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Abstract 

As global temperature rises, the frequency of extreme climate events, e.g., severe droughts and floods, has increased 
significantly and caused severe damage over the past years. To this regard, precipitation efficiency, a crucial mete-
orological parameter, could provide valuable insights for a better understanding of the patterns and characteristics 
of these extreme events. In this study, taking Guangdong province as an exemplary region, we first obtained long-
term and high-resolution historical records of precipitation efficiency by integrating the observations from a dense 
network of Global Navigation Satellite System (GNSS) stations with precipitation data, and then characterized 
the extreme drought and wetness through climate indices. We found a distinct seasonal trend in precipitation 
efficiency in Guangdong, with annual fluctuations ranging from 10 to 25%. Notably, precipitation efficiency is higher 
in proximity to the Pearl River Delta Plain and gradually decreases towards the east and west. The occurrence 
of anomalous peaks and valleys in precipitation efficiency generally corresponds to dry and wet conditions, respec-
tively. A total of 9 extreme wet events and 6 dry events occurred from January 2007 to May 2022, with durations 
from 3 to 6 months. Our results also demonstrated that both wet and dry frequencies exhibit an increasing trend 
with the expansion of the time scale, and the frequency of extreme events near the Pearl River Delta Plain surpasses 
that of other regions. Furthermore, the propagation time from meteorological anomalies to agricultural and hydro-
logical anomalies is about 3 months. The periodic characteristics of meteorological anomalies are identified as the pri-
mary driver for other anomalous periodic patterns. Our work unveils the long-term dynamic behavior of precipitation 
efficiency, as well as the characteristics of extreme drought and wetness events in the regions characterized by intri-
cate land–atmosphere interactions.
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Introduction
In the context of global change, the frequency of 
extreme climate events, such as severe drought and 
excessive precipitation, is on the rise (e.g., Diffen-
baugh et  al., 2017; Stott, 2016). Water vapor, a critical 
greenhouse gas and an integral part of the climate sys-
tem, serves as a key feedback mechanism (e.g., Chung 
et al., 2014; Ingram, 2010). The transportation of water 
vapor involves the transfer of energy in the form of 
latent heat, which is released as sensible heat when 
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condensation occurs (e.g., Jacob, 2001; Schneider et al., 
2010). As a result, the diverse processes involving water 
vapor significantly impact the Earth’s energy balance 
and consequently influence climate change dynamics 
(Rocken et al., 1997). Extensive research indicates that 
as climate change advances, both the temperature and 
water holding capacity in the troposphere increase, 
leading to an elevation in the actual water vapor con-
tent (e.g., Pall et  al., 2007; O’Gorman & Schneider, 
2009; J. Wang et al., 2016a, 2016b, 2016c). Water vapor, 
serving as the primary contributor to cloud formation 
and precipitation, exhibits significant temporal and 
spatial fluctuations, with its concentration commonly 
believed to correlate positively with extreme events 
(e.g., O’Gorman, 2015; Trenberth et  al., 2003). There-
fore, to effectively mitigate the detrimental effects of 
extreme drought and wetness events, it is of utmost 
importance to employ precise monitoring techniques 
to track the changes in water vapor and to conduct a 
comprehensive investigation on the conversion rate 
between water vapor and actual precipitation.

While the influential role of elevated water vapor con-
tent on precipitation is widely recognized, the complex 
intrinsic relationship between precipitation and water 
vapor still remains unclear (e.g., Benevides et  al., 2015; 
Bordi et al., 2015; Zhao et al., 2020a, 2020b). As stated in 
Tuller (1973), the occurrence of precipitation in a given 
region is primarily influenced by three factors: atmos-
pheric water vapor content, the degree of saturation, and 
the presence of a conductive dynamic mechanism that 
facilitates the necessary cooling to elevate the saturation 
level, thereby enabling precipitation. Consequently, this 
fundamental reason accounts for the observed limited 
correlation between water vapor and precipitation (Jadala 
et  al., 2022). The intensity of precipitation, particularly 
during extreme events, is contingent upon the availabil-
ity of moisture (Trenberth et  al., 2003). In this context, 
Precipitation Efficiency (PE) serves as a widely employed 
metric in appraising the effectiveness of dynamic pre-
cipitation mechanisms, underscoring the paramount 
importance of available moisture and these mechanisms 
in precipitation generation (e.g., Doswell et al., 1996; Sui 
et al., 2007). Specifically, PE is quantified as the ratio of 
the atmospheric water vapor above a specific station that 
condenses to the precipitates onto the Earth’s surface 
(Tuller, 1971). The utilization of PE as a characterization 
tool offers valuable insights into the underlying mecha-
nisms driving extreme drought and wetness events (e.g., 
Ye et  al., 2014; R. L. Li et  al., 2023). By quantifying the 
transformation of atmospheric water vapor into precipi-
tation at a given location, PE facilitates a better under-
standing of the precipitation generation mechanisms 
(e.g., R. L. Li et al., 2022; Yin et al., 2022). This insight is 

particularly crucial in the regions susceptible to frequent 
or prolonged droughts and heavy wetness events.

High-resolution water vapor information is indispen-
sable for understanding PE’s substantial temporal and 
spatial variability. Currently, various conventional tech-
niques exist for retrieving water vapor, including radio-
sonde, water vapor radiometers, satellite remote sensing, 
and global satellite navigation systems (e.g., Jade et  al., 
2005; Zhao et al., 2022). Radiosonde networks have tra-
ditionally served as the primary means of acquiring data 
for water vapor monitoring. However, despite the high 
accuracy of water vapor measurements obtained with 
radiosonde, data scarcity remains a prevalent issue in 
many regions (e.g., Ohtani & Naito, 2000; Q. Zhang et al., 
2018). Although water vapor radiometers can enhance 
temporal resolution, their widespread utilization is hin-
dered by the associated high costs (B. Zhang & Yao, 
2021). While spatial remote sensing excels in spatial reso-
lution for water vapor retrieval, its accuracy is susceptible 
to weather conditions and ground factors, introducing 
significant uncertainties (e.g., Gao & Kaufman, 2003; Z. 
Liu et  al., 2013). In comparison, the Global Navigation 
Satellite System (GNSS) network surpasses other obser-
vation methods by providing superior temporal and 
spatial resolution, longer time series, and precise infor-
mation on water vapor changes (e.g., Bevis et  al., 1992; 
X. Li et al., 2015; Huang et al., 2021). Drawing upon these 
inherent advantages, numerous studies have endeavored 
to integrate GNSS data with precipitation measurements 
to estimate PE (e.g., Bordi et  al., 2014; Zhu, Chen, Hu, 
Liu, et  al., 2023). This integration holds the potential to 
provide precise and dependable distribution maps of PE, 
thereby facilitating investigations on extreme events with 
higher accuracy and reliability.

