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Abstract 

In-field Sound Speed Profile (SSP) measurement is still indispensable for achieving centimeter-level-precision Global 
Navigation Satellite System (GNSS)-Acoustic (GNSS-A) positioning in current state of the art. However, in-field SSP 
measurement on the one hand causes a huge cost and on the other hand prevents GNSS-A from global seafloor 
geodesy especially for real-time applications. We propose an Empirical Sound Speed Profile (ESSP) model with three 
unknown temperature parameters jointly estimated with the seafloor geodetic station coordinates, which is called 
the 1st-level optimization. Furthermore, regarding the sound speed variations of ESSP we propose a so-called 
2nd-level optimization to achieve the centimeter-level-precision positioning for monitoring the seafloor tectonic 
movement. Long-term seafloor geodetic data analysis shows that, the proposed two-level optimization approach 
can achieve almost the same positioning result with that based on the in-field SSP. The influence of substituting 
the in-field SSP with ESSP on the horizontal coordinates is less than 3 mm, while that on the vertical coordinate 
is only 2–3 cm in the standard deviation sense.
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Introduction
Global Navigation Satellite System (GNSS)-Acoustic 
(GNSS-A) positioning technique has become a vital tool 
for seafloor geodesy and crustal deformation applications 
of submarine offshore regions (Bürgmann & Chadwell, 
2014; Iinuma et al., 2021). GNSS-A positioning technique 
was pioneered by Fred Spiess (Spiess, 1985; Spiess et al., 
1998) and further developed for more than two dec-
ades (Chadwell & Sweeney, 2010; Chadwell et al., 1997). 
Regional seafloor geodetic networks were established in 
the past (Poutanen & Rózsa, 2020; Yang et al., 2020) and 

had provided key observations for constraining tectonic 
motion, crustal deformation and the earthquake cycle 
(Gagnon & Chadwell, 2007; Gagnon et al., 2005; Iinuma 
et al., 2021; Kido et al., 2006; Sato et al., 2011). GNSS-A 
technique achievements made in the past are on the one 
hand from observation scheme advances (Kido et  al., 
2008; Sato et  al., 2013; Spiess et  al., 1998) and on the 
other hand from acoustic positioning model improve-
ments (Asada & Yabuki, 2006; Fujita et al., 2006; Spiess, 
1980; Watanabe et  al., 2020; Yang & Qin, 2020; Yokota 
et  al., 2019). Nowadays, terrestrial geodesy has greatly 
facilitated low-cost and real-time positioning and near-
real-time atmosphere state sensing due to positioning 
model advances (Torge & Müller, 2012), but this has not 
been achieved in seafloor geodesy. One of important rea-
sons for this is that the high-precision seafloor geodetic 
positioning seriously relies on the Sound Speed Profile 
(SSP) measurement in field.
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The sound speed structure of the ocean water promi-
nently varies from the depth, spatial location and the 
time (Yokota et al., 2022). Although several global ocean 
environment observation plans have been in operation 
(Hayes et  al., 1991; Stammer et  al., 2003; Zeng et  al., 
2016), e.g., Array for Real-time Geostrophic Oceanog-
raphy (Argo) and Transparent Ocean Plan (TOP) (Wu 
et al., 2020), the current resolution of ocean environment 
observations, e.g., the Argo observations having a tem-
poral resolution of several days (Roemmich et al., 2009), 
cannot satisfy the high-precision seafloor geodetic posi-
tioning demands; and therefore an in-field Reference SSP 
(RSSP) measurement is still required. The sound speed 
can be directly measured or derived from the Conduc-
tivity-Temperature-Depth (CTD) profiler measurement 
(Wilson & Wayne, 1960). However, it is still unrealistic 
to conduct a high-resolution Sound Speed Field (SSF) 
measurement for GNSS-A positioning because of the 
huge cost; and therefore GNSS-A positioning technique 
in the current state of the art adopts a RSSP to perform 
the seafloor geodetic positioning (Watanabe et al., 2020). 
For this, the positioning model requires a strong resist 
ability to remedy the sound speed variation effect of the 
RSSP.

The acoustic positioning is seriously affected by the 
sound speed variations (Kido et al., 2008), which is very 
familiar to the atmosphere variation affecting GNSS 
positioning (Chen & Herring, 1997). Inspired by this, 
the Nadir Total Delay (NTD) model which is analogous 
to the zenith total delay in GNSS was proposed recently 
(Honsho & Kido, 2017; Honsho et  al., 2019). This idea 
developed in the GNSS-A positioning can be also found 
in analyzing the sound speed variation for GNSS-A 
measurements (Kido et al., 2008). Besides NTD model, a 
generalized GNSS-A positioning model was also devel-
oped to correct the effect of the sound speed variation 
(Watanabe et al., 2020; Yokota et al., 2022). However, this 
kind of methods can extract only the sound speed varia-
tion relative to the in-field SSP.

In fact, the sound speed variation effect was very early 
studied by the GNSS-A and SSP observations in Hawaii 
(Osada et al., 2003). Then, the temporal variation inver-
sion based on the RSSP was developed to eliminate 
this kind of effect (Fujita et  al., 2004, 2006; Matsumoto 
et al., 2008). For more precisely characterizing the sound 
speed variation, the inversion method based on a 3-order 
B-spline model was developed in the past (Ikuta et  al., 
2008), and then Yokota et  al. (2019) advanced this 
method by extracting the first-order and second-order 
horizontal sound speed gradients to represent more 
sound speed variation details (Yasuda et al., 2017). Note 
that, the above-mentioned inversion methods are based 
on the RSSP. In fact, the sound speed inversion without 

using the RSSP was also developed in the past (Chen, 
2014). Recently, a self-constraint positioning method 
without the assistance of in-field SSP has also been devel-
oped (Zhao et al., 2022). However, without using the in-
field SSP it is still hard to achieve a desirable positioning 
accuracy, e.g., the positioning error of the above self-con-
straint positioning method is up to 0.54 m. Precise posi-
tioning models without the assistance of in-field SSP still 
need to be developed to reduce the in-field SSP meas-
urement cost, which is the vitally meaningful not only 
for facilitating the low-cost large-scale and even global 
seafloor geodesy but also for achieving the real-time sea-
floor geodetic applications, like nowadays mature GNSS 
geodesy.

