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Abstract 

Floor localization is crucial for various applications such as emergency response and rescue, indoor positioning, 
and recommender systems. The existing floor localization systems have many drawbacks, like low accuracy, poor scal-
ability, and high computational costs. In this paper, we first frame the problem of floor localization as one of learning 
node embeddings to predict the floor label of a subgraph. Then, we introduce FloorLocator, a deep learning-based 
method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks. 
This approach offers high accuracy, easy scalability to new buildings, and computational efficiency. Experimental 
results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods. Notably, 
in building B0, FloorLocator achieved recognition accuracy of 95.9%, exceeding state-of-the-art methods by at least 
10%. In building B1, it reached an accuracy of 82.1%, surpassing the latest methods by at least 4%. These results indi-
cate FloorLocator’s superiority in multi-floor building environment localization.
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Introduction
Indoor positioning has become increasingly popular 
because of its widespread applications. It determines the 
location of a target using positioning signals such as WiFi 
(Zhou et al., 2022), Bluetooth (Zhao et al., 2023), inertial 
sensors (Gu et al., 2018b), vision (Zhao et al., 2023), and 
light (Zhuang et al., 2018). So far, plenty of indoor posi-
tioning systems have been proposed and developed, yet 
most of them have focused on achieving 2D position-
ing. In complex structures like multi-floor buildings, the 
task of floor identification is paramount. Floor localiza-
tion is a fundamental basis for plenty of applications and 

services such as emergency response and rescue (Wein-
lich et al., 2018), indoor positioning (Gu et al., 2019b; El-
Sheimy & Li, 2021), and recommender systems (Deldjoo 
et al., 2020).

Floor identification methods can be categorized as fin-
gerprinting (Zhang et  al., 2020) and sensor-based meth-
ods (Qi et  al., 2019; Ye et  al., 2016). The fingerprinting 
approaches, including WiFi fingerprinting and cellular 
fingerprinting, are very popular due to the wide availabil-
ity of WiFi and cellular infrastructures. The typical fin-
gerprinting systems for floor localization include SkyLoc 
(Varshavsky et al., 2007), StoryTeller (Elbakly & Youssef, 
2020) and ZeeFI(Gu et  al., 2019a). Yet, such methods 
need a large amount of training data, which increases 
with the number of floors as well as the area of interest. 
Besides, the data need frequently re-collected to keep the 
fingerprints update, which results in the poor scalability 
of these methods.

To expedite the site surveys of these classical finger-
printing approaches, many sensor-based methods have 
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been proposed, which can reduce the amount of train-
ing data by using the inertial sensors and/or barometers. 
Popular sensor-based systems include FTrack (Ye et  al., 
2012), F-Loc (Ye et al., 2014), B-Loc (Ye et al., 2016) and 
BarFi (Shen et al., 2015), etc. While sensor-based meth-
ods can reduce the time and effort for site surveys by 
using additional sensors such as inertial sensors and 
barometers, they suffer from a limited coverage since 
these sensors are not available in all devices.

Recently, deep neural networks have been successfully 
applied in various domains, such as natural language pro-
cessing (Vaswani et  al., 2017), image classification (Kriz-
hevsky et al., 2012), activity recognition (Gu et al., 2018a), 
and indoor positioning (Wang et al., 2016). Because deep 
learning models have the advantages of more powerful 
representational ability, better generalizability, and unnec-
essary feature engineering, they have also been applied to 
floor identification. StoryTeller (Elbakly & Youssef, 2020) 
uses Convolutional Neural Networks (CNNs) for floor 
identification, where WiFi signals are first used to gener-
ate images that are then fed to a CNN for predicting floors. 
While StoryTeller is both Access Point (AP)-independent 
and building-independent, it requires the knowledge of 
physical building dimensions and 3D locations of APs, 
which are impractical in some scenarios. ZeeFI (Gu et al., 
2019a) utilizes stacked autoencoders to identify floors, 
alleviating the effort for data collection by automatically 
recognizing the ground floor with smartphone-built sen-
sors. However, it uses only two layers of autoencoders, and 
hence its representational ability is limited and might not 
well deal with more complex cases. In (Zhang et al., 2020), 
a cellular-based floor identification method is introduced, 
which first uses a denoising autoencoder for data noise 
reduction and feature extraction and then utilizes a Long 
Short-Term Memory (LSTM) network for floor iden-
tification. However, these methods still suffer from the 
limitations including poor scalability, low accuracy, high 
computational cost, and requirement for additional infor-
mation (e.g., building dimensions, locations of APs).

The motivation of this study is to develop a novel 
floor localization method that is scalable, accurate, 
robust, and computationally efficient. Existing methods 
often require a predefined and regular structure, which 
is not always feasible given the dynamic nature of WiFi 
APs. In this study, we introduce FloorLocator - a deep 
learning-based floor identification method that inte-
grates computation-efficient Spiking Neural Networks 
(SNNs) with powerful Graph Neural Networks (GNNs). 
By organizing APs into a graph structure, we can effec-
tively handle situations where the exact positions of 
AP nodes are unknown. This approach offers a more 
adaptive and robust solution compared to conventional 
methods. Additionally, the integration of SNNs into the 

system is driven by their high computational efficiency, 
making them an optimal choice for real-time floor 
localization tasks.

