate error. In fact, accurate and 
consistent measurement predictions do not necessar-
ily contribute to accurate and consistent state estimates 
(Duník et al., 2018). Therefore, the State-domain Robust 

Chi-square Test Method (SRCTM) was proposed, and 
its fault detection statistics was based on the difference 
between the prior and posterior state estimations in 
the Kalman filter. Both RCTM and SRCTM can detect 
abrupt faults accurately, and they are equivalent under 
certain conditions (Yu et al., 2021).

The slowly growing fault was regarded as the worst 
fault mode (Bhatti et al., 2007a). Slowly growing faults are 
typical of the GPS and receiver clocks, and the snapshot 
integrity algorithms like RCTM and SRCTM take a long 
time to detect these types of faults because they need a 
lot of time to reach the fault threshold. AIME is a sequen-
tial algorithm where the measurements used are not lim-
ited to a single epoch, and its fault detection statistics is 
based on the RCTM (Diesel and King 1995). However, 
the assumption of the same number of visible satellites at 
each epoch limits its application, and thus AIME is suita-
ble for simulation-based fault detection, not for real-time 
fault detection. Similarly, the rate detector algorithms 
based on the statistics of AIME have the same defect 
(Bhatti et  al., 2007b, 2012). Additionally, AIME and the 
rate detector algorithms are all based on the innovation 
of the Kalman filter, indicating that they directly assess 
the measurement prediction error, but indirectly the fil-
tering state estimate error (Duník et al., 2018).

To overcome the aforementioned limitations, this 
paper proposes a state-domain robust autonomous integ-
rity monitoring with an extrapolation method, which 
directly works in the state domain, is suitable for any 
positioning model based on the Kalman filter, and can 
detect the slowly growing fault earlier.

The rest of this paper is organized as follows. In “The 
dynamic and observation equations of the single receiver 
positioning” Section lists the formulas of the dynamic 
and observation equations of the single receiver posi-
tioning. In “Problem formulation” Section, the effect of a 
slowly growing fault is evaluated, and AIME is reviewed 
and analysed. Then, SRAIME is derived and described 
in “Kalman filter for single receiver positioning” Section. 
In “Effect of a slowly growing fault” Section, the experi-
ments and its analysis are presented. Finally, the paper is 
concluded in “Autonomous integrity monitoring with the 
extrapolation method” Section.

The dynamic and observation equations of the single 
receiver positioning
In this section, an overview of single receiver positioning 
models including classical Single Point Positioning (SPP) 
and PPP is provided, and the formulation of the meas-
urements used in each positioning model is described in 
detail.

The pseudo-range observation equation of SPP can be 
expressed as:
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where P is the pseudo-range measurement, ρ is the true 
geometric range between the receiver and the satellite, 
cδt is the receiver clock offset scaled by the speed of light, 
I is the ionospheric delay, T  is the troposphere delay, and 
ε represents the unmodelled and residual errors.

The measurement model of SPP is established by Eq. (1) 
after a linearization at the approximate coordinates of the 
station:

where ρ0 is the approximate distance between the 
receiver and the satellite, D = I + T + ε , (l,m, n) are 
direction cosines, and (dX , dY , dZ) represents the 
receiver coordinate correction (Gaglione et al., 2015).

In the same way, the pseudo-range observation equa-
tion and the carrier phase observation equation of PPP 
are expressed as:

where Mwet is the tropospheric wet delay mapping func-
tion, dDw is the tropospheric zenith wet delay correction 
parameter, ε(P) represents the unmodelled and residual 
errors of the pseudo-range observation; L is the carrier 
phase measurement, � is the wavelength of the carrier, N  
is the phase ambiguity term (in cycles), and ε(L) repre-
sents the unmodelled and residual errors of the carrier 
phase observation.

The measurement model of PPP is established from 
Eqs.  (3) and (4) after a linearization at the approximate 
coordinates of the station:

where DP = I + T + ε(P) , DL = T − I + ε(L) (Sanz 
et al., 2013).