This contribution is to develop a Self-structured 
Empirical SSP (SESSP) approach to achieve centimeter-
precision-level seafloor geodetic three-dimensional 
positioning. In "Three-parameter empirical SSP" sec-
tion, a three-parameter Empirical Temperature Profile 
(ETP) model is proposed to structure an Empirical Sound 
Speed Profile (ESSP) by using the Del Grosso’s sound 
speed formula. In "Two-level optimizations on ESSP" 
section, a novel GNSS-A positioning model based two-
level optimizations is proposed, of which the 1st-level 
optimization is to fix the ETP model parameters, and the 
2nd-level optimization is to finally achieve high-precision 
location regarding the sound speed variations relative to 
ESSP. In "Experiment results and tests" section, the pro-
posed models are verified by the long-term seafloor geo-
detic array observations.

Three‑parameter empirical SSP
The horizontal sound speed stratification can be 
expressed as an exponential SSP with unknowns for 
applying much of the World’s oceans (Munk, 1974). 
Besides, an empirical bilinear SSP cBP(u,pBP) with four 
unknown parameters was also proposed and applied in 
the seafloor geodetic positioning, that is Chen (2014)

where u is the depth, pBP =
(

vs gu gd ub
)

 is the 
unknown parameter vector, vs is the surface sound speed, 
ub is the bilinear break depth, vb is the sound speed corre-
sponding to the depth ub , and gu and gd are the piecewise 
gradients of the bilinear function. The unknown param-
eters can be estimated jointly with the seafloor geodetic 
station coordinates.

Chen (2014) pointed out that vs and ub were treated 
knowns for the facilitation of surface sound speed meas-
urement, but this is not so practical in some cases. Note 
that there are a series of equivalent profiles that can be 

(1)cBP(u,pBP) =

{

vs + guu 0 ≤ u < ub
vb + gd(u− ub) ub ≤ u
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used to obtain almost the same positioning result (Sun 
et  al., 2019; Zielinski & Geng, 1999), i.e., this is an ill-
posed problem widely existed in nonlinear inversion. To 
obtain a meaningful solution, we should impose a prior 
information on pBP with a certain uncertainty, see the 
Table 3. For solving this problem, we however present a 
novel ESSP by Del Grosso sound speed formula with an 
ETP as follow

where pETP = (Tm�T )T is an unknown parameter 
vector of ETP to be jointly estimated with the seafloor 
geodetic station coordinates, τ =

(

Tm e−u/u0
)

 is the cor-
responding coefficient matrix, Tm represents the interme-
diate overmeasurement, �T  represents the temperature 
difference between the sea-surface and sea-bottom, u0 
represents the depth of the thermocline, see Fig.  1. The 
u0 and Tm can be statistically induced from the long-term 

(2)TETP(u,pETP) = τpETP = Tm +�Te
− u

u0

ocean environment observations and thereby we can 
impose prior constraints on the parameter estimation.

As shown in Fig. 1, the three parameters Tm , �T  and 
u0 to be estimated are the control parameters of the ETP 
shape. Note that the deep-sea bottom water tempera-
ture is generally very stable, for which it is convenient to 
impose a priori knowledge or constraint on the model 
parameter Tm . Besides, the deep-sea water temperature 
will decrease 1–2  °C per 1000  m, which might also be 
useful to characterize the ETP. Then, substituting ETP (2) 
and the average salinity S = 35‰ into the Del Grosso for-
mula (Grosso, 1974; Wong & Zhu, 1995), we can estab-
lish an ESSP as

where cESSP(u,pETP) is ESSP,

is a constant associated with the salinity S, Cc is the con-
stant term in the Del Grosso formula,

is the sound speed variation associated with the pressure 
P which is recommended to use the Leroy’s formula as 
Leroy and Parthiot (1998)

where ϕ is the latitude,

(3)cESSP(u,pETP) = βC + βP + βT(pETP)

(4)βC = Cc + Cs(1)S + Cs(2)S
2

(5)

βP = Cs(2)p(2)S
2P2 + Cp(1)P + Cp(2)P

2 + Cp(3)P
3

= Cp(1)P + (Cs(2)p(2)S
2 + Cp(2))P

2 + Cp(3)P
3

= Cp(1)P + Cd(1)P
2 + Cp(3)P

3

(6)
P = 1.0052405(1+ 5.28× 10−3 sin2 ϕ)u+ 2.36× 10−6u2

(7)

βT(pETP) = Ct(1)TETP(pETP)+ Ct(2)T
2
ETP(pETP)

+ Ct(3)T
3
ETP(pETP)+ CtpPTETP(pETP)

+ Ct(3)pPT
3
ETP(pETP)+ Ctp(2)P

2
TETP(pETP)

+ Ct(2)p(2)P
2
T

2
ETP(pETP)+ Ctp(3)P

3
TETP(pETP)

+ CstSTETP(pETP)+ Cst(2)ST
2
ETP(pETP)

+ CstpSPTETP(pETP)+ Cs(2)tpS
2
PTETP(pETP)

= (Ct(1) + CstS)TETP(pETP)+ ((Ctp + CstpS + Cs(2)tpS
2)P

+ Ct(1)p(2)P
2
+ Ct(1)p(3)P

3)TETP(pETP)

+ (Cst(2)S + Ct(2))T
2
ETP(pETP)+ Ct(2)p(2)P

2
T

2
ETP(pETP)

+ Ct(3)T
3
ETP(pETP)+ Ct(3)pPT

3
ETP(pETP)

= Cd(2)TETP(pETP)+ (Cd(3)P + Ct(1)p(2)P
2
+ Ct(1)p(3)P

3)TETP(pETP)

+ Cd(4)T
2
ETP(pETP)+ Ct(2)p(2)P

2
T

2
ETP(pETP)

+ Ct(3)T
3
ETP(pETP)+ Ct(3)pPT

3
ETP(pETP)

T

uu0

Tm

ΔT

Fig. 1 Illustration on the empirical temperature profile
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is the sound speed variation determined by the water 
temperature T and the temperature-depth mixture terms.