Given the intricate spatial variability of PE across 
diverse regions, undertaking specific investigations 
becomes imperative (Wang et  al., 2019). Guangdong, 
located in the southeastern coastal area of China, 
emerges as a region distinguished by notable fluctua-
tions in water vapor and frequent interactions between 
land and air. During the summer and autumn, the mon-
soon airflow transports abundant quantities of warm and 
humid water vapor from the tropical Indian Ocean and 
the South China Sea to the East Asian continent, result-
ing in substantial precipitation in Guangdong. The prov-
ince is susceptible to extreme climate phenomena, such 
as intense rainfall, flooding, and droughts, due to the 
influence of anomalous monsoons and complex terrain 
conditions. Consequently, a comprehensive examina-
tion of the spatiotemporal variation of PE in Guangdong 
Province and its connection to extreme events is of 
utmost importance. However, to the best of our knowl-
edge, there is currently a dearth of related research. 
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Therefore, this study aims to calculate a high-resolution 
historical record of PE in Guangdong by utilizing a dense 
network of GNSS stations combined with precipitation 
products. Furthermore, it aims to analyze the character-
istics of extreme drought and wetness events in conjunc-
tion with corresponding climate indices. The objectives 
of this study are as follows: (1) To investigate the spatial 
and temporal distribution and evolution of PE in Guang-
dong. (2) To characterize extreme climate events, both 
extreme drought and wetness, in Guangdong using long-
term PE data. (3) To explore the frequency of dry and wet 
periods across multiple time scales in Guangdong. (4) To 
analyze the propagation relationship from meteorologi-
cal anomalies to agricultural and hydrological anomalies 
in Guangdong.

Study area and data
Study area
The Guangdong province features a complex terrain with 
a higher altitude in the northeast and lower altitude in the 
southwest, predominantly dominated by hills and moun-
tains, which constitute over 60% of the total area. The 
province can be roughly divided into three sub-regions 

based on its terrain (Fig.  1): the northern part, consist-
ing mainly of mountains and hills; the central part, com-
prising the Pearl River Delta, which is a low-lying impact 
plain, and the southern part, characterized by plains and 
terraces. Furthermore, Guangdong Province is character-
ized by a distinctive subtropical and tropical monsoon 
climate. The region exhibits an annual average tempera-
ture ranging from 15 to 25 degrees Celsius, accompanied 
by an average total annual precipitation of approximately 
1500–2000 mm (He et al., 2017). Influenced by the sum-
mer monsoon and complex topography, precipitation is 
unevenly distributed throughout the year. Precipitation 
gradually increases from south to north and is concen-
trated mostly in the period from April to September, 
resulting in distinct rainy and dry seasons. Abundant 
precipitation in spring and summer makes the region 
susceptible to flood disasters, while the lower precipita-
tion in autumn and winter can lead to drought events. In 
this study, we utilize multi-source hydrometeorological 
data to analyze the characteristics of extreme hydrocli-
mate events in Guangdong. The objective is to mitigate 
the impact of such events and alleviate the pressure on 
water resources.
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Fig. 1 The geographical location and station distribution of Guangdong. The GNSS stations are denoted by yellow triangles and radiosonde 
stations are represented by red squares. The red dashed box highlights the nearest GNSS station to the sounding station, providing convenient data 
comparison. The blue line denotes the river, while the red line marks the Pearl River Delta. Additionally, the background color illustrates the altitude
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Data
In this study, we employed five types of data (Table  1), 
including GNSS data, reanalysis products, radiosonde 
data, hydrological models, and grid-based drought index 
products. Specifically, GNSS data were utilized to cal-
culate the zenith tropospheric delay, which was subse-
quently converted to Precipitable Water Vapor (PWV). 
Hydrometeorological variables, such as temperature, 
precipitation, runoff, and soil moisture, and others, were 
derived for climate analysis using reanalysis products 
from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) and hydrological models from 
the Global Land Data Assimilation System (GLDAS). 
Additionally, the grid-based drought index product was 
employed to assess the reliability of the related climate 
indices utilized in this investigation.

Detailed data descriptions are presented in the following 
paragraphs
GNSS data
The Lands and Resource Department of Guangdong, and 
the Crustal Movement Observation Network of China 
(CMONOC) have established a dense network of GNSS 
stations in Guangdong Province, which offers favora-
ble conditions for investigating and analyzing extreme 
drought and wetness events. We obtained the observa-
tion data from 140 GNSS stations located throughout 
Guangdong province (see Table S1 for details), covering 
the period from January 1, 2007, to May 31, 2022. The 
spatial distribution of these stations is depicted in Fig. 1, 
which highlights their comprehensive coverage across 
most regions of Guangdong province, particularly the 
Guangdong-Hong Kong-Macao Greater Bay Area.