Combining (2), (5), and (6), the dynamic and observa-
tion equations of the single receiver positioning can be 
simplified as:

where xk represents the state of the system, including the 
receiver coordinate corrections, clock error corrections, 

(1)P = ρ − cδt + I + T + ε

(2)P − ρ0 − D = ldX +mdY + ndZ + cδt

(3)P = ρ − cδt + I + T +MwetdDw + ε(P)

(4)L = ρ − cδt − I + T +MwetdDw + �N + ε(L)

(5)
P − ρ0 − DP = ldX +mdY + ndZ + cδt +MwetdDw

(6)
L− ρ0 − DL = ldX +mdY + ndZ + cδt +MwetdDw

(7)xk+1 = f k(xk)+ wk

(8)zk = hk(xk)+ vk

tropospheric zenith wet delay correction, and ambigu-
ity parameters; f k is the system function, wk is the sys-
tem noise vector and is usually assumed to be zero-mean 
Gaussian white noise with a covariance matrix Qk ; zk 
represents the measurements in Eqs.  (2), (5) and (6), hk 
is the measurement function, and vk is the measurement 
noise vector, which is commonly assumed to be zero-
mean Gaussian white noise with a covariance matrix Rk 
(Yu et al., 2021).

Problem formulation
The problem of slowly growing fault detection was thor-
oughly investigated over the past decades. In this section, 
the Kalman filter for single receiver positioning and the 
effect of slowly growing fault are formulated; meanwhile, 
the AIME, which is a popular test used for several decades, 
is introduced and analysed.

Kalman filter for single receiver positioning
The methods designed for slowly growing fault detection 
in the single receiver positioning are based on the Gauss-
ian assumption and statistical hypothesis testing. Consider 
a state variable x with a known prior Gaussian Probability 
Density Function (PDF)

where N
{

x; x̂′,P′
xx

}

 represents the normal distribu-
tion with the mean x̂′=E[x] and the covariance matrix 
P′
xx = cov[x] ; meanwhile, the time update and measure-

ment update of the Kalman filter for single receiver posi-
tioning can be represented as:

(9)p(x) = N
{

x; x̂′,P′
xx

}

(10)x̂k = x̂
′
k + K k(zk − ẑ

′
k)

(11)K k=P
′
xz,k(P

′
zz,k)

−1

(12)Pxx,k = P
′
xx,k − KkP

′
zz,k(Kk)

T

(13)x̂
′
k+1 ≈

∫

f k(xk)N
{

xk; x̂k ,Pxx,k

}

dxk

(14)

P
′
xx,k+1 ≈

∫

( f k(xk)− x̂′k+1)( f k(xk)− x̂′k+1)
T

N
{

xk; x̂k ,Pxx,k

}

dxk+Qk

(15)ẑ
′
k
≈

∫

hk(xk)N
{

xk; x̂
′
k
,P

′
xx,k

}

dxk
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where x̂′k is the prior state estimate, P′
xx,k is the covari-

ance matrix of x̂′k , K k is the gain matrix, x̂k is the pos-
terior state estimate, Pxx,k is the covariance matrix of x̂′k , 
ẑ
′
k is the predictive measurement, P′

zz,k is the covariance 
matrix of ẑ′k , and P′

xz,k denotes the “cross-covariance” 
matrix of joint x̂′k and ẑ′k.

Effect of a slowly growing fault
In principle, a fault can be detected by using statistical 
hypothesis testing. The null hypothesis H0 : assuming no 
fault, i.e., assuming x̂k and Pxx,k are accurate enough, is 
tested against the alternative hypothesis H1 , i.e., assum-
ing there is a fault. Generally, faults can be divided into 
two groups:

(16)P
′
zz,k ≈

∫

(hk(xk)− ẑ
′
k)(hk(xk)− ẑ

′
k)

TN
{

xk; x̂
′
k ,P

′
xx,k

}

dxk+Rk

(17)

P
′
xz,k ≈

∫

(xk − x̂
′
k)(hk(xk)− ẑ

′
k)

TN
{

xk;
′
k ,P

′
xx,k

}

dxk

Abrupt fault, with relatively small detection difficulty. 
The current measurement value or state value-based 
methods such as RCTM and SRCTM have less calcula-
tion amount and are extremely effective. The fault detec-
tion statistics at the time of fault occurrence is greater 
than the fault detection threshold.