With S = 35‰, we can then figure out the coefficients 
of Eqs.  (3), (4), (5), (7) and they are given in Table 1 for 
facilitating the calculation. Finally, for an arbitrary lati-
tude specified we can figure out the ESSP by employing 
the data in Table 1.

As the proposed ESSP regards the sound speed varia-
tion with hydrostatic pressure of the water that implied 
in the Leroy’s formula and the water temperature’s 
exponential decaying characteristic with the depth that 
implied in the proposed empirical temperature profile, 
it is more meaningful and accurate to perform the SSP 
inversion result. We can also use other sound speed for-
mulae to structure the ESSP complying with their appli-
cable conditions, e.g., Wilson formula (Wilson, 1960) 
and Chen-Millero formula (Chen & Millero, 1977). In 
the following section, we will propose an optimization 
approach to determine the model parameters of ETP (2).

Two‑level optimizations on ESSP
Overall Scheme
Next, we will conduct a joint estimation of ESSP param-
eters and the seafloor geodetic station coordinates by 
employing the 1st-level optimization as shown in Fig. 2, 
which is called as sound speed self-structured empirical 
SSP approach for its independence on the in-field SSP 
measurement.

As shown in Fig.  2, the 1st-level optimization is per-
formed in the context of the ray-tracing positioning pro-
cedure while the 2nd-level one is performed by B-splines 
for characterizing acoustic delay caused by the sound 
speed variations relative to ESSP.

The 1st‑level optimization
GNSS-A positioning is achieved by a combination of the 
sea-surface GNSS positioning with the precise acous-
tic round-trip time measurement from the sea-surface 
acoustic transducer to the seafloor acoustic transponder 
(Asada & Yabuki, 2006). Due to the horizontal density 
stratification of the ocean, the seafloor geodetic position-
ing generally uses the ray-tracing positioning model. For 
taking place of the high-cost in-field SSP measurement, 
we use ESSP cESSP(u,pETP) to perform a joint estimation 
of pETP and the seafloor geodetic coordinates. This time 
that the GNSS-A positioning model reads

where Tobs,i is the ith round-trip time observation, 
X is the seafloor transponder coordinate vector to 

(8)Tobs,i = Ti

(

X , cESSP(u,pETP)
)

+ εT,i

ESSP

1st-level Opt. by ray-tracing positioning

2nd-level Opt. by B-spline models

ESSP solution

B-spline solution

Fig. 2 Overall scheme of the two-level optimization

Table 1 ESSP coefficients

Coef Value Coef Value

βC 1. 449 083 403 255 ×  103 Ct(1)p(2) − 0. 159 389 5 ×  10–5

Cp(1) 0. 156 059 2 Ct(1)p(3) 0. 522 248 3 ×  10–9

Cd(1) 2. 251 941 737 5 ×  10–5 Cd(4) − 0. 055 021 515 59

Cp(3) − 0. 883 395 9 ×  10–8 Ct(2)p(2) 0. 265 617 4 ×  10–7

Cd(2) 4. 565 707 4 Ct(3) 0. 221 649 ×  10–3

Cd(3) 3. 802 021 499 999 99 ×  10–4 Ct(3)p − 0. 438 361 5 ×  10–6
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be estimated, εT,i is the random error of observation. 
Ti = Ts,i + Tr,i represents calculated the ith round-trip 
time,

is one half of the round-trip travelling time calculated 
by the Two Dimensional (2D) ray-tracing model (Spiess, 
1980), uJx,uX are depths of the transducer and tran-
sponder, respectively. Note that, horizontal coordinates 
of transponder are implied in the incident angle βi(u) 
of the ith ray calculated by the inversion of the eigenray 
(Yang et al., 2021).

For n observations we have an over-determined vector-
form observation equation Tobs = T

(

X , cESSP(u,pETP)
)

+ εT 
solved by the nonlinear least squares (LS) criterion reads:

where g1 is the weighted sum of the squared residu-
als, V (X ,pETP) := Tobs − T

(

X , cESSP(u,pETP)
)

 is the 
residual vector, and ΣL = P−1σ 2

0  and σ 2
0  are the variance 

of observations and prior unit weight variance, respec-
tively. P = diag(p1, p2, . . . , pn) is the weight matrix of 
observations where pi = (sin(ei))

2 is the weight of the 
ith observation and ei is the corresponding elevation 
angle, respectively. Hereafter, we however adopt an equal 
weight matrix to simplify the discussion, i.e., pi = 1 . To 
obtain LS solution we get the following first-order partial 
derivatives of g1

(

X ,pETP
)

 , that is

where

is the Jacobian matrix of the nonlinear observation about 
the coordinate vector, cX is the sound speed at the depth 
of the transponder, αJ ,i,βJ ,i are the azimuth angle and 
incident angle of the ith ray, respectively.