ECMWF reanalysis data
The ERA5 dataset, the latest reanalysis product from the 
ECMWF, offers very precise and high-resolution ground 
meteorological data spanning from 1940 to the present 
day, with continuous updates and extensions (Hersbach 
et al., 2020). This study utilized monthly averaged data on 
single levels, including 2 m temperature, surface pressure, 
total precipitation, runoff, and total column water vapor, 

from January 2007 to May 2022. The data have a spatial 
resolution of 1/4° and a temporal resolution of 1 month. 
In this study, we utilize 2  m temperature and surface 
pressure data to compute the weighted mean tempera-
ture and zenith hydrostatic delay, which are essential 
parameters for the accurate determination of GNSS-
derived PWV. Total precipitation data is combined with 
GNSS-derived PWV data to determine PE. Runoff data 
is employed to investigate the propagation relationship 
between meteorological anomalies and hydrological 
anomalies. In addition, to interpolate grid data to GNSS 
station positions, bilinear interpolation is utilized.

Radiosonde data
At radiosonde stations, sounding balloons are released 
every 12  h (UTC 0:00 12:00) to directly measure mete-
orological parameters, including temperature, pressure, 
and relative humidity, at different altitudes. By integrating 
these measurements over the profile, it is possible to cal-
culate atmospheric precipitable water vapor. We utilized 
stratified meteorological data from the Integrated Global 
Radiosonde Archive Version 2 (IGRA2) to compute PWV 
as a supplementary method for validation in this study 
(Durre et al., 2016). Regrettably, our examination of the 
data set revealed only four observation records from 
radiosonde stations in Guangdong that match the study 
area and time of this paper (see Table S2 for details). Nev-
ertheless, these stations are in diverse terrains and geo-
graphical locations across Guangdong, providing ample 
cross-validation between datasets. To mitigate the effects 
of distance and altitude, we compare and analyze the 
consistency between the PWV provided by GNSS and RS 
by selecting the four GNSS stations closest to the sound-
ing station.

GLDAS hydrological model
The GLDAS hydrological model utilizes advanced land 
surface modeling and data assimilation techniques to 
assimilate satellite- and ground-based observational 
data products, generating an optimal field of land sur-
face states and fluxes (Rodell et  al., 2004). This study 
investigates the influence of meteorological anomalies 

Table 1 Summary of the dataset utilized in the study

Type Spatial coverage Temporal coverage (Resolution) Variables

GNSS data Stations From 2007–01 to 2022–05 (Daily) Precipitable water vapor

ECMWF reanalysis product 0.25° From 2007–01 to 2022–05 (Monthly) Temperature, pressure, precipitation, 
runoff, and total column water vapor

Radiosonde data Stations From 2007–01 to 2021–05 (12-hourly) Precipitable water vapor

GLDAS hydrological model 0.25° From 2007–01 to 2022–05 (Monthly) 0-2 m soil moisture

SPEI product 0.5° From 2007–01 to 2022–05 (Monthly) Drought index
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on agricultural anomalies associated with soil moisture 
fluctuations, utilizing 0-2 m soil moisture data from the 
GLDAS-Noah2.1 hydrological model (hereafter referred 
to as GLDAS). The dataset, provided by the National 
Aeronautics and Space Administration’s Goddard Space 
Flight Center, offers a spatial resolution of 1/4° and a tem-
poral resolution of 1 month.

SPEI drought index data
The Standardized Precipitation-Evapotranspiration Index 
(SPEI) is a comprehensive drought index that assesses 
drought conditions across multiple timescales (Vicente-
Serrano et  al., 2010). It is derived from the difference 
between precipitation and potential evapotranspiration, 
which is a key indicator of water availability in the climate 
water balance. The SPEIbase, a global SPEI database, 
offers dependable and long-term information on drought 
conditions at a 1/2° spatial and monthly temporal resolu-
tion (Beguería et  al., 2010). In this study, the SPEI time 
series derived from SPEIbase was employed to assess the 
reliability of the drought index utilized.

Methodology
GNSS data processing
In the present study, we utilized the Precise Point Posi-
tioning (PPP) mode of the PANDA (Positioning And 
Navigation Data Analyst) software to accurately estimate 
the daily Zenith Tropospheric Delay (ZTD) (Shi et  al., 
2008). The Center for Orbit Determination in Europe 

(CODE) provided precise orbit, clock offset, and differen-
tial code bias files. The a priori values for the tropospheric 
delay were estimated using the Global Mapping Function 
(GMF) and the Global Pressure–Temperature (GPT) 
model. To correct for the first-order ionospheric effect, 
an ionosphere-free combination model was used. Addi-
tionally, the phase center of the antenna was corrected 
using the IGS antenna phase calibration model. Given the 
study’s exclusive focus on sub-seasonal extreme drought 
and wetness events, we converted the daily ZTD time 
series, derived from GNSS, into monthly mean series to 
facilitate the relevant analysis (Fig.  2). Furthermore, the 
ZTD time series obtained by GNSS are often incomplete 
due to instrument failure or poor observation conditions. 
To address this issue, we utilized the Singular Spectrum 
Analysis (SSA) method to fill the gaps in the monthly 
mean time series. This non-parametric and data-adaptive 
approach produces reliable outcomes for gap filling (Yi & 
Sneeuw, 2021). To ensure the temporal integrity and spa-
tial uniformity of station distribution, the extensive data 
gaps in the GNSS-derived precipitable water vapor time 
series, caused by the factors such as delayed construction 
of certain stations, are filled using the precipitable water 
vapor data from the ERA5 dataset.

Calculation of precipitable water vapor using multiple data
Estimating precipitable water vapor with GNSS observations
Precipitable water vapor is defined as the total water 
vapor content per unit area of the air column extending 
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from the Earth’s surface to the top of the troposphere 
(Bevis et al., 1994). GNSS technique can determine accu-
rate ZTD, which can subsequently be transformed into 
PWV using Eq. 1.

In Eq.  (1), dZWD represents the zenith wet delay, and 
� denotes the dimensionless conversion factor, both of 
which can be obtained using Eqs. (2) and (3), respectively.

In Eq. 2, dZHD represents the zenith hydrostatic delay, P 
denotes the surface air pressure, φ represents the latitude 
of the station, and E signifies the height of the station.