The basic idea of FloorLocator is illustrated in Fig.  1. 
We first represent raw WiFi scans into a RSS vector of 
values between 0 and 1 using the powed method (Torres-
Sospedra et al., 2015). Then, we transform the RSS vec-
tor to a graph of visible APs before using a Spiking Graph 
Neural Network (SGNN) to learn the mapping between 
the ‘WiFi graph’ and the actual floor label. It includes two 
phases: offline training and online testing. In the offline 
phase, each RSS vector in the fingerprint database is first 
organized in a WiFi fingerprint graph, which is then fed 
into the SGNN together with its corresponding floor 
label. After that, the network is trained by minimiz-
ing the loss between the predicted label and the actual 
label. In the online phase, the upcoming WiFi scan is first 
transformed into a RSS vector, which is then expressed as 
a WiFi fingerprint graph. The trained network takes the 
fingerprint graph as input and predicts the floor label of 
the input WiFi scan.

In this work, FloorLocator is designed to offer several 
advantages over existing SOTA floor localization meth-
ods, including StoryTeller (Elbakly & Youssef, 2020). 
Specifically, based on graph theory, FloorLocator inno-
vatively utilizes graph topology to learn representations, 
which enhances the transferability of the model. Then, 
to achieve computational efficiency and energy savings, 
FloorLocator employs an event-driven SNN architec-
ture. Finally, we perform extensive experiments to verify 
Floorlocator’s robustness. 

•	 We propose FloorLocator: a novel deep learning-
based floor identification method, which reduces the 
burden of conventional WiFi fingerprinting by using 
SNN and GNN.

•	 FloorLocator is both AP-independent and build-
ing-independent. FloorLocator is graph-based, and 
hence it can be easily applied to new buildings or 
environments by simply modifying the input graph.

•	 FloorLocator is efficient and robust. Its spiking-
based operation allows it to function in an energy-
efficient way. Also, it can integrate information over 
time and filter out irrelevant information, making it 
robust to noise.

•	 We implement and evaluate FloorLocator using pub-
licly available datasets collected in three different 
buildings. Experimental results show that FloorLoca-
tor outperforms SOTA methods for floor identifica-
tion. Our method has higher accuracy, better scal-
ability, and greater efficiency compared to existing 
methods.
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To the best of our knowledge, FloorLocator is the first 
work that integrates event-driven SNNs with GNNs for 
floor identification.

Method and system
In this section, we first introduce the theoretical founda-
tion of the proposed method, including GNNs and SNNs. 
Then, we present the problem formulation of floor iden-
tification with SGNN before elaborating on the proposed 
method.

Neural networks
This section describes the foundational concepts of 
neural networks, with a focus on GNNs and SNNs, 
which form the core of the proposed FloorLocator sys-
tem. We illustrate how GNNs, renowned for their effec-
tiveness in learning complex structures within graph 
data, manage the intricate relationships between archi-
tectural elements to facilitate precise floor localization. 
Concurrently, we introduce the dynamics of SNNs, 
highlighting their computational efficiency and their 
bio-inspired mechanisms that mimic human neural 
activity patterns.

Graph neural networks
GNNs, a subset of neural networks, excel in feature 
extraction through node interactions in graphs. Their 
applications cover various fields, notably in graph min-
ing (Li et al., 2019), object classification (Gu et al., 2020), 
recommender systems (He et  al., 2020), and antibiotic 
discovery (Stokes et  al., 2020). This study particularly 
focuses on Graph Convolutional Networks (GCNs), 
which leverage spectral domain convolutions through 
adaptable graph filters (Bianchi et al., 2021).

Let G = (V ,E) be a graph, where V = {v1, · · · , vn} 
is the set of nodes, E = {e1, · · · , em} is the set of edges, 
and ek = eij denotes an edge pointing from vi to vj . The 
adjacency matrix A of the graph is an n× n matrix, and 
Aij = 1 if eij ∈ E , otherwise, Aij = 0 . Thus, the node 
embedding H (l+1) of a GCN layer in (Kipf & Welling, 
2017) is described as:

where σ is an activation function (e.g., ReLU), W (l) is a 
layer-specific learnable weight matrix, Ã is the normal-
ized adjacency matrix of A , and

(1)H (l+1) = σ(ÃH (l)W (l))
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Fig. 1  Overview of FloorLocator. It takes as input WiFi scans, which are organized in a graph of visible APs before feeding into a spiking graph neural 
network for training and predicting. Each module of FloorLocator will be detailed in Section V



Page 4 of 16Gu et al. Satellite Navigation             (2024) 5:6 

where I is the identity matrix.
Early GCN works often need to compute the spectrum 

of the graph Laplacian (Bruna et al., 2014) or approximate 
the spectrum (Defferrard et  al., 2016) using high-degree 
Chebyshev polynomials of the Laplacian matrix, which is 
computationally expensive. In contrast, the GCN approach 
in (Kipf & Welling, 2017) simplifies this by using first-order 
Chebyshev polynomials of the graph Laplacian to cut down 
computational costs. Further streamlining is seen in (Du 
et  al., 2018), which employs adjacency matrix polynomi-
als up to the second degree, further reducing complexity. 
This efficient and effective method is utilized in our current 
work.

Spiking neural networks
SNNs are brain-inspired neural networks that inherit the 
biological spatial-temporal dynamics mechanisms and 
rich spiking coding schemes (Roy et al., 2019). SNNs, being 
closer to biological neural mechanisms than DNNs, are 
very suitable for neuroscience-inspired models and are 
compatible with energy-efficient neuromorphic hardware 
like Intel Loihi and Tianjic. Key neuron models in SNNs 
are the Spike Response Model (SRM)  (Gerstner, 1995) and 
Leaky Integrate-and-Fire (LIF) model  (Wu et al., 2018).