(9)

TJ ,i =

∫ u
J
x

uX

1

cosβi(u)

1

cESSP(u,pETP)
du J ∈ {s, r}

(10)

min
pETP

g1(X ,pETP) := VT(X ,pETP)Σ
−1
L V (X ,pETP)

(11)

h(X ,pETP) =

(

∂g1/∂X
∂g1/∂pETP

)

=

(

AT(X)Σ−1
L V (X ,pETP)

BT(pETP)Σ
−1
L V (X ,pETP)

)

(12)A(X) =
∂T

∂X
=
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is the first-order derivative of the round-trip time T  
about pETP . B(X) is hardly analytically given but it can 
be numerically solved. Then, vanishing h(X ,pETP) , i.e., 
we have

that can be used to obtain the LS solution. With ini-
tial values X0,pETP(0) , if g ′′1 (X0,pETP(0)) is positively 
defined, then LS solution can be locally solved by New-
ton’s method with the second-order partial derivative of 
g1(X ,pETP) , that reads (Xue et al., 2014):

where Ak := A(Xk) , Bk := B(pETP,k) , V k := V (Xk ,pETP,k ) 
and k is the iteration index,

in which Si(X) = ∂aTi (X)/∂X is the first-order derivative 
of the ith row ai(X) of A(X) ,  i.e., the Hessian matrix of 
the round-trip time Ti(X) about X,

in which Qi(pETP) = ∂bTi (pETP)/∂pETP is the first-
order derivative of the ith row bi(X) of B(pETP) , i.e., the 

(13)B(pETP) =
∂T

∂pETP
=

∂T

∂cESSP

∂cESSP

∂pETP

(14)
{

AT(X)Σ−1
L V (X ,pETP) = 0

BT(pETP)Σ
−1
L V (X ,pETP) = 0

(15)

(

Xk+1

pETP,k+1

)

=

(

Xk

pETP,k

)

+

(

AT
k
Σ

−1
L A

k
+ Γ X AT

k
Σ

−1
L B

k

BT
k
Σ

−1
L A

k
BT
k
Σ

−1
L B

k
+ Γ p

)−1

(

AT
k
Σ

−1
L V k

BT
k
Σ

−1
L V k

)

(16)Γ X =

n
∑

i=1

Vi(X ,pETP)piσ
−2
0 Si(X)

(17)Γ p =
∑n

i=1
Vi(X ,pETP)piσ

−2
0 Qi(pETP)
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Hessian matrix of the round-trip time T i(pETP) about 
pETP . Note that, Γ X and Γ p can be ignored for long-dis-
tance or small-residual cases, and at this time we recom-
mend using Gauss–Newton iterative formula as

which is recommended to be terminated under the con-
dition max

i=1,2,...,S

(∥

∥X i,k+1 − X i,k

∥

∥

)

< δ where δ is a suffi-

cient small positive value, i is the index of the S seafloor 
geodetic stations. It is generally necessary to introduce a 
certain number of constraints on partial parameters to 
stabilize the iteration or to obtain a meaningful solution.

Next, we impose a priori constraints on pETP . The 
first a priori constraint can be structured by the tem-
perature stability of the seawater-bottom, that is

where uX is the depth of the seafloor geodetic station, 
the error εb represents the uncertainty of the a pri-
ori seawater-bottom temperature. Note that because 
deep-sea temperature is generally quite stable, the 

(18)

(

Xk+1

pETP,k+1

)

=

(

Xk

pETP,k

)

+

(

AT
k
Σ

−1
L

A
k
AT
k
Σ

−1
L

B
k

BT
k
Σ

−1
L

A
k
BT
k
Σ

−1
L

B
k

)−1

(

AT
k
Σ

−1
L

V k

BT
k
Σ

−1
L

V k

)

(19)Tb = TETP(uX,pETP)+ εb

which is recommended to use the same termination con-
dition. It is generally hard to obtain a global or meaning-
ful solution of the problem without an effective initial 
value.

For most cases an arbitrary guess value of the unknown 
pETP is sufficient to start the iteration, but we still rec-
ommend using a coarse grid search approach to obtain 
a robust initial value. Let pETP(0) and ΣETP

p  be the initial 
value and the variance of pETP , respectively, at this time 
we can structure the following LS criterion

Omitting the deduction, we can write out the Gauss–
Newton iterative formula as

(21)

(

Xk+1

pETP,k+1

)

=

(

Xk

pETP,k

)

+

(

AT
k
Σ

−1
L A

k
AT
k
Σ

−1
L B

k

BT
k
Σ

−1
L A

k
BT
k
Σ

−1
L B

k
+ τ

T(Σb
T)

−1
τ

)−1

(

AT
k
Σ

−1
L V k

BT
k
Σ

−1
L V k + (Σb

T)
−1(Tb − τpETP,k )

)

(22)

min g1(Z)=VT(X ,pETP)Σ
−1
L V (X ,pETP)

+ (Tb − τpETP)
T(Σb

T)
−1

(Tb − τpETP)

+ (pETP(0) − pETP)
T(ΣETP

p )−1

(pETP(0) − pETP)

average temperature of the seawater bottom can be easily 
obtained by global ocean environment observations.

Let Σb
T be the variance of Tb , we can structure the fol-

lowing LS criterion

where Z = (XT pTETP)
T is the parameter vector to be 

estimated. Omitting the deduction, we can obtain the 
Gauss–Newton iterative formula as

(20)

min g1(Z)=VT(X ,pETP)Σ
−1
L V (X ,pETP)

+ (Tb − τpETP)
T(Σb

T)
−1(Tb − τpETP)

(23)

(

Xk+1

pETP,k+1

)

=

(

Xk

pETP,k

)

+

(

AT
k
Σ

−1
L A

k
AT
k
Σ

−1
L B

k

BT
k
Σ

−1
L A

k
BT
k
Σ

−1
L B

k
+ τ

T(Σb
T)

−1
τ + (ΣETP

p )−1

)−1

(

AT
k
Σ

−1
L V k

BT
k
Σ

−1
L V k + (Σb

T)
−1(Tb − τpETP,k)+ (ΣETP

p )−1(pETP(0) − pETP,k)

)

The sea-surface temperature has a great fluctuation 
throughout the year, and thereby we recommend a very 
loose constraint on the parameter �T .