Equation  3 incorporates several constants, includ-
ing water density ( ρw ), the specific gas constant of water 
vapor ( Rv ), and atmospheric refractivity constants ( k2′ 
and k3 ) (X. Wang et al., 2016a, 2016b, 2016c). The vari-
able Tm denotes the weighted mean temperature, as esti-
mated by the Bevis model (Bevis et al., 1992):

In Eq. 4, Ts denotes the surface temperature, provided 
by the ERA5 dataset.

Estimating precipitable water vapor with radiosonde 
observations
Radiosonde stations record the various atmospheric 
parameters layer by layer, including, but not limited to, 
temperature, humidity, air pressure, wind direction, and 
wind velocity. To derive precipitable water vapor with 
radiosonde data, a numerical integration is necessary 
(Eq. 5).

Among these variables, g denotes the gravity, ρ is the 
density of liquid water, p denotes surface atmospheric 
pressure, p0 signifies air pressure at the top of the atmos-
phere, and q represents the specific humidity (Eq. 6).

(1)dPWV = dZWD ×�

(2)
dZWD = dZTD − dZHDdZHD =

0.0022768× P

1− 0.0026× cos(φ)− 0.00028× E

(3)� =
1× 10

6

ρwRv(
k3
Tm

+ k2′)

(4)Tm = 0.72× Ts + 70.2

(5)dPWV =
1

gρ

p0
∑

p

qdp

(6)



















q =
0.622×Pw

P−0.378×Pw

Pw =
dRHPs
100

Ps = 6.112× exp
�

17.67×(T−273.15)
T−29.65

�

Herein, Pw denotes the partial pressure of water vapor, 
dRH represents the relative humidity, Ps signifies the 
saturation water vapor pressure, and T  indicates the 
temperature.

Principal component analysis
Principal Component Analysis (PCA) is a widely used 
method for transforming a set of potentially corre-
lated variables into a set of independent variables via an 
orthogonal transformation (Abdi & Williams, 2010). The 
resulting variables are referred to as Principal Compo-
nents (PCs), which represent the temporal basis func-
tions of the data. The eigenvector matrix corresponds 
to the spatial patterns of the data, also known as spatial 
responses. By sorting the eigenvectors’ variance contri-
bution rates in descending order, one can identify the 
proportion of the original signal that each PC contrib-
utes. Typically, the first few PCs capture most of the 
variance in the original data, thereby preserving most of 
the information. PCA was employed to investigate the 
temporal trends and spatial distribution patterns of the 
data set ˜Xm×n , where m represents the data length and n 
denotes the number of stations. This analysis was accom-
plished via singular value decomposition, and is repre-
sented mathematically by Eq. (7) (Ming et al., 2017).

Here, U  and V  denote the temporal and spatial pattern 
matrices of ˜X , respectively, while S denotes the diagonal 
matrix of eigenvalues. Here, we provide a concise intro-
duction to the principle of the PCA technique. For a 
more comprehensive understanding, refer to Abdi et  al. 
(2010).

Precipitation efficiency
Precipitation efficiency denotes the fraction of average 
precipitable water vapor above a station that is effectively 
converted into measurable precipitation over a specific 
time interval. According to Bordi et al. (2015), PE can be 
quantified by computing the ratio between precipitation 
and atmospheric precipitable water vapor data, as illus-
trated in Eq. (8). Previous research has consistently dem-
onstrated that higher PE values indicate a more efficient 
conversion of precipitation, resulting in wetter regions. 
Conversely, the areas with lower PE values tend to expe-
rience drier conditions (e.g., Ma et al., 2021; Zhu, Chen, 
Hu, Liu, et al., 2023).

(7)˜X = U × S × V
T

(8)dPE =
P

dPWV

× 100
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In Eq. 8, dPE represents the precipitation efficiency (in 
percentage), the variable P denotes the monthly average 
precipitation, and dPWV  signifies the monthly average of 
PWV.

Climate index
The climate index condenses intricate drought or wet 
occurrences into a single numeric value (e.g., McKee 
et al., 1993; Yao et al., 2022; Zhu, Chen, Hu, Wei, et al., 
2023a, 2023b). This is achieved through the application 
of a principle that involves computing the likelihood of 
such extreme weather phenomena based on historical 
observations of relevant hydrometeorological variables, 
and subsequently converting this probability into a corre-
sponding index, which represents the potential for these 
events. In this study, we utilize the Standardized Precipi-
tation Conversion Index (SPCI) to detect meteorological 
anomalies (Zhao et al., 2020a, 2020b). The SPCI, a mete-
orological drought index that accounts for the intensity 
and duration of droughts, is calculated using historical 
records of PE. As a standardized metric, the SPCI can 
also serve as an indicator of wet periods.

In Eq. 9, i represents the month, m represents the first 
month of the multi-month scale, n represents the total 
number of months on the scale, di

P
 represents the average 

precipitation in the i-th month, di
PWV

 represents the 
average PWV in the i-th month, and diday represents the 
number of days in the i-th month. The "nor" refers to 
normalization.

As SPCI values increase, the precipitation conver-
sion rate and regional wetness also increase, indicating 
wetter conditions, whereas smaller SPCI values suggest 
drier conditions. In this study, the empirical Cumulative 
Distribution Function (eCDF) was utilized to compute 
the statistical percentiles of SPCI1. The upper and lower 
quantiles of SPCI1 in Guangdong were approximately 
0.46 and − 0.41, respectively. As the original drought/wet 
classification catalog of SPCI (Table S3) may not account 
for all meteorological and hydrological events, it was 
not employed in this study. Instead, Table 2 presents the 
drought/wet classification catalog used herein. Specifi-
cally, when SPCI exceeds 0.5, the likelihood of extreme 
wetness increases with higher SPCI values, while the 
probability of drought increases with decreasing SPCI 
below − 0.5.