We first introduce the SRM (Shrestha & Orchard, 2018). 
where an input spike train xi(t) enters a neuron, incor-
porating the refractory kernel ν nd the neuron’s output 
spike train s(t). In this model, input spikes are converted 
into spike response signals ai(t) . These are scaled by syn-
aptic weights wi to produce post-synaptic potentials. 
Consequently, the neuron’s membrane potential, u(t), is 
determined by summing these potentials and refractory 
responses, which is written as:

An output spike is fired when the membrane potential 
surpasses a pre-defined threshold. The spike function 
fs(·) can be written as:

where

Another popular SNN model is the LIF model, which is 
more computationally tractable than SRM models while 
maintaining biological fidelity to some extent.

The dynamics of LIF is governed by:

(2)Ã = D−1/2(A+ I)D−1/2

(3)u(t) = wTa(t)+ (ν ∗ s)(t)

(4)fs(u) : u → s, s(t) := s(t)+ δ(t − t(f+1))

(5)t(f+1) = min{t : u(t) = uT, t > t(f)}

where u(t) represents the internal membrane potential 
of a neuron at time t, 

∑

i wixi is the weighted summation 
of the inputs from pre-neurons, and τ is a time constant. 
Figure 2 visualizes the computational model of a SNN. In 
this study, we use the LIF model due to its higher accu-
racy, lower computational cost, and easer training.

Problem formulation
We formulate the problem of floor identification with 
SGNN as a problem of finding node embeddings to pre-
dict labels of a subgraph (corresponding to a WiFi finger-
print) given a graph with node attributes. Let G = (V ,E) 
denote the fingerprint graph, where a node vi ∈ V  is an 
Access Point (AP), and an edge eij ∈ E is the edge con-
necting two APs vi and vj that are spatially close to each 
other, which means that the two APs should at least 
appear once in a fingerprint vector of the radio map. The 
learning process of node embedding for floor identifica-
tion includes two steps:

(i) Aggregating messages The task of this step is to 
aggregate messages from neighboring APs, which is writ-
ten as:

where h(l)v  and m(l)
v  denote the node embedding and the 

message vector of AP v at l-th layer, f (l) represents the 
aggregation function, N (v) is the neighboring nodes of v.

(ii) Transforming messages The task of this step is to 
transform messages to the next layer. Mathematically, the 
process is described as:

where g (l) is the transformation function at l-th layer. For 
batch execution, the above equation can be written as:

where fLIF is the LIF activation function, and other sym-
bols are the same as described in Eq. (1).

Then, the objective of floor identification with SGNNs 
is to train the model by minimizing the total loss L which 
includes the supervised loss and graph regularization 
term, namely

(6)τ
du(t)

dt
= −u(t)+

∑

i

wixi

(7)m(l)
v = f (l)

(

h(l)v , {h
(l)
ζ : ζ ∈ N (v)}

)

(8)hl+1
v = g (l)(m(l)

v )

(9)H (l+1) = fLIF (ÃH
(l)W (l))

(10)L = L0 + �Lreg
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where L0 is the supervised loss, � is a weighting factor and 
Lreg is the graph regularization term. In our work, we use 
the mean squared error as the supervised loss, namely

where yi is the ground truth floor label for the i-th finger-
print, and ŷi is the estimated floor label. The graph regu-
larization term can be written as:

where ϕ(·) is a GNN-like differentiable function, and X i is 
the node feature vector for AP vi.

The FloorLocator system
In this section, we first describe the architecture of 
FloorLocator, followed by an introduction of RSS 

(11)L0 =
1

n

n
∑

i=1

(yi − ŷi)
2

(12)Lreg =
∑

ij

Aij�ϕ(X i)− ϕ(X j)�
2

representation & floor encoding, and WiFi graph gen-
eration. Then we elaborate on each of its components: 
TAGConv Layer, LIF module, DeepBlock module, Event-
based Batch Normalization module, FC Layer & Voting 
Layer module. Finally, we introduce network training and 
floor decoding.

System architecture
The FloorLocator system is specifically designed to 
address the challenges of floor localization mentioned in 
the introduction section. The architecture of FloorLoca-
tor is illustrated in Fig. 3. The system accepts WiFi finger-
prints (which can also be cellular fingerprints) as input. 
These fingerprints are initially represented as RSS vectors 
and subsequently organized into a graph based on the 
proximity of their APs. This graph-based representation 
is particularly beneficial in scenarios where the positions 
of the AP nodes are unknown, allowing for a flexible and 
adaptive structure. Following this, the graph data under-
goes a transformation into spikes after the first Topology 
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W

W

W

Output spike train
∑

UT
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Input spike train

Input spike train

Fig. 2  SNN computational model. It consists of a post-neuron driven by input pre-neurons. The membrane potential of the post-neuron is affected 
by the input spikes from pre-neurons

Fingerprint TAGConv

DeepLayer DeepLayerDeepLayer DeepLayerDeepLayer DeepLayer

DeepBlock DeepBlock FC FC Voting Floor LabelTransition

Which floor 
am I on?