Slowly growing fault, which is more difficult to detect 
than abrupt fault, because the residual at each epoch is 
very small. The slowly growing fault at k epoch can be 
expressed as Sk , and the cumulative error of the slowly 
growing fault in x̂k can be expressed as Ak:

(18)x̂S,k = x̂k + Ak

where subscript ⊗S,k represents a vector containing a 
slowly growing fault (assume Sk > 0 , Ak > 0 ). When 
using a snapshot method such as RCTM for fault detec-
tion, in theory, the innovation including fault at k epoch 
is:

However, considering the cumulative error Ak , the 
innovation including fault is:

due to

It can be seen that the overall error of the slowly grow-
ing fault increases with time, while the residual in (22) is 
less than its theoretical value. As a result, the fault detec-
tion statistics of RCTM and SRCTM are always less than 
the fault detection threshold. Therefore, it is necessary 
to employ the sequential algorithm to amplify the slowly 
growing fault at each epoch in fault detection.

Autonomous integrity monitoring with the extrapolation 
method
This section describes the autonomous integrity moni-
toring with the extrapolation method which detects 
slowly growing faults using the innovation of the Kalman 
filter:

(19)zS,k= zk + Sk

(20)eS,k+1= zS,k+1 − ẑ
′
k+1 = ek+1 + Sk+1

(21)ek+1 = zk+1 − ẑ
′
k+1

(22)eS,k+1 = zS,k+1 − ẑ
′
S,k+1 < ek+1 + Sk+1

(23)
ẑ
′
S,k+1 =

∫

hk+1(xk+1)N
{

xk + 1; x̂
′
S,k+1,P

′
xx,k+1

}

dxk+1

>

∫

hk+1(xk+1)N
{

xk + 1; x̂
′
k+1,P

′
xx,k+1

}

dxk+1 = ẑ
′
k+1

(24)
x̂′S,k+1 ≈

∫

fk(xk)N
{

xk; x̂S,k ,Pxx,k

}

dxk >

∫

fk(xk)N
{

xk; x̂k ,Pxx,k

}

dxk = x̂′k+1
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Step 1: Define a required (or allowed) probability of 
false alert PFA.

Step 2: Define the extrapolation cycle m . If k ≤ m , then 
detect the faults using RCTM; otherwise, take x̂k−m in 
(10) and Pxx,k−m in (12) as the extrapolated initial state 
p(xSPk−m) = N

{

x
SP
k−m; x̂

SP
k−m,P′

SP
xx,k−m

}

 , and perform 
time update to the k epoch by the state propagator:

where x̂SPk−m+i is the prior state estimate of the state 
propagator, xSPk−m+i is the state of the state propaga-
tor, P′SP

xx,k−m+i is the covariance matrix of x̂SPk−m+i , and 
1 ≤ i ≤ m . Step 3: Calculate eSPk−m+i and its covariance 
matrix P′SP

zz,k−m+i:

where ẑ′SPk−m+i is the predictive measurement of the state 
propagator:

Step 4: Calculate AIME fault detection statistics:

If the null hypothesis H0 is valid, then the PDF p(αavg,k) 
is (approximately) a chi-squared distribution with nz 

(25)

x̂
SP
k−m+i

≈

∫

f k−m+i−1(x
SP
k−m+i−1)

N

{

x
SP
k−m+i−1; x̂

SP
k−m+i−1,P

′SP
xx,k−m+i−1

}

dxSP
k−m+i−1

(26)

P′SPxx,k−m+i ≈

∫

(f k−m+i−1(x
SP
k−m+i−1)− x̂

SP
k−m+i)

(

f k−m+i−1(x
SP
k−m+i−1)− x̂

SP
k−m+i

)T

·

N
{

x
SP
k−m+i−1; x̂

SP
k−m+i−1,P′

SP
xx,k−m+i−1

}

dxSPk−m+i−1+Qk−m+i−1

(27)eSPk−m+i = zk−m+i − ẑ′SPk−m+i

(28)
P′SPzz,k−m+i ≈

∫

(hk−m+i(x
SP
k−m+i)− ẑ′SPk−m+i)(hk−m+i(x

SP
k−m+i)− ẑ′SPk−m+i)