While the SPCI can provide valuable insights into 
atypical shifts in precipitation efficiency, it is crucial 

(9)dnSPCI = nor[

(

∑m+n−1
i=m di

P
∑m+n−1

i=m di
PWV

× diday

× 100

)

n

]

to acknowledge that these precipitation anomalies can 
potentially trigger irregularities in both soil moisture 
and runoff, particularly within the framework of extreme 
event development. In this research, we have leveraged 
the Standardized Soil Moisture Index (SSMI) and the 
Standardized Runoff Index (SRI) to pinpoint agricultural 
and hydrological anomalies, respectively. Our primary 
objective has been to assess the impact of meteorologi-
cal anomalies on agricultural and hydrological systems. 
Notably, both indices can be readily computed using 
Eq. 10.

In Eq.  (10), di,jCI represents the climate index, denoted 
as either SSMI or SRI. The variables i and j are the year 
(2007–2022) and month (1–12), respectively. Wi,j is the 
soil moisture or runoff of the jth month of the ith year. 
Wj represents monthly climatology, which is the average 
soil moisture or runoff of j months for all years. σj is the 
standard deviation of j months for all years.

Propagation relationship
Pearson’s Correlation Coefficient (PCC) is widely used 
for quantifying the linear relationship between two ran-
dom variables (Sedgwick, 2012). The PCC is a normal-
ized measure of covariance that is calculated as the ratio 
of the product of the covariance to the standard deviation 
of the two variables (Eq. 11). A PCC value greater than 0 
indicates a positive correlation, while a value less than 0 
indicates a negative correlation; a value of 0 indicates no 
correlation. In this study, we employ PCC to assess the 
consistency between time series of various hydromete-
orological variables.

(10)d
i,j
CI =

Wi,j −Wj

σj

Table 2 The drought/wet classification catalog

Category Range Level

W4 [2, + ∞] Exceptionally wet

W3 [1.6, 1.99] Extremely wet

W2 [1.3, 1.59] Severe wet

W1 [0.8, 1.29] Moderately wet

W0 [0.5, 0.79] Slight wet

WD [–0.49, 0.49] Near normal

D0 [–0.79, –0.5] Abnormal drought

D1 [–1.29, –0.8] Moderate drought

D2 [–1.59, –1.3] Severe drought

D3 [–1.99, –1.6] Extremely drought

D4 (–∞, –2] Exceptional drought
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In Eq.  11, Cov(X ,Y ) represents covariance, σ(x) and 
σ(y) denote standard deviation of xi and yi , respectively, 
and µx and µy denote the respective mean values of xi 
and yi.

Furthermore, previous studies employed the Maximum 
Pearson Correlation Coefficient (MPCC) as a metric to 
determine the Propagation Time (PT) between mete-
orological, agricultural, and hydrological anomalies (e.g., 
Dai et al., 2022; Ding et al., 2021). Specifically, the MPCC 
is utilized to evaluate the PT between the accumula-
tion period of the Meteorological Drought Index (MDI), 
denoted as MDI-n (where n signifies the number of 
months), and the Agricultural and Hydrological Drought 
Index for a single month (ADI-1/HDI-1). Consequently, 
this study employs the MPCC to determine the PT from 
meteorological to agricultural and hydrological anoma-
lies. Following the determination of PT, we employed 
continuous wavelet transform to analyze the periodic-
ity of meteorological and hydrological anomalies, facili-
tating a better understanding of their interrelationship 
(Q. Li et al., 2020a, 2020b). Wavelet transform is a com-
monly utilized time–frequency analysis tool in the field 
of hydrology and climate, enabling the decomposition of 
time series into the time and frequency domains simulta-
neously for signal characteristic extraction. The wavelet 
decomposition of a time series Xn(n = 1, 2 . . .N ) can be 
implemented using Eq. (12).

(11)

dPCC =
Cov(X ,Y )

σ (X)σ (Y )
=

∑

(xi − µx)(yi − µy)
√

∑

(xi − µx)
2
√

∑

(yi − µy)
2

In Eq.  12, the wavelet power spectrum is defined as 
|Wn(s)|

2 , n is the localized time index, n′ is the time con-
version index, ϕ(t) denotes a mother wavelet function, 
( ∗ ) indicates the complex conjugate, s is the scale, and δt 
represents the sampling period. The wavelet power spec-
trum reflects the volatility characteristics of different 
scales present in the time series, with intensity changes 
observed at varying scales (Zhou, Shi, Fu, Ding, Li, Wang, 
et al., 2021).

Results
Temporal and spatial variations in precipitation efficiency 
in Guangdong
As mentioned previously, PE reflects a region’s actual 
precipitation conversion rate and is a crucial indicator for 
evaluating its drought or wet (Bordi et al., 2014). There-
fore, analyzing the spatiotemporal characteristics of PE 
in Guangdong is necessary to identify the areas suscepti-
ble to meteorological anomalies and provide insights for 
implementing appropriate disaster prevention and miti-
gation measures. By conducting PCA analysis on PE data 
at GNSS stations, we found that the first three principal 
components accounted for 92.87% of the cumulative 
variance of PEs in Guangdong, China, effectively describ-
ing the spatiotemporal distribution of PEs. Based on the 
time response of the first principal component of PE 
(with a variance contribution rate of 76.89%), it is evident 
that PE in Guangdong exhibits a pronounced seasonal 

(12)Wn(s) =

N−1
∑

n′=0

xn′ϕ
∗

[

(n′ − n)δt

s

]
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Fig. 3 Temporal and spatial responses of the first three principal components of precipitation efficiency
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trend, with an unimodal distribution throughout the year 
(Fig.  3a). This implies that precipitation in Guangdong 
is unevenly distributed across the year, with distinct dry 
(October–March) and rainy seasons (April-September). 
The spatial response of the first principal component is 
consistent, with a high-value area near the Pearl River 
Delta plain that gradually decreases towards the east 
and west. This indicates that PE changes more dramati-
cally in this region, leading to a higher risk of drought or 
flood disasters. The second principal component of PE 
contributed 12.03% to the variance, indicating a second-
ary distribution of PE (Fig. 3b). The temporal response of 
PC2 is positive from May to October and negative from 
November to April, and the spatial response exhibits an 
obvious north–south inverse pattern, highlighting the 
heterogeneous distribution of PE between the southern 
and northern regions of Guangdong. Additionally, a con-
trasting trend of increasing or decreasing PE is observed 
between the two regions. The third principal component 
of PE contributes only 3.95% to the total variance and 
has little impact on the original time series (Fig. 3c). Its 
spatiotemporal response indicates the presence of small-
scale differences in PE between eastern and western 
Guangdong.