Fig. 3  System architecture of FloorLocator. The input of FloorLocator is a WiFi fingerprint, and its output is the estimated floor label for the given 
fingerprint. It consists of one TAGConv layer, two DeepBlocks, one transition layer (which is also a TAGConv layer), two FC layers and one voting 
layer. Each DeepBlock is composed of three DeepLayers, and these DeepLayers are densely connected. Note that each TAGConv layer is followed 
by an LIF activation and event-based batch normalization layer, while each FC layer is followed only by an LIF activation. These subsequent layers 
are not shown in the figure for clarity
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Adaptive Graph Convolutional (TAGConv) (Du et  al., 
2018) layer using the LIF activation function. The spike-
converted data is then processed.

RSS representation and Floor encoding
In this section, we first introduce the fingerprint data 
representation method. The number of visible APs 
changes with location, and hence the size of each finger-
print vector may be different. To fix the size of the finger-
print vector, we describe a fingerprint as a vector of RSS 
from all the APs in the environment. Let x indicate the 
fingerprint, and x =< r1, r2, · · · , rM > , where ri repre-
sents the signal strength received from the i-th AP and M 
is the number of APs in the environment. To better learn 
features from fingerprints via SGNNs, we describe the 
fingerprint in positive values using the powed represen-
tation method in (Torres-Sospedra et al., 2015). The raw 
RSS rssi is then described as a positive value pi as follows:

where τ is a RSS threshold (we set min as the threshold), 
indicating if an is detected in a fingerprint. β is constant 
parameter, which is simply set to the mathematical con-
stant e. These APs with RSS lower than τ are considered 
as not-detected. Thus, the fingerprint x can be re-written 
as a vector of positive values of all the APs in the environ-
ment, namely

Then, we describe how the floor information is encoded 
into an identity matrix for easier processing. Floor labels 
are generally categorical or are not fully numeric and 
need to be converted to numbers (mostly integers) before 
fed into a DNN or SNN. In this work, we encode the 
floor label into an identity matrix with one-hot encoding, 
where each row indicating a floor, has and only has one 
element with value 1 representing the floor.

Graph generation
Classical fingerprinting methods need to store the APs’ 
IDs, which limit their scalability. A recently developed 
method called StoryTeller ((Elbakly & Youssef, 2020) alle-
viates this requirement by transforming fingerprints into 
images. While StoryTeller is scalable, it requires the loca-
tions of APs, which is impractical in some cases. In this 
study, we organize the fingerprints in a graph, which does 
not require the APs’ IDs, neither the locations of APs. 
This makes our method more scalable and applicable to 
different environments.

(13)fi =

{

(ri−rmin)
β

(−rmin)
β , ri ≥ τ

0, ri < τ

(14)x =< p1, p2, · · · , pM >

Specifically, we generate the fingerprint graph accord-
ing to the closeness of APs. Each visible AP is taken as 
a node vi of the graph, and each edge eij connecting two 
nodes (APs) represents the two APs close to each other. 
When the two APs appear in the same fingerprint, we 
add an edge to connect them until all the fingerprints 
are traversed. The detailed steps of constructing the fin-
gerprint graph are represented in Fig.  4. The algorithm 
takes as input a radio map D, and outputs the fingerprint 
graph. It first generates the number of APs N by comput-
ing the length of any fingerprint vector (e.g., x0 ). Then, 
we add each node into the node set of the graph. We use 
the index of an AP appearing in the fingerprint as the 
node ID, rather than their IDs. This allows our method 
to be scalable to new environments since it alleviates the 
dependence on APs’ IDs, which exists in traditional fin-
gerprinting methods. After that, we transverse each fin-
gerprint, and extract the indexes of APs that are visible 
in the fingerprint into a set C. Finally, we add two edges 
< vi, vj > and < vj , vi > into the edge set E of the graph if 

Start

Input:Radiomap D = {x1, ..., xN}

Set M = length (x1)

Foreach i < M Add vi to V (vertices)

Foreach j < N

nonzero (xj)

If vi,vj ϵ C

Add eij,eji to E (edges)

Output:Graph G = (V,E)

Stop

yes

yes

no

no

Fig. 4  Fingerprint Graph Generation
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they are not in the edge set yet. The reason of adding the 
two edges is to construct an undirected fingerprint graph.

Details of FloorLocator
In this section, we delve into the intricate components 
that form the FloorLocator’s architecture. The ‘TAG-
Conv Layer’ adapts to topological nuances, a significant 
leap from conventional layers. Moving forward, the ‘LIF 
Activation’ implements the dynamics of spiking neu-
rons, a departure from standard activation functions. At 
the heart of our architecture is ‘DeepBlock,’ a complex 
assembly that enhances the network’s learning depth. 
Stability is a key in learning, and ‘Event-based Batch 
Normalization’ ensures this by mitigating the common 
gradient-related issues. Finally, the ‘FC Layer and Voting 
Layer’ work in unison to interpret and classify the pro-
cessed data, a critical final step in our system’s response 
mechanism.

TAGConv layer
Instead of using the popular graph convolution (Kipf & 

Welling, 2017), we adopt the TAGConv (Du et al., 2018) 
because of its excellent performance in terms of accuracy 
and computational efficiency. It utilizes a set of fixed-size 
learnable filters to simultaneously extract both node fea-
tures and the strength of correlation between nodes. Let 
Gc,k represent the k-th graph filter. The resulting k-th fea-
ture map h(l)k  on layer l is given by the equation:

where xc is the c-th input feature vector of nodes, Cl 
denotes the count of input features per node at layer l, 
and bk is a tunable bias vector. To adapt the convolution 
operation to various graph topologies, it’s crucial to tailor 
the graph filter. A common method involves defining the 
graph filter using the normalized adjacency matrix Ã of 
the graph,

with gc,f ,k as the graph filter’s polynomial coefficient and 
Ã as the normalized adjacency matrix.