It is notable that Newton-type methods are of 
local convergence and may seriously suffer from 
ill-posedness of the problem, e.g., the non-unique-
ness of the nonlinear parameter u0 , and therefore 
it is recommended to be found out by a grid search 
method. In fact, the LS solution Ẑ of (23) can be 
treated as a function about the variable u0 because of 
τ (u0) =

(

Tm e−u/u0
)

 and it is denote as Ẑ(u0).
The algorithm is given in Fig. 3. 
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Note that Tm,�T  are linear parameters for (2) but 
they are nonlinear parameters both for (3) and (8), and 
therefore must be iteratively solved.

The 2nd‑level optimization
Next, we will take the ESSP cESSP(u,pETP) derived from 
the 1st-level optimization as a RSSP c0(u) to conduct 
the precise positioning. Regarding the N and E direc-
tion variations and temporal variation of the sound 
speed, we can express the Four Dimensional (4D) SSF 
c(n, e,u, t) to be the form as

where c0(u) := cESSP(u,pETP) is the ESSP obtained from 
the 1st-level optimization, kn(u, t), ke(u, t), kt(u, t) are 
sound speed gradients of the SSF relative to RSSP.

It is very familiar to the sound speed inversion in the 
1st-level optimization that the spatiotemporal sound 
speed gradients can be jointly estimated with the sea-
floor geodetic coordinates. With “Appendix  1” we can 
directly write out the positioning model regarding the 
three sound speed gradients, that is

where t is the travel time observation,

(24)
c(n, e,u, t) = c0(u)+ kt(u, t)t + kn(u, t)n+ ke(u, t)e

(25)

Tobs =

∫ ux

uX

(cosβ(u))−1c−1
0 (u)du

−mtZt(t, pt)−mnZn(t,pn)−meZe(t,pe)

−mn′Zn′(t, pn′)−me′Ze′(t,pe′)+ εT

(26)























mt = (cos z)−1

mn = (cos z)−1 tan z cosα

me = (cos z)−1 tan z sin α

mn′ = (cos z)−1 tan z′ cosα′

me′ = (cos z)−1 tan z′ sin α′

is the mapping function, z and α are the zenith angle and 
azimuth angle of the sea-surface platform observed at the 
seafloor geodetic station, respectively; z′ and α′ are the 
zenith angle and azimuth angle observed at the seafloor 
geodetic network array center, respectively.

are the five zenith delays, �(u) = (cos z)−1 cos(β(u)) can 
be defined as the measure of the ray bending degree. To 
characterize the five time-varying zenith delay param-
eters ZK (t),K ∈

{

t, n, e, n′, e′
}

 , the following B-splines

are recommended, pK =
(

pK ,1, pK ,2, . . . , pK ,Q(K )

)

 is the 
unknown model parameter vector to be estimated, pK ,q 
is the coefficient of the qth k-degree B-spine basis func-
tion �K ,q,k(t) . This indicates the observation time span is 
split into LJ = (QJ − k + 1) intervals of which the knots 
span is SK = Sall/LJ where Sall is the observation time 
span. If it is not especially specified, the subscript k will 
be omitted in the following discussion.

At this stage, considering the smooth nature of the physi-
cal ocean process signal, we can conduct a series of 2-order 
smooths on the sound speed variations, and therefore we 
can alternatively use the optimization criterion as follow

where Z′′
K (t,pK ) is the second-order derivative of 

ZK (t,pK ) about the time,

is the squared norm of the estimated signal Z′′
K (t,pK ) , 

where t1 and t2 are the starting time and end time of the 
observation, respectively, which is defined by the inner 
product 

〈

fi(t), fj(t)
〉

=
∫

fi(t)�K fj(t)dt of fi(t) and fj(t) , 
�
2
K  is the scale factor of the space specified by the above 

inner produce, which can be defined as

(27)







































Zt(t) =
� ux
uX

�
−1(u) t kt(u,t)

c20(u)
du

Zn(t) =
� ux
uX

�
−1(u) kn(u,t)u

c20(u)
du

Ze(t) =
� ux
uX

�
−1(u) ke(u,t)u

c20(u)
du

Zn′(t) =
� ux
uX

�
−1(u) kn(u,t)uX

c20(u)
du

Ze′(t) =
� ux
uX

�
−1(u) ke(u,t)uX

c20(u)
du

(28)

ZK (t,pK ) =

QK
∑

q=0

pK ,qΦK ,q,k(t) K ∈ {t, n, e, n′, e′}

(29)

min
X ,pK

g(X ,pK ) := VT(X ,pK )PV (X ,pK )

+
∑

K∈{t,n,e,n′,e′}

∥

∥Z′′
K (t,pK )

∥

∥

2

(30)
∥

∥Z′′
K (t,pK )

∥

∥

2
= �

2
K

∫ t2

t1

(Z′′
K (t,pK ))

2dt

Search step: u0,q = umin+(umax−umin)/(sg−1)×q
Where sg is the number of grids; q=0,1,2...(sg−1)

^
Compute Zq according to Eq. (23)

Return u0 = u0,q
^ ^

Compute  min  g1 (Z) according to Eq. (22)
q

Fig. 3 1st-level optmization algorithm
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where σ 2
0,K  represents the variance of the random signal 

Z′′
K (t,pK ).
To connect the minimization (29) with the normal 

form (20) of LS with constraints, we can rewrite (30) 
into the form as

where

of which

is the weight matrix. Then, Omitting the deduction, we 
can immediately write out the Gauss–Newton solution of 
(29). To save the space, we write the Gauss–Newton solu-
tion only with the first three zenith delays, that is

where MK  is the design matrix of the parameter pK  . The 
above formula can be easily extended for estimating the 
five zenith delays. Note that hyperparameter σ 2

0,K  might 
be optimally determined by the cross-test method or AIC 
criterion, but hereafter we set them to be zeros.