T·

N

{

x
SP
k−m+i; x̂

SP
k−m+i,P

′SP
xx,k−m+i

}

dxSPk−m+i+Rk−m+i

(29)ẑ′SPk−m+i ≈

∫

hk−m+i(x
SP
k−m+i)N

{

x
SP
k−m+i; x̂

SP
k−m+i,P

′SP
xx,k−m+i

}

dxSPk−m+i

(30)
αavg,k = (eavg,k)

T(Pzz,avg,k)
−1eavg,k ,αavg,k ∼ p(αavg,k)

(31)P
−1
zz,avg,k=

m
∑

i=1

(P′SP
zz,k−m+i)

−1

(32)eavg,k= (P−1
zz,avg,k)

−1
m
∑

i=1

(P′SP
zz,k−m+i)

−1eSPk−m+i

Degrees of Freedom (DOF), where nz is the dimension of 
the measurement domain.

Step 5: Calculate the corresponding PFA quantile

where F(αavg,k) is the cumulative distribution function 
with respect to p(αavg,k) and the operator inf represents 
the infimum. The quantile qαFA,k is further denoted as the 
fault detection threshold.

Step 6: Compare the statistics αavg,k in (30) with 
the threshold qαFA,k in (33). If αavg,k ≤ qαFA,k , then it is 

(33)qαFA,k = inf
{

αavg,k ∈: (1− PFA) ≤ F(αavg,k)
}

considered to be no fault; otherwise, it is considered to 
have a fault.

However, this method directly assesses the measure-
ment prediction error ek but indirectly the filtering state 
estimate error. In fact, accurate and consistent measure-
ment predictions do not necessarily lead to accurate and 
consistent state estimates (Duník et al., 2018). Besides, the 

addition and subtraction of P′SP
zz,k−m+i at different epochs 

in (31) require the same number of visible satellites at each 
epoch, while the number of visible satellites changes in 
real-time dynamic single-point positioning.

State‑domain robust autonomous integrity monitoring 
with the extrapolation method
In this section, the State-domain Robust Autonomous 
Integrity Monitoring with the Extrapolation method 
(SRAIME) is proposed and described.

This method is developed based on SRCTM, and its 
statistical properties are summarized below:
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where dk is the difference between the prior (13) and pos-
terior state estimates (10), nx is the dimension of dk , and 
Pdd,k is the covariance matrix of dk (Yu et al., 2021).

Based on the above introduction, the specific steps of 
the state-domain robust autonomous integrity moni-
toring with the extrapolation method are as follows: 

Step 1: Define a required (or allowed) probability of 
false alert PFA.

 Step 2: Define the extrapolation cycle m . If k ≤ m , 
then use SRCTM to detect the faults; otherwise, take 
x̂k−m in (10) and Pxx,k−m in (12) as the extrapolated ini-
tial state p(xSPk−m) = N

{

x
SP
k−m; x̂

SP
k−m,P

′SP
xx,k−m

}

 , and per-
form time update to the k epoch by the state propagator 
in (18) and (19).

Step 3: Calculate dSP
k−m+i and its covariance matrix 

P
SP
dd,k−m+i , 1 ≤ i ≤ m:

Step 4: Calculate SAIME fault detection statistics:

(34)dk = x̂k − x̂
′
k

(35)d̂k = E[dk ] = 0

(36)Pdd,k = P
′
xx,k − Pxx,k = K kP

′
zz,k(K k)

T

(37)d
SP
k−m+i = x̂k−m+i − x̂

SP
k−m+i

(38)P
SP
dd,k−m+i = P

′SP
xx,k−m+i − Pxx,k−m+i

(39)βavg,k = (davg,k)
T(Pdd,avg,k)

−1
davg,k ,βavg,k ∼ p(βavg,k)

If the null hypothesis H0 is valid, then the PDF p(βavg,k) 
is (approximately) a chi-squared distribution with nx DOF.

Step 5: Calculate the corresponding PFA quantile:

Step 6: Compare the statistics βavg,k in (39) with the 
threshold qβFA,k in (42). If βavg,k ≤ q

β

FA,k , then it is consid-
ered to be no fault; otherwise, it is considered to have a 
fault.

The flowchart of the practical implementation of the 
SRAIME is shown in Fig.  1. Although SRAIME also 
involves the addition and subtraction of PSP

dd,k−m+i at dif-
ferent epochs, the dimension of xk in (7) is a constant, 
so it is suitable for any positioning model based on the 
Kalman filter in the presence of slowly growing fault.