LIF activation
ReLU (Glorot et al., 2011) and its variants, like LReLU 

(Maas et  al., 2013) are prevalent activation functions in 
CNNs. However, ReLU is not suitable for SNNs. Instead, 

(15)h
(l)
k =

Cl
∑

c=1

G
(l)
c,kx

(l)
c + bk

(16)G
(l)
c,k =

K
∑

i=0

g
(l)
c,k ,iÃ

i

we employ the LIF model, widely recognized for mod-
eling spiking neuron dynamics  (Roy et  al., 2019). As 
depicted in Fig.  5, the LIF model illustrates that a neu-
ron’s membrane potential accumulates incoming spikes 
and experiences leakage over time. Upon reaching the 
threshold uT , the neuron emits a spike and enters a 
refractory period.

The LIF activation function, fl is mathematically 
expressed as:

where uR and uT denoting the reset value and firing 
threshold, respectively. Essentially, the LIF function trig-
gers a neuron to fire a spike when its membrane poten-
tial reaches or exceeds uT , following which the potential 
resets to uR.

DeepBlock
DeepBlock is a key component of FloorLocator, which 

is composed of three DeepLayers. These DeepLayers are 
densely connected to learn features more effectively from 
graph-structured fingerprint data. Each DeepLayer con-
tains two TAGConv layers, two event-based Batch Nor-
malization (BN) layers, and two LIF activation layers. 
Such a design is inspired by the basic block of ResNet, 
which can effectively eliminate problems of gradient van-
ishing and explosion by adding skip connections.

Figure 6 compares the basic block of ResNet with the 
basic block (DeepLayer) of our design. The distinctions 
between ResNet and our proposed method are threefold:

•	 Convolution Operation Unlike the conventional con-
volution operation in ResNet, we employ TAGConv 

(17)fl(u) = 1 & u(t) ← uR u(t) ≥ uT

Refractory period

UT

UR

Input spike Output spike

Membrane potential

O Time (ms)

U
 (m

v)

Fig. 5  The dynamics of LIF spiking neurons. The post-neuron 
integrates incoming spikes into its membrane potential, and fires 
a spike when the membrane potential surpasses a threshold uR . After 
that, its membrane potential is set to a pre-set value uR
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to handle graph-structured fingerprint data. This 
choice is motivated by the capability of GNNs to 
effectively process WiFi APs without the prior knowl-
edge of their structure. In contrast, CNNs organize 
nodes into a regular rectangular structure.

•	 Activation Function The commonly used ReLU func-
tion in ResNet is substituted with the LIF activation 
in our design. This change is essential because ReLU 
is incompatible with spiking data. SNNs are known 
for their computational efficiency, and their combi-
nation with GNNs can enhance the model’s compu-
tational efficiency.

•	 Normalization Layer We replace the BN layer of 
ResNet with EBN to tackle gradient vanishing and 
explosion challenges.

Furthermore, DeepLayer is designed to take spikes as 
input and output spikes, diverging from the real-valued 
data processing in traditional networks. In the FloorLo-
cator architecture, we incorporate two DeepBlocks. The 
number of DeepBlocks is determined by empirical study. 
Our experiments show that two DeepBlocks suffice to 
achieve excellent floor identification accuracy.

Event-based batch normalization
In this part, we introduce EBN in detail. As we know, 

gradient vanishing and explosion are the main prob-
lems that prohibit a model from going deeper. A com-
mon solution to the problems in deep neural networks 
is to utilize BN, which enables the model to converge 
stably and go deeper. However, BN cannot be directly 
used in SNNs due to the existence of additional tem-
poral dimensions and different activation mechanisms. 
To avoid gradient vanishing and explosion in the pro-
posed method, we adopt the EBN method (Zheng 
et  al., 2021) and normalize the pre-synaptic inputs 
along the channel dimension. The inputs of each neu-
ron are adjusted into the interval ranging from 0 to 
UT  , where UT  epresents the pre-defined spiking firing 
threshold (0.5 is used in this work). Such an adjust-
ment can balance the inputs and neuronal membrane 
potential to avoid the membrane potential being 
over-saturated or the input information being over-
expressed. Mathematically, the EBN is described as:

(18)x̂li =
uT (x

l
i − E(xli))

√

D(xli)+ ǫ

(19)yli =γix̂
l
i + βi

where xli represent the i-th channel feature map of xl , uT 
represents the Spiking firing threshold, E(xli) and D(xli) 
denote the Expectation and Variance of xl over the mini-
batch. ǫ is a tiny constant to avoid dividing by zero error, 
eeγi and βi are two learnable parameters.

In the training process, the Expectation and Variance 
of xi can be computing by

In the inference stage, we cannot directly compute 
the Expectation and Variance of xi due to the batch 
is not applicable. Therefore, we estimate the Expecta-
tion of E(xli) and D(xli) in the whole dataset, which can 
be obtained by moving average solution in the training 
stage. More details about such estimations can be found 
in (Zheng et al., 2021).

FC layer and voting layer 
At the top of FloorLocator are two FC layers and one 

voting layer. The FC (Fully Connected) layer in our net-
work operates similar to those in standard neural net-
works, defined as,

(20)E(xli) =mean(xli)

(21)D(xli) =mean((xi − E(xli)
2)

Fig. 6  Different basic blocks of commonly-used ResNet 
and the proposed method. a Basic block of ResNet. b Basic block 
(DeepLayer) of the proposed method
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where x is the inputs from previous layer, W  is the weight 
matrix, b is the bias vector, and h is the output feature.