Experiment results and tests
Experimental data
The test adopts Japanese seafloor geodetic network array 
MYGI to verify the proposed GNSS-A positioning mod-
els. The observation span of the opened MYGI station 
data is from 2011 to 2020, having 35 repeated observa-
tions. The long-term displacement time series solution 
facilitates the positioning accuracy verification based on 

(31)�
2
K = σ−2

0,K

(32)
∥

∥Z′′
K (t,pK )

∥

∥

2
= (0T − pTK )(�

K
p )

−1(0− pK )

(33)(ΣK
p )

−1 = PK
p σ

−2
0,K

(34)PK
p =
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the fact the station has a linear motion trend with the 
tectonic movement of the plate (Fig. 4). 

We take the GNSS-Acoustic Ranging combined POsi-
tioning Solver (GARPOS V1.0.0) software output as an 
external reference solution to evaluate the propose mod-
els. The GARPOS software adopts the recommended 
default parameter settings.

1st‑level optimization results
Prior temperatures from Argo observation
We collected Argo observations around MYGI within 
an area of 110,889   km2, lying within the interval 
[(142.9167° ± 1.5°) E, (38.0833° ± 1.5°) N], from March 28, 
2011 to June 15, 2020, see Fig. 5. It shows that the sea-

surface temperature has a very large fluctuation, but the 
seawater bottom temperature is very stable. It is also hard 
to precisely fix the thermocline depth which lies within 
the interval (300 m 500 m). 

The depth of MYGI station plots about 1727.8 m. the 
probability distribution of seawater bottom temperature 
at this depth in Fig. 6. It shows that, the mean of the sea-
water bottom temperature is 2.15 ◦C and STD is 0.09 ◦C . 
Therefore, we adopt the 1st-level optimization parameter 
settings in Table 2. The same method is used to analyze 
the seawater bottom sound speed.

The parameter settings of 1st-level optimization on 
bilinear SSP are given in Table  3. We impose lose con-
straints on the surface sound speed and the two sound 
speed gradients. Like constraining the bottom water tem-
perature of ESSP, the bottom sound speed is imposed 
with a tight constraint 1486.62  m/s with the STD 
0.01 m/s.
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SSP inversion precision analysis
The SSP inversion results are compared with the in-
field SSP and they are given in Fig.  7. It shows that the 
SSP inversions can overall characterize the shape of the 
in-field SSP, but it is hard to precisely fit the sea-surface 
sound speed. To precisely reflect the SSP inversion preci-
sion we adopt three piece-wise statistics, see Fig. 8.

Figure 8 shows that both for the bilinear SSP and ESSP 
the sound speed inversion precision increases with the 
depth, e.g., for the proposed ESSP, the mean bias and 
STD of the inversion sound speed in deepwater are 
0.085  m/s and 2.448  m/s respectively, but those in the 
shallow water are up to 2.455 m/s and 10.862 m/s respec-
tively. Table 4 shows that the inversion precision of pro-
posed ESSP is overall better than that of the bilinear SSP 
even though the bilinear SSP has a relatively small bias 
for whole water column. Note that it is hard to avoid a 
bias in the inversion SSP relative to the in-field SSP.

Positioning precision analysis
We adopt the Argo SSP nearby MYGI station and the 
inversion SSPs to perform the positioning. Taking the 
positioning result based on the in-field SSP as a reference, 
we can then figure out the positioning errors caused by 
the substitutions of the in-field SSP and they given in 
Fig. 9. It shows that the Argo SSP solution has a relatively 
large positioning error especially in the vertical direction, 
but the solutions based on the inversion SSPs are almost 
same with each other.

The bias and STD of the positioning error series in 
Fig.  9 are figured out and they are given in Table  5. It 
shows that both the proposed ESSP solution and bilinear 
SSP can achieve decimeter-level-precision positioning, 
e.g., the positional error of the proposed ESSP solution 
for each coordinate component doesn’t exceed 0.4 m, but 
there are biases 0.003 m and − 0.016 m in E direction and 
N direction, respectively. The vertical bias of proposed 

ESSP solution is smaller than that of the bilinear SSP 
solution and they are − 0.219 m and − 0.260 m, respec-
tively, but their horizontal biases can be considered at the 
same order for centimeter-precision-level positioning. 
Although the bilinear SSP inversion precision is signifi-
cantly lower than that the proposed ESSP, both the bilin-
ear SSP solution and the proposed ESSP solution possess 
almost the same residual with the in-field SSP solution, 
see Fig. 10. This indicates that the two inversion SSPs are 
approximately equivalent to each other for the geodetic 
positioning application. This also shows that imposing a 
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Table 2 Parameter settings of 1st-level optimization on ESSP

Parameter Value

Depth of the thermocline u0 Searching range: (300 m 
500 m), searching step: 
25 m

Bottom temperature limitation Tm 2 °C with STD 1 ×  105 ℃
Bottom temperature Tb 2 °C with STD 0.1 ℃
Temperature difference �T 10 °C with STD 10 ℃
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prior knowledge about the sound speed on the inversion 
is vitally important to obtain a meaningful SSP inversion 
solution.

2nd‑level optimization results
We use the parameter settings in Table  6 for perform-
ing the 2nd-level optimization. Note that the positioning 
accuracy may be further improved by optimally selecting 
the knots span St, SNEU and the smooth factor σ−2

K .
The above empirical parameter settings listed in Table 6 

will be further validated in following page.

Table 3 Parameter settings of 1st-level optimization on bilinear 
SSP

Parameter Value

Surface sound speed vs 1500 m/s with STD 5 m/s

Shallow-water sound speed gradient gu − 0.1 with STD 100

Deep-water sound speed gradient gd 0.01 with STD 100

Bottom sound speed 1486.62 m/s with STD 0.01 m/s
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Fig. 7 SSP inversion results from 1st-level optimization
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The positioning results based on the 2nd-level opti-
mization are given in Fig. 11. It shows that the E and N 
coordinate biases existing in the 1st-level optimization 
have been removed at a great extent. 