Detection of extreme drought and wetness events 
through anomalies in precipitation efficiency
In China, Guangdong is frequently affected by hydrome-
teorological disasters, with droughts and floods occurring 
periodically. Through the calculation of PE and its anom-
alies, our study reveals that PE in Guangdong exhibits 
an annual fluctuation ranging between 5%-25% (Fig. 4a), 
reaching its peak from April to September during the 
rainy season and hitting the lowest point from October 
to March during the dry season. Additionally, the mag-
nitude of PE anomalies is typically within 10%, with its 
peak and trough values often corresponding to extreme 
wetness or dryness conditions (Fig.  4b). We converted 
the PE anomaly into a climate index (SPCI) to accurately 
reflect the meteorological anomaly resulting from the 
increase or decrease of PE in a clear and intuitive manner 
(Fig.  4c). Unlike the SPI, which relies solely on precipi-
tation anomalies to gauge meteorological drought, the 
SPCI accounts for the influence of dynamic mechanisms 
on atmospheric moisture release, allowing for the com-
prehensive assessment of PE deficits across various time 
scales. In this study, we employ the 1-month scale SPCI 
(SPCI1) to detect potential extreme drought and wet-
ness events in Guangdong, providing an early warning 
of anomalous precipitation conversion rates and aiding 

in the evaluation of their severity. In accordance with the 
definition of drought by Thomas et al. (2014), we define 
an extreme climate event, encompassing both extreme 
wet and drought conditions, as persistent abnormal PE 
lasting for over three consecutive months. Consequently, 
each event has a defined duration from its inception to its 
conclusion, and intensity for each month that the event 
continues.

Table  3 provides a summary of the observed extreme 
drought and wetness events in Guangdong. Between 
January 2007 and May 2022, Guangdong experienced 
nine extreme wet events lasting for three to six months. 
Among these events, the severe wet (W2) event in 
November 2015, which lasted for six months and had a 
SPCI1 peak of 1.45 in December 2015. This rare heavy 
rainfall event in winter is believed to be triggered by the 
El Niño event, which peaked in November–December 
2015, causing a substantial increase in precipitation in 
southeastern China (Zhai et  al., 2016). Due to its prox-
imity to the South China Sea and frequent exposure to 
typhoons that carry substantial amounts of water vapor, 
Guangdong experiences heavy precipitation during these 
extreme weather events. Among the nine extreme wet 
events we documented, the majority is linked to typhoon 
occurrences, as previously reported in other studies (e.g., 
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D. Wang et  al., 2016a, 2016b, 2016c; H. Li et  al., 2020a, 
2020b). Furthermore, this study included monitoring six 
extreme drought events, lasting for 3 to 5 months each. 
Despite Guangdong’s tropical and subtropical monsoon 
climate that receives abundant rainfall, the region faces 
the persistent risk of water shortages due to uneven tem-
poral and spatial precipitation patterns, coupled with 
high temperatures and significant evaporation (C. Liu 
et al., 2011). As a result, drought remains a critical disas-
ter that demands attention and action in Guangdong.

Investigating the wet and dry frequency at multiple time 
scales
The wet and dry frequency is a crucial determinant for 
assessing the likelihood of extremely dry or wet events. 
The areas characterized by higher frequencies are at 
greater risk of experiencing anomalies in the form of 
wet or dry conditions in the future. To facilitate com-
prehension, this paper defines the frequency of dry or 
wet as the ratio of the number of dry (SPCI < -0.5) or 
wet (SPCI > 0.5) months to the total number of months. 
Moreover, the SPCI is able to quantify PE anomalies 

Table 3 Extremely wet/dry events in Guangdong

Extremely 
wet events

Extremely dry events

Num Start time-End time Duration in 
months

Highest severity 
(SPCI/Catalog)

Num Start time-End time Duration in 
months

Highest 
severity (SPCI/
Catalog)

1 From 2008–05 to 2008–07 3 1.31/W2 1 From 2011–02 to 2011–05 4 − 0.95/D1

2 From 2012–03 to 2012–05 3 0.92/W1 2 From 2014–08 to 2011–10 3 − 0.71/D0

3 From 2013–07 to 2013–09 3 1.16/W1 3 From 2018–03 to 2018–05 3 − 1.08/D1

4 From 2013–11 to 2014–01 3 0.82/W1 4 From 2019–09 to 2019–12 4 − 1.04/D1

5 From 2015–11 to 2016–04 6 1.45/W2 5 From 2020–05 to 2020–07 3 − 0.98/D1

6 From 2016–09 to 2016–11 3 0.85/W1 6 From 2021–02 to 2021–06 5 − 1.09/D1

7 From 2018–07 to 2018–09 3 0.81/W1

8 From 2019–02 to 2019–04 3 1.00/W1

9 From 2022–01 to 2022–03 3 0.81/W1
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across various temporal scales, thereby providing insight 
into the impact of PE deficits on the availability of diverse 
water resources (Zhao et al., 2020a, 2020b). For instance, 
the anomalies in PE over shorter timescales (1–6 months) 
can induce alterations in meteorological and soil mois-
ture conditions impacting agriculture. Conversely, the 
anomalies spanning longer timescales (6–12  months) 
can exert considerable influence on river runoff, reser-
voir storage, and groundwater storage, thereby affecting 
hydrological processes. To this end, we calculated the dry 
and wet frequencies of SPCI on 1-, 3-, 6-, and 12-month 
scales (Fig. 5). Due to the limited sample size of approxi-
mately 15.4  years, we did not analyze the indices on 
longer time scales.