For decoding the network’s output, we use a voting 
layer, following the approach in (Wu et al., 2019). Each 
output label is linked to a neuron in this layer. The class 
prediction is based on the neuron that receives the 
highest number of votes (or spikes) averaged across a 
time window.

Network training and online localization
Our network associates the output vector to each floor 
label by voting, and the final output OL in a given time win-
dow is written as

where U  represents the constant voting matrix used for 
decoding spikes, while ot signifies the output feature 
from the final layer at time t.

To accommodate the error backpropagation, we take the 
mean square error between the average voting result and 
the label vector y as the loss function.

However, the spiking function poses a significant chal-
lenge as it is not differentiable, which makes it impossi-
ble to use the error backpropagation method directly. To 
elaborate on this challenge, let’s take a look at the expres-
sion for calculating weight gradients obtained through 

(22)h = Wx + b

(23)OL =
1

T

T
∑

t=1

Uot

(24)L =
∥

∥y −OL

∥

∥

2

Spatial-Temporal Back-Propagation (STBP)   (Wu et  al., 
2018):

In the above equation, y represents the target output vec-
tor, W denotes the SNN’s weight matrix, L represents 
the loss function, and ∂y(t)

∂u(t) represents the gradient of the 
spiking activity function. The weight update formula is as 
follows:

Here, η represents the learning rate. However, because 
∂y(t)
∂u(t) is either zero everywhere or a very large value in rare 
cases. As a result, the weights may not be updated at all, 
or they may be updated to a large value, leading to unsta-
ble training.

Previous studies tackled the non-differentiable chal-
lenge by using Surrogate Gradients (SG) (Wu et al., 2019; 
Shrestha & Orchard, 2018; Wu et  al., 2018). To address 
this issue, we adopt a rectangular function   (Wu et  al., 
2019) to approximate the derivative of the spiking func-
tion. Figure  7 illustrates the comparison between the 
rectangular function and the spiking activation function. 
The rectangular function is defined as follows:

where a is a width parameter set to 0.5 in this study. In 
the ablation study, we will analyze the effect of different 
values.

(25)�W =
∂L

∂W
=

T
∑

t=1

∂L

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂W

(26)W = W − η�W

(27)f (u) =
1

a
sign

(

|u− uT | <
a

2

)
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Fig. 7  a Comparison of spiking and ramp activation functions: It can be observed that when the slope of the ramp function is sufficiently large, it 
approximates the spiking activation function; b Comparison of Spiking Activation Function Gradient and Surrogate Rectangular Function: When 
the width parameter is small, the figure of the rectangular function’s gradient is similar to that of the spiking activation function



Page 10 of 16Gu et al. Satellite Navigation             (2024) 5:6 

After training the network, it can predict the floor 
label of upcoming WiFi scans. The process of online 
floor localization is described below: first, the upcom-
ing WiFi scan is represented as a RSS vector with 
values between 0 and 1, and then the RSS vector is 
expressed as a WiFi fingerprint graph according to the 
visible APs in the WiFi scan. After that, the WiFi graph 
is fed to the trained network to output the floor label, 
which is subsequently translated to a meaningful floor 
label (e.g., categorical character).

Experiments and results
Experimental setup
We evaluate the proposed method on three public 
scenarios (buildings) of the commonly used UJIIn-
doorLoc datasets (Torres-Sospedra et  al., 2014).UJI-
IndoorLoc datasets are multi-building and multi-floor 
WiFi fingerprint datasets, which were collected with 
the assistance of more than 20 users using more than 
25 Android devices. There are 520 APs visible in the 
database. Table  1 shows the details of the three test 
buildings.

While the dataset is relatively large, there still exists 
an imbalance in the data that the number of samples 
for each floor is not equal. Such an imbalance will 
affect the performance of deep learning models. To 
address this issue, we perform random oversampling 
to increase the number of samples in minority classes 
until a balance is reached. Such an operation is also for 
a fair comparison with SOTA StoryTeller (Elbakly & 

Youssef, 2020) that adopts the same strategy for data 
augmentation.

We implement the proposed method in PyTorch. 
The Adam optimizer is used to optimize the model 
on the training dataset. The number of epochs is set 
to 100, and the learning rate is 0.001. We repeated the 
training and test procedure for five rounds with differ-
ent random seeds and reported the average accuracy. 
Table 2 shows the values of hyperparameters.

Experimental results
We first evaluate the proposed method on three 
test buildings and compare it with the classical 

Table 1  Details of test scenarios

Building No. Floors Samples

B0 4 5785

B1 4 5503

B2 5 9760

Table 2  Hyperparameter setting

Parameter Value

Optimizer Adam

Learning rate 0.001

Number of epochs 100

Batch size 128

Spiking firing threshold 0.5

Width parameter a 0.5
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Fig. 8  Floor identification accuracy of FloorLocator as compared 
to the classical kNN in Building 0 (B0)
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fingerprinting method - kNN (k Nearest Neighbors). 
The kNN is selected for performance comparison in 
ablation studies because of its popularity and wide-
spread use in fingerprinting positioning. It often serves 
as a benchmark in many indoor localization systems 
and provides a baseline against which we can measure 
the improvement offered by the proposed FloorLo-
cator. Later, we will also compare the performance of 
the proposed method with other SOTA methods. The 
value of k method ranges from 1 to 9 with an interval 
of 2. Figures  8, 9, 10 the floor identification accuracy 
in different buildings with the proposed FloorLocator 
compared to kNN method. It can be seen that FloorLo-
cator significantly outperforms the popular in all three 
testbeds. The accuracy is improved by about 11.6% in 
Building 0, 3.5% in Building 1, and 6.8% in Building 2, 
respectively.