Table 7 shows that the horizontal precision of 2nd-level 
optimization for ESSP is better than 3 mm, while the ver-
tical precision is better than 3  cm. The horizontal posi-
tioning accuracy of ESSP is very close to that of bilinear 
SSP, but vertical STD of ESSP solution is 0.0238 m which 
is significantly smaller than that 0.0433 m of bilinear SSP 
solution. Further considering the positioning error of the 
reference solution based on the in-field SSP, we can draw 
the conclusion that the proposed two-level optimization 
approach can achieve almost the same horizontal posi-
tioning precision with that based on in-field SSP. This 
conclusion becomes more solid when making a compari-
son among the 2nd-level optimization residuals of differ-
ent SSP solutions as shown in Fig. 12. It also shows that 
the residuals are sharply shrunk after applying the 2nd 
optimization, compare to Fig. 9. A special attention on an 

existing bias about 1 cm in the vertical direction needs to 
be paid in future studies.

Long‑term displacement time series analysis
Let X j be the undetermined array geometry to perform 
the rigid-array fixed solution, �X (κ) be the positional dif-
ference of the array center for kth-epoch observation, 
and they can be determined by solving the equation as 
(Watanabe et al., 2020):

where, if the transponder j is used in κ th observation, 
δ
(κ)
j = 1 . In addition, δ(κ)j = 0 . where w and η are the 

number of transponders and epochs, respectively, and 
X
(κ)
j  denotes the transponders’ position at the kth-epoch.
The long-term displacement time series obtained by 

(36) is plotted in Fig.  13. The GARPOS solution time 

(36)
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Table 4 Mean bias and STD of the inversion SSP

SSP depth range (m) Mean bias from two methods STD from two methods

Bilinear SSP (m/s) ESSP (m/s) Bilinear SSP (m/s) ESSP (m/s)

0–1727.80 − 1.540 1.413 12.652 9.226

0–300 − 3.031 2.455 14.931 10.862

300–500 3.706 − 3.132 4.344 3.723

500–1727.80 0.796 0.085 3.415 2.448
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series based on in-field SSP as an external reference is 
also plotted in Fig.  13 for conducting the comparison. 
Then, we can use the linear model x(t) = x0 + vt + e where 
x is the displacement time series and v is the velocity to 
fit the displacement time series to verify the proposed 
approach. The LS fitting residual as an estimation of the 
observation error e can be then used to evaluate the posi-
tioning precision. 

Figure  13 shows that the proposed 2nd-level optimi-
zation approach can produce almost the same station 
movement trend as the GARPOS solutions, and more 
detailed information about the time series residuals is 
given in Table 8.

Table 8 shows that the largest difference among the sta-
tion velocities along E, N, U directions is about 5.5 mm/a 
and it happens in the U direction. The horizontal dis-
placement time series residual STDs of proposed models 

are close to that of GARPOS model. The influence of the 
substitution of the in-field SSP with the self-structured 
ESSP on the station velocity estimation are 0.0, 0.4 and 
− 1.4 mm/a in E, N, U directions, respectively, which can 
be ignored in applying GNSS-A to the seafloor geodesy 
in the current state of the art. We can draw almost the 
same conclusion for apply the bilinear SSP to the seafloor 
geodetic positioning. It is a very interesting but impor-
tant that for seafloor geodetic positioning at centimeter 
precision and long-term tectonic displacement monitor-
ing in-field SSP measurements might be unnecessary. 
However, as an extra product the SSP inversion should 
keep its physical meaning by imposing a prior knowl-
edge, such as the hydrostatic pressure of the water and 
the water temperature’s exponential decaying character-
istic with the depth.

0.8
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Table 5 Positioning error comparison of the solutions based on different SSPs

Index Positioning errors of nearby Argo 
SSP in different directions (m)

Positioning errors of bilinear SSP in 
different directions (m)

Positioning errors of ESSP in 
different directions (m)

E N U E N U E N U

Accuracy mean bias 0.016 0.149 4.016 − 0.001 − 0.013 − 0.260 0.003 − 0.016 − 0.219

Accuracy STD 0.189 0.587 8.748 0.018 0.025 0.353 0.019 0.024 0.355
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Remarks and conclusions
High-cost in-field SSP measurements have prevented 
GNSS-A from global seafloor geodesy, especially for 
real-time applications. The proposed self-structured SSP 

(SSSP) approach is a useful way to facilitate GNSS-A for 
conducting the large-scale and even global seafloor geo-
detic positioning.
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The overall shape of the in-field SSP can be character-
ized by the proposed three-parameter empirical tem-
perature profile by performing a joint estimation of the 
three parameters with the seafloor geodetic coordinates. 
However, the global optimal solution of the thermocline 
depth parameter is hard to be obtained in the context of 

the Gauss–Newton method because of its non-unique-
ness and local convergence, and therefore the grid search 
method is recommended to be used. The seawater bot-
tom temperature might also face with ill-posed problems, 
but fortunately the seawater bottom temperature prior 
constraint can be easily structured by the history ocean 
environment observations or by the current ocean tem-
perature knowledge because of its stability.

The inaccuracy of the self-structured SSP can be almost 
completely absorbed by the proposed 2nd-level optimi-
zation such that it can achieve almost the same position-
ing result as that based on the in-field SSP. The influence 
of substituting the in-field SSP with the proposed SSSP 
on the horizontal positioning is less than 3 mm while that 
on the vertical positioning is better than 3cm in the STD 

Table 6 Parameter settings for 2nd-level optimization

Parameter Value

B-Spline degree k 3

B-Spline interval length St 15 min

B-Spline interval length SNEU 35 min

Smooth factor σ−2
K = 0 0
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Fig. 11 Comparison of 1st-level and 2nd-level optimizations

Table 7 Accuracy comparison of 1st-level optimization and 2nd-level optimization

Index Positioning errors of Bilinear SSP 2nd‑level Opt in different 
directions (m)

Positioning errors of ESSP 2nd‑level Opt in 
different directions (m)