According to the findings of this study, significant spa-
tial variations are observed in the wet and dry frequen-
cies across different time scales. Moreover, as the time 
scale increases (i.e., 1–12 months), both wet and dry fre-
quencies exhibit a gradual increase. Notably, the analy-
sis reveals a distinct southwest-northeast difference in 
the spatial distribution of the dry and wet frequencies 
for SPCI1, suggesting that the northeast region may be 
more susceptible to extremely dry and wet events. Addi-
tionally, the high-value areas of dry–wet frequency for 
SPCI3 are primarily concentrated in the Pearl River Delta 
region. As an alluvial plain characterized by flat topog-
raphy and intricate water systems, the Pearl River Delta 
region is highly vulnerable to short-term meteorologi-
cal anomalies, which can have consequential impacts on 
agricultural systems. The distribution pattern of SPCI6 
closely resembles that of SPCI3, suggesting a persistently 
high occurrence of mid-term meteorological anomalies 
in the Pearl River Delta region, potentially affecting the 
hydrological system. Moreover, the spatial distribution 
of wet frequency associated with SPCI12 demonstrates a 
southward trend, while the distribution of dry frequency 

exhibits a northward trend, implying that different ter-
rains may exhibit diverse responses to long-term mete-
orological anomalies. Overall, our study highlights the 
severity of the impacts of varying-scale meteorological 
anomalies on the Pearl River Delta region. The region’s 
vulnerability to these anomalies, especially in terms of 
short-term and mid-term events, underscores the impor-
tance of developing appropriate strategies to mitigate 
potential agricultural and hydrological disruptions.

Investigating the propagation relationship between 
meteorological anomalies and agricultural as well as 
hydrological anomalies.

Following a meteorological anomaly, such as drought, 
its repercussions permeate the agriculture and hydro-
logical system, leading to abnormal declines in soil 
moisture and river runoff (Van Loon, 2015). This inad-
equacy in soil moisture has a direct impact on vegeta-
tion growth and crop yields, which is commonly referred 
to as agricultural drought. Furthermore, it can dimin-
ish both surface and subsurface runoff, thereby signifi-
cantly impacting the water supply, and further generating 
hydrological drought. This study employs the 1-month 
scale Standardized Soil Moisture Index (SSMI1) and 
Standardized Runoff Index (SRI1) to characterize agri-
cultural and hydrological anomalies, respectively. Addi-
tionally, previous research has demonstrated the efficacy 
of using the MPCC between different climate indices 
to analyze the propagation relationship between differ-
ent anomaly types, yielding satisfactory results (e.g., Wu 
et al., 2021; Zhou, Shi, Fu, Ding, Li, Wang, et al., 2021). 
We calculated the PCC between the 1–24  month-scale 
SPCI (SPCI1-24) and SSMI1 as well as SRI1 (Fig. 6a). Our 
results demonstrate a robust association between mete-
orological anomalies in Guangdong and agricultural and 
hydrological anomalies. Particularly, SPCI3 exhibits the 
highest PCC with SSMI1 and SRI1, with values of 0.81 
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and 0.80, respectively (Fig. 6b), indicating a propagation 
time of approximately three months from meteorologi-
cal anomalies to agricultural and hydrological anomalies. 
This observation aligns with the conclusions drawn by 
Zhou et al., (2021a, 2021b).

This study presents the findings of a comprehensive 
analysis using continuous wavelet transform on SPCI3, 
SSMI1, and SRI1 datasets, with a confidence level of 95%. 
Figure  7 illustrates the corresponding wavelet power 
spectra, while Table  4 provides a detailed summary of 
the significant periodicities observed in Guangdong 
for SPCI3, SSMI1, and SRI1. The findings reveal dis-
tinct periodic patterns in SPCI3 across various periods, 
including 4 to 7, 7 to 14, 20 to 24, 4 to 6, 12 to 16, 5 to 12, 
and 16 to 20 months from 2008 to 2021 (Fig. 7a). Notably, 
the periodicity of SSMI1 and SRI1 closely resembles that 
of SPCI3. Specifically, SSMI1 displays significant periodic 
patterns spanning 7 to 14, 16 to 26, 4 to 8, 5 to 12, and 
32 to 40  months from 2008 to 2019 (Fig.  7b). Similarly, 
SRI1 shows significant periodic patterns ranging from 4 
to 8, 20 to 22, 6 to 8, 4 to 5, and 5 to 14  months from 
2009 to 2021 (Fig.  7c). The correlation and periodicity 

characteristics between SPCI3 and SSMI1as well as SRI1 
underscore the significant role played by the periodic 
nature of meteorological anomalies in driving patterns of 
agricultural and hydrological anomalies.

Discussion
A comparative analysis of precipitable water vapor 
datasets
We compiled the daily precipitable water vapor data 
obtained at four GNSS stations (GNSS-PWV) in a 
monthly mean series and analyzed it in conjunction 
with the PWV time series derived from RS (RS-PWV) 
and ERA5 (ERA5-PWV) datasets to evaluate their con-
sistency (Fig.  8). Significantly, the scarcity of RS data 
records near the YJGT and HYGT GNSS stations is a 
critical limitation, resulting in our reliance on a limited 
dataset for the calculations (Fig. 8b, d). The study’s find-
ings demonstrated a robust positive correlation between 
GNSS-PWV and RS-PWV, as well as ERA5-PWV, con-
sistently surpassing 0.95 (the detailed information pro-
vided in the lower left of Fig. 8). This highlights the high 
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Table 4 Summary of the periodicities of SPCI3, SSMI1 and SRI1 in Guangdong

Num SPCI3 SSMI1 SRI1

1 4–7 months (From 2008 to 2009) 7–14 months (From 2008 to 2010) 4–8 months (From 2009 to 2010)