Compared to kNN, which needs to store APs’ IDs and 
is building-dependent, our method is both AP-independ-
ent and building-independent, making it more scalable 
for new buildings. This attribute is due to the organiza-
tion of fingerprints in a graph, which allows us to better 
capture the neighborhood correlation between samples 
on the same floor. These results indicate FloorLocator 
can learn useful feature embeddings from data, which 
helps the method capture more distinguishable features 
and get high accuracy. While kNN locates the floors 
using raw data, it results in a relatively lower accuracy.

Comparison to state‑of‑the‑art methods
In this subsection, we compare the proposed method 
with SOTA methods for floor identification. The systems 
considered are as follows:

•	 StoryTeller (Elbakly & Youssef, 2020): A CNN-based 
method for floor identification. It first converts WiFi 
fingerprints into images that are fed to the VGG-19 
(Simonyan & Zisserman, 2015) network.

•	 kNN: The popular method for floor localization, 
which is widely used (Luo et al., 2019).

•	 TrueStory (Elbakly et  al., 2018): A neural network-
based floor estimation method, which uses a multi-
layer perceptron network to fuse weak learners’ out-
puts.

•	 Locus (Bhargava et  al., 2015): A heuristics-based 
algorithm for floor identification.

Since the reference (Elbakly & Youssef, 2020) reported 
the performances of StoryTeller, TrueStory, and Locus in 
the Building 0 and 1 of the same UJIIndoorLoc dataset, 
we directly report their floor identification accuracy men-
tioned in (Elbakly &Youssef, 2020). For kNN, we imple-
ment it by ourselves. All methods are evaluated using the 
same training and test data for a fair comparison.

Figure  11 shows the performances of different meth-
ods in Building 0 and Building 1. It demonstrates that 
FloorLocator performs the best among these methods. 
Specifically, FloorLocator achieves about 96% and 82% 
correct floor estimates in Buildings 0 and 1, respectively. 
It surpasses StoryTeller, which is also AP-independent 
and building-independent, by about 16.5% in Building 0 
and 19.3% in Building 1. The reasons why FloorLocator 
outperforms StoryTeller can be summarized as follows: 
first StoryTeller is a CNN-based approach, which needs 
to convert a WiFi scan to an image. During the conver-
sion, there might be some information loss, affecting the 
performance of subsequent localization. By contrast, our 
method is graph-based, which uses the graph topology 
to learn useful representations. This allows it to better 
capture the spatial relationship between APs, which can 
be difficult to model using a CNN. Second, FloorLocator 
is more robust to noise than CNN-based methods. The 
integrate-and-fire neuron activation enables it to filter 
out irrelevant information.

It is also interesting to note that kNN performs better 
than StoryTeller and other baseline methods. This might 
lie in deep learning-based methods, including StoryTeller 
and TrueStory, which may lose some useful information 
in the representation and/or conversion of WiFi scans. 
However, kNN has poorer generalization ability to new 
environments compared to FloorLocator and StoryTeller 
that are easily scalable.

The above experiments of FloorLocator against kNN 
and other SOTA methods demonstrate the superiority 
of the proposed method, which not only extracts rich 

KNN neighbor configurations (k) and FloorLocator
1

100

95

90

85

80

Ac
cu

ra
cy

 (%
)

75

70

65

60

Results of KNN
Results of FloorLocator

3

86.2 86.9 86.9 86.6

93.7

86.6

5 7 9 FloorLocator

Fig. 10  Floor identification accuracy of FloorLocator as compared 
to the classical kNN in Building 2 (B2)



Page 12 of 16Gu et al. Satellite Navigation             (2024) 5:6 

floor-aware information, but also learns robust topology 
representations by filtering out useless features through 
the innovative SGNNs architecture.

Ablation experiment
To figure out the different impacts of different compo-
nents involved in FloorLocator, we conducted several 
ablation studies. In the following, the effects of AP den-
sity, RSS threshold, RSS representations, width param-
eters, data size, and the generalization to new buildings 
will be presented and analyzed.

Effect of AP density
To understand the impact of AP density on FloorLoca-
tor’s performance, we conducted tests with varying AP 
densities. To do this, we randomly remove certain APs 
from both the training data and test data and use the 
remaining data for training the model and testing. AP 
density represents the ratio of the number of remain-
ing APs to the total number of APs before the removal 
operation. Figure  12 shows how different numbers of 
APs in the training and test data affect the accuracy of 
the floor identification of our method. We can see that 
the accuracy decreases as the density of the APs used 
in the training declines. However, it is observed that 
FloorLocator can achieve relatively high accuracy even 
when 50% APs are removed, resulting in an accuracy 
of about 89.5% in Building 0, 66.1% in Building 1, and 
82.6% in Building 2.

Figure  12 implies that FloorLocator is robust to the 
change of APs mainly due to the use of spike-based 
communication and activation mechanisms. Floor-
Locator can produce stable accuracy when there is a 

relatively high AP density, especially when AP density 
is greater than 70%.