Experiments
In this section, the proposed method SRAIME is com-
pared with the Autonomous Integrity Monitoring with 
the Extrapolation method (AIME) and the snapshot 
integrity algorithms (including RCTM and SRCTM), and 
it is verified by single receiver positioning using simu-
lation data and real data. To compare the efficiency of 
these methods, the probability of false alert PFA is set to 

(40)P
−1
dd,avg,k=

m
∑

i=1

(PSP
dd,k−m+i)

−1

(41)davg,k= (P−1
dd,avg,k)

−1
m
∑

i=1

(PSP
dd,k−m+i)

−1
d
SP
k−m+i

(42)q
β

FA,k = inf
{

βavg,k ∈: (1− PFA) ≤ F(βavg,k)
}

Kalman filter for the SRAIME in the 
single-point positioningSatellite

Vehicle Positioning

Alarm flag

SRAIME statistics
> threshold?

1.Define the probability of false alert

2.Define the extrapolation cycle

3.Time update by the state propagator

4.Calculate the state difference and its 

covariance matrix

5.Calculate SAIME fault detection statistics

6.Calculate the threshold 

SRAIME

1.Initialize Kalman filter
2.Perform time update
3.Accept measurements from GNSS
4.Perform measurement update
5.Slowly growing fault detection

Fig. 1  The flowchart of the SRAIME
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1× 10−6 . Meanwhile, the same hardware and software 
are adopted. The hardware is a personal computer with 
an Intel Core i5-10,500 CPU and 16  GB main memory. 
MATLAB R2019b running on a Windows 10 system is 
used to implement these algorithms.

SPP experiment using simulation data
The dynamic single receiver positioning experiment uses 
an improved version of the GPSoft toolbox to generate 
GPS single-frequency pseudo-range observations with a 
standard deviation of 1 m and pseudo-range increments 

with a standard deviation of 0.1  m/s (Cox, 1978). As 
a simulation experiment, the reference trajectory is 
directly derived from the mathematical model designed 
in advance. The update frequency of the receiver is 1 Hz. 
The dimension of the measurement domain is related to 
the number of visible satellites and is set to a constant 
of 10. The dSP

k−m+i of SRAIME in (36) only contains the 
position information of the filtering result, so its dimen-
sion is 3. Besides, the extrapolation cycle of AIME and 
SRAIME is 5 s.

−2

0

2
Er

ro
rs

 in
 e

as
t

di
re

ct
io

n 
(m

)

−2

0

2

Er
ro

rs
 in

 n
or

th
di

re
ct

io
n 

(m
) 

0 100 200 300 400 500 600 700
Time (s)

−10

0

10

Er
ro

rs
 in

 u
p

di
re

ct
io

n 
(m

)
 

Fig. 2  The position error of the SPP
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Fig. 3  The statistics of RCTM and SRCTM in the SPP experiment
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To verify the effectiveness of SRAIME and com-
pare it with other algorithms, a slowly growing fault 
0.001× (k − 200) ns/s is added to the receiver clock drift 
artificially from 200 to 300 s. Note that the position error 
caused by the growth rate is far less than the correspond-
ing triple STandard Deviation (STD).

Figure 2 presents the position error of the SPP. One can 
see that the slowly growing fault imposed on the receiver 
clock drift is mainly demonstrated in the up direction.

Figure  3 shows the statistics of RCTM and SRCTM. 
Both RCTM and SRCTM fail to detect the slowly grow-
ing fault. The statistics of AIME and the logarithm of 
the statistics of SRAIME to the base 1.2 are presented in 
Fig.  4. It can be observed that the statistics of SRAIME 
increase rapidly with the slowly growing fault, while that 
of AIME increase slowly.

Table  1 lists the alarm time series of different algo-
rithms to illustrate the slowly growing fault detection 
performance of SRAIME in the SPP experiment. The first 
alarm time of SRAIME is 48  s ahead of that of AIME. 
This is because SRAIME directly works in the state 
domain and the slowly growing fault was added in the 
state domain. Based on the innovation of the Kalman fil-
ter, AIME directly assesses the measurement prediction 
error, but indirectly the filtering state estimate error.