E N U E N U

Accuracy mean bias − 0.0006 0. 0010 − 0.0110 − 0.0003 − 0.0002 0.0148

Accuracy STD 0.0027 0. 0049 0.0433 0.0021 0.0027 0.0238
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sense. The influence of the substitution of the in-field 
SSP with the self-structured SSP on the station velocity 
estimation are further reduced to be omitted for apply-
ing GNSS-A to the seafloor geodesy in current state of 

the art. Sound speed inversion accuracy of the proposed 
SSSP is more accurate than the bilinear SSP and this leads 
to a more accurate vertical positioning precision.
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Fig. 12 2nd-level optimization residuals of different SSP solutions
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Appendix 1: Seafloor geodetic positioning models 
with five acoustic zenith delays
As shown in Fig.  14, without loss of generality, let the 
origin of NEU coordinate system be the centroid of the 
seafloor geodetic network array, let the RSSP c0(u) be 
at (n0 = 0, e0 = 0, t0 = 0) , the first-order Taylor series 
expansion of SSF c(n, e,u, t) at (n0 = 0, e0 = 0, t0 = 0) 
reads

where kn(u, t) := kn(0, 0,u, t) , ke(u, t) := ke(0, 0,u, t) , 
kt(u, t) := kt(0, 0,u, t) are the partial derivatives about 

(37)
c(n, e,u, t) = c0(u)+ kn(u, t)n+ ke(u, t)e + kt(u, t)t

the variable n, e and t, respectively, which represent the 
gradients of SSF. 

As shown in Fig. 14, let α′ and z′ are the azimuth angle 
and zenith angle of the surface transducer position x, X 
is the seafloor transponder coordinate vector to be esti-
mated, uX be the depth of the seafloor geodetic station, 
then SSP at the position x can be expressed as

(38)

c
′
0(u, t) = c0(u)+kt(u, t)t + nxkn(u, t)+ exke(u, t)

= c0(u)+kt(u, t)t + uX tan(z′)

(cos(α′)kn(u, t)+ sin(α′)ke(u, t))
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Fig. 13 GARPOS solution and the proposed 2nd-level optimization solution

Table 8 Displacement time series analysis results

Solutions Station velocity from different solutions in different 
directions (m/a)

Residual STD from different solutions in 
different directions (m)

E N U E N U

ESSP 2nd-level Opt. − 0.0689 0.0130 − 0.0336 0.0591 0.0410 0.1013

Bilinear SSP 2nd-level Opt. − 0.0687 0.0125 − 0.0327 0.0583 0.0431 0.0967

Delay model (in-field SSP) − 0.0689 0.0126 − 0.0322 0.0593 0.0417 0.0942

GARPOS model (in-field SSP) − 0.0684 0.0114 − 0.0377 0.0763 0.0638 0.0964
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The acoustic range signal travelling time is determined 
by the SSP along the ray. With SSP c′0(u, t) at the surface 
transducer position, we can figure out SSP along the ray. 
The horizontal gradient of SSF is very small and therefore 
the sound speed along the ray can be approximated by that 
along the Line of Sight (LOS). Then, let α and z are the azi-
muth angle and zenith angle of the ray observed at the sea-
floor transponder position X, at arbitrary depth u, we have

For approximating the ray travelling time function 
T =

∫

L c
−1(L)ds where L is the ray trajectory, with the 

Taylor series approximation (y+ dy)−1 = y−1 − y−2dy we 
have

where

(39)
c(LOS) = c′0(u, t)+ u tan(z)(cos(α)kn(u, t)+ sin(α)ke(u, t))

(40)

T =

∫

L
c−1(L)ds ≈

∫

L
c−1(LOS)ds

=

∫ ux

uX

(cosβ(u))−1c−1(LOS)du

≈

∫ ux

uX

(cosβ(u))−1c−1
0 (u)du − Dt(t)− tan(z)(cos(α)Dn(t)+ sin(α)De(t))

− tan(z′)(cos(α′)Dn′(t)+ sin(α′)De′(t))

(41)
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are the acoustic delays along LOS. To counterbalance the 
ray incident angle β(u) involved in (41), introducing the 
azimuthal auqengle z and then we can rewrite the model 
(40) into the form as follow

where Tobs is the observed value of round-trip time, εT is 
the random error of observation.

(42)

Tobs=

∫

ux

uX

(cosβ(u))−1
c
−1
0 (u)du −mtZt(t)

−mnZn(t)−meZe(t)−mn′Zn′(t)−me′Ze′(t)+εT

n

e

z′ z

X

u

ux

Fig. 14 Seafloor geodetic network geometry

is the zenithal mapping function,

where �(u) = (cos z)−1 cosβ(u) ≈ 1 such that Z∗(t) can 
represent the zenith delay unrelated to the time-varying 
of LOS. The above proposed model is different from the 
GARPOS model which adopts a default multiplicative 
compensation on the RSSP as

(43)























mt = (cos z)−1

mn = (cos z)−1 tan z cosα

me = (cos z)−1 tan z sin α

mn′ = (cos z)−1 tan z′ cosα′

me′ = (cos z)−1 tan z′ sin α′

(44)
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where Γ (t) is a time-varying factor to characterize SSP 
variation, T0(x) is the travel time calculated by the RSSP, 
T (x) is the travel time calculated by the time-varying SSP. 
To deal with the multiplicative compensation, we can fol-
low the GARPOS approach taking logarithms on both 
sides of the observation Tobs = Γ −1(t)T0(x)+ ε , that is

Assuming Γ −1(t) = eγ (t) , we can have

where ε′ is the observation error vector, γ (t) is the cor-
rection coefficient, which can be parameterized by a 
B-spline about the time. Further considering the horizon-
tal gradient of sound speed, GARPOS finally adopts

where P′ is horizontal coordinate under the NEU coor-
dinate system centered on specific original point which 
is the mean coordinates of transducer positions during 
the whole surveying session. X ′ is horizontal coordinate 
under the NEU coordinate system centered on specific 
original point which is the mean coordinates of seafloor 
transponder array positions.
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