2 7–14 months (From 2008 to 2011) 16–26 months (From 2009 to 2015) 20–22 months (From 2010 to 2012)

3 20–24 months (From 2010 to 2012) 4–8 months (From 2012 to 2014) 6–8 months (From 2013 to 2014)

4 4–6 months (From 2011 to 2012) 5–12 months (From 2014 to 2021) 4–5 months (From 2014 to 2015)

5 12–16 months (From 2011 to 2013) 32–40 months (From 2015 to 2019) 5–14 months (From 2016 to 2021)

6 5–12 months (From 2016 to 2021)

7 16–20 months (From 2018 to 2021)
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reliability of the GNSS-PWV employed in this inves-
tigation. Furthermore, RS has long been recognized 
as a dependable source of measured data, frequently 
employed as a reference to validate the accuracy of 
other datasets (e.g., Z. Gui et al., 2017; Li et al., 2003). 
To assess the rationality of utilizing ERA5 data for 
interpolating long-term gaps in the GNSS time series, 
we compared the PWV data derived with RS with the 
results derived with GNSS and ERA5 in this study. 
Evaluation indicators such as average deviation (bias) 
and Root Mean Square Error (RMSE) are employed 
to analyze the reliability and accuracy of GNSS and 
ERA5 data. The results demonstrate comparable accu-
racy between monthly GNSS-PWV and ERA5-PWV 
in Guangdong, with only minor discrepancies. Statis-
tically, the GNSS-PWV reveals a bias of 0.24  mm and 
an RMSE of 2.62  mm, while the ERA5-PWV indicates 
a bias of 0.85 mm and an RMSE of 3.17 mm. Although 
the GNSS exhibits slightly better performance than the 
ERA5, the degree of difference is negligible when exam-
ining climate anomalies on long-term scales.

Comparison among multi-scale climate indices 
in Guangdong
Ensuring the accurate capture of extreme drought and 
wetness events and their characteristics is contingent 
upon the reliability of climate indices. To that end, we 
systematically compare the climate indices of varying 
scales (SPCI1, SPCI3, SPCI6, and SPCI12) employed in 

this study with SPI and SPEI, respectively, at the same 
time scale (Fig.  9). We discover a remarkable correla-
tion between the SPCI and both the SPI and the SPEI at 
various time scales in Guangdong. Moreover, as the time 
scale extended, the intensity of both wet and dry events, 
as indicated by all climate indices, is escalated. This find-
ing strongly suggests that the SPCI utilized in this study 
exhibits accuracy and reliability in effectively captur-
ing extreme drought and wetness events. Across all four 
time scales, the PCCs of the SPCI and SPI demonstrate 
a high degree of consistency, with respective values of 
0.98, 0.97, 0.96, and 0.94. This outcome is expected, con-
sidering the significant contribution of precipitation to 
the estimation of PE. However, in essence, precipitation 
can be conceptualized as the flux of water vapor within 
a convective system; yet, it is important to note that not 
all water vapor flux contributes to precipitation (e.g., Sui 
et  al., 2007; Tuller, 1971). Consequently, employing PE 
rather than pure precipitation is more suitable for detect-
ing meteorological anomalies. In addition, the PCCs of 
SPCI and SPEI across the four time scales are found to 
be 0.82, 0.80, 0.79, and 0.76, respectively. While the time 
series of both indices exhibit a strong correlation, sub-
tle divergences exist in certain local nuances, potentially 
attributed to temperature fluctuations. Previous studies 
have consistently demonstrated that increasing tempera-
tures exert a notably amplified influence on the severity 
of droughts (e.g., Karl et al., 2012; Vicente-Serrano et al., 
2014).
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Limitations of this study
While this study provides a systematic analysis of extreme 
drought and wetness events and their characteristics in 
Guangdong, China, utilizing PE and its derived climate 
index, there are certain limitations to be acknowledged. 
Firstly, according to statistical reliability requirements, the 
historical PE records for over 30 years are recommended, 
whereas this paper employed a data time span of only 
15.4 years. However, it is crucial to note that the primary 
objective of this research is to emphasize the applicability 
of GNSS for monitoring meteorological anomalies. With 
the accumulation of observation records, future studies 
will benefit from an expanded dataset. Secondly, it should 
be recognized that the findings of this study are much 
influenced by the substantial variability in the PE observed 
in Guangdong. As a result, substantial disparities in mete-
orological anomalies across diverse regions, such as nota-
ble fluctuations in temperature, evapotranspiration, and 
prolonged absence of precipitation, underscore the neces-
sity for targeted analyses addressing distinct issues.

Conclusion
In this study, we utilized GNSS-derived precipitable 
water vapor data in Guangdong, combined with the 
precipitation data, to calculate the precipitation effi-
ciency time series, and investigate historical extreme 
drought and wetness events and their characteristics in 
the region. Our analysis unveils a clear seasonal pattern 
in precipitation efficiency, ranging from 5 to 25%. The 
spatial distribution of precipitation efficiency exhibits 
discernible variations, with higher values in the Pearl 
River Delta region and gradually decreasing towards the 
eastern and western areas. By integrating precipitation 
efficiency anomalies with climate indices, we identified 
nine extreme wet events and six extreme drought events 
in Guangdong. Notably, we observed a rising trend in 
the wet and dry frequency with longer time scales. The 
Pearl River Delta region exhibited higher frequencies 
of extreme events, potentially attributed to its intricate 
topography. The correlation and wavelet analyses indi-
cated a 3-month propagation time from meteorological 
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anomalies to agricultural and hydrological anomalies in 
Guangdong. Moreover, we deduced that the occurrence 
of meteorological anomalies serves as the primary driver 
for the emergence of agricultural and hydrological anom-
alies. Rigorous validation of our GNSS-derived precipi-
table water vapor data and consistency checks of climate 
indices further ensured the reliability and accuracy of our 
findings. Overall, this study enhances our understanding 
of extreme drought and wetness events, aiding the devel-
opment of effective strategies for disaster prevention and 
mitigation.
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