PPP experiment using real data
The dynamic precise point positioning experiment 
uses the PPP mode in the open-source software GINav 
to process the data collected at CUMT in March 2019 
(Chen et  al., 2021b). Table 2 lists the specific process-
ing strategies used in PPP. The update frequency of 
the receiver is 1  Hz, and the reference solutions were 
obtained from the NovAtel Inertial Explorer 8.6 soft-
ware in the smoothed RTK/INS tightly coupled mode. 
The vehicle and the equipment used are shown in 
Fig.  5. The dimension of the measurement domain is 
related to the number of visible satellites. The dSP

k−m+i of 
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Fig. 4  The statistics of AIME and SRAIME in the SPP experiment

Table 1  The alarm time series of different algorithms in the SPP 
experiment

Slowly growing fault Time (s) Algorithm Alarm 
time 
series (s)

Starting epoch 200 RCTM -

SRCTM -

Ending epoch 300 AIME 264–310

SRAIME 216–314

Table 2  The data processing strategy of PPP

Items Strategies

GNSS system GPS and GLObal NAvigation Satel-
lite System (GLONASS)

Observational model Ionospheric-Free (IF) combination

Elevation mask 10°

Observation weight Elevation-dependent weight model

Satellite antenna phase center Corrected by igs14.atx

Receiver antenna phase center Corrected by igs14.atx

Ambiguity resolution No
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Fig. 5  The GNSS/INS equipment and the van used to collect real data

Fig. 6  The reference trajectory of the PPP experiment
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SRAIME in (36) only contains the position information 
of the filtering result, so its dimension is 3. Besides, the 
extrapolation cycle is 10 s.

To verify the effectiveness of SRAIME and com-
pare it with other algorithms, a slowly growing fault 
0.01× (k − 1600) m is added to a carrier phase observa-
tion artificially from 1600 to 1650 s. Note that the posi-
tion error caused by the growth rate is far less than the 
corresponding 3STDs. Figure 6 shows the reference tra-
jectory of the PPP experiment.

Figure  7 presents the position error of the PPP, and 
the slowly growing fault imposed on the carrier phase 
observation is demonstrated in the east, north, and up 
directions.

Figure  8 shows the statistics of RCTM and SRCTM. 
Both RCTM and the SRCTM fail to detect the slowly 
growing fault early. The statistics of SRAIME are illus-
trated in Fig. 9. One can see that the statistics of SRAIME 
increase rapidly with the slowly growing fault. Figure 10 
shows the number of visible satellites in the PPP experi-
ment. The number of satellites changes in real-time 
dynamic single point positioning, so AIME is not avail-
able in this experiment.

Table  3 shows the alarm time series of different algo-
rithms to illustrate the slowly growing fault detec-
tion performance of SRAIME in the PPP experiment. 
The first alarm time of SRAIM is 34 s ahead that of the 
snapshot integrity algorithms. The results with differ-
ent algorithms suggest that SRAIME is suitable for any 

positioning model based on the Kalman filter, while 
AIME is designed with the assumption of same number 
of visible satellites at each epoch and is thus suitable for 
simulation-based fault detection, not for real-time fault 
detection.

Conclusions
This paper focuses on detecting the slowly growing fault 
in single receiver positioning and proposes the SRAIME. 
The effect of the slowly growing fault and the properties 
of the proposed method are illustrated in the theoretical 
derivation. Compared to the state-of-the-art method, the 
proposed method directly works in the state domain, is 
suitable for any positioning model based on the Kalman 
filter, and detects the slowly growing fault earlier. The 
experimental results indicate that the slowly grow-
ing fault detection performance of the snapshot integ-
rity algorithms such as RCTM and SRCTM is poor, and 
SRAIME can detect slowly growing faults earlier than 
AIME. Meanwhile, SRAIME can be applied to both SPP 
and PPP, while AIME is only suitable for simulation-
based fault detection, not for real-time fault detection.
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Table 3  The alarm time series of different algorithms in the PPP 
experiment

Slowly growing fault Time (s) Algorithm Alarm time series (s)

Starting epoch 1 600 RCTM 1 651

SRCTM 1 651

Ending epoch 1 650 AIME -

SRAIME 1 617–1 660
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