Effect of RSS threshold
RSS threshold has an impact on the performance of the 
proposed method. Thresholding is a technique com-
monly used to remove irrelevant or noisy RSS values 
from fingerprints. To evaluate the effect of different 
threshold values on the performance, we conducted 100 
training sessions on the B0 dataset and recorded the test-
ing accuracy. The threshold values used range from to the 
minimum value in the dataset. Experimental results are 
shown in Fig. 13, indicating that a larger threshold value 
will filter out a substantial amount of information, lead-
ing to poorer performance. By contrast, a small threshold 
value will not reduce the testing accuracy yet remain-
ing all values will somehow increase the computational 
complexity. Our analysis suggests that a threshold within 
the range of -85 to strikes an optimal balance. In this 
range, weaker, possibly irrelevant signals are effectively 
discarded, thereby optimizing computational efficiency 
without compromising accuracy. Notably, thresholds 
near appear to remove too many vital data, leading to a 
drop in performance.

Through the comparison in Fig.  13, we can draw that 
the selected range of -85 to -100dB ensures the retention 
of signals critical for achieving the desired testing accu-
racy, simultaneously filtering out the most disruptive 
noise.

Effect of RSS representations
We investigated the effect of various fingerprint rep-
resentation methods on the performance of our model. 
Specifically, we considered four methods: positive values, 
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zero-to-one normalized values, exponential values, and 
powered values, as suggested by Torres et  al. (Torres-
Sospedra et  al., 2015). After training our model for 100 
epochs on the B0 dataset, we assessed the test accu-
racy. As shown in Fig. 14, our model effectively achieved 
optimal accuracy using the positive values, zero-to-one 
normalized values, and powered values representation 
methods. However, the exponential values method was 
less effective. A possible explanation for the underper-
formance of the exponential values method is its poten-
tial to produce the values greater than 1, some of which 
can be significantly high. This characteristic might be 
incompatible with the inherent features of our SNN. Spe-
cifically, SNNs emit spikes only under certain conditions 
within a specified time frame. If a normalization pro-
cess provides unsuitable data, the neurons may become 
hyperactive, resulting in continuous firing. Given that 
the exponential method might yield a prevalence of high 
values, detecting subtle variations in the original dataset 
becomes increasingly challenging. Interestingly, the posi-
tive values representation seems to further hasten our 
method’s convergence to optimal accuracy.

As can be seen in Fig.  14, the powed representation 
method can achieve a balance between accuracy and 
training efficiency.

Effect of width parameter
Since the spiking function is non-differentiable, we intro-
duce a rectangle function to approximate the derivative 
of the spiking function. Here we analyze the influence of 
different width parameters of the rectangle function on 
the testing accuracy using the B0 dataset after training 
our model for 100 epochs. The value of the width param-
eter covers the commonly used values, namely 0.1, 0.5, 
1.0, 2.0, 5.0, 7.5, and 10.0, respectively.

Figure  15 illustrates the relationship between our 
model’s performance and the width parameter value, 
which ranges from 0.5 to 10.0. Within this range, our 
model tends to achieve optimal performance. In contrast, 
extremely low values, such as 0.1, impede the model’s 
convergence on testing accuracy. Interestingly, while a 
smaller width parameter provides a more precise rep-
resentation of the pulse function, the model’s optimal 
performance appears to lean towards the larger values. 
This inclination might stem from the instances where the 
network grapples with significant gradient explosions, 
especially when the gradient closely resembles the pulse 
process. A broader rectangle function, offering smoother 
derivatives, aids the model in achieving a more seam-
less convergence. However, setting the width parameter 
too large, for instance beyond 10, leads to unpredict-
able training behaviors. This underlines the crucial task 
of judiciously selecting a width parameter. Such a choice 
should ideally encapsulate the dual objectives of aptly 
approximating the pulse function while also facilitating 
efficient model training.

Effect of data size
As we know, deep neural networks often require a large 
amount of data to train the models. Therefore, in this 
section, we evaluate the effect of data size on the per-
formance of FloorLocator. Figure  16 demonstrates that 
FloorLocator is easier to train and achieves a good floor 
identification accuracy (about 94% in Building 0, 70.8% 
in Building 1, and 92.2% in Building 2) with only 30% 
This significantly reduces the time and effort required for 
collecting training data, allowing it to scale to new envi-
ronments. Thus, FloorLocator can easily adapt to few-
shot applications, which indicates the excellent feature 

20 40 60 80 100

20

40

60

80

100

0

Accuracy curve for τ = −75
Accuracy curve for τ = −80
Accuracy curve for τ = −85
Accuracy curve for τ = −90
Accuracy curve for τ = −95
Accuracy curve for τ = −100
Accuracy curve for τ = Minimum value

Accuracy curve for τ = −70

Number of training epochs

Ac
cu

ra
cy

 (%
)

Fig. 13  Effect of RSS threshold ( τ)

20 40 60 80 100

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Number of training epochs

Accuracy curve for Positive representation
Accuracy curve for Exponential
representation
Accuracy curve for ZeroToOneNormalized
representation
Accuracy curve for Powed representation

0

Fig. 14  Effect of RSS representation



Page 14 of 16Gu et al. Satellite Navigation             (2024) 5:6 

extraction ability of FloorLocator within a limited num-
ber of samples.

Generalization to new buildings
Generalization ability is important for a floor identifica-
tion system to be scalable. Generalization here means 
how well a model pre-trained in a building works in a 
new building with only a limited amount of training data 
from the new building. We trained our model on the 
training data from Building 0 and evaluated its perfor-
mance in new buildings (Building 1 and Building 2) with 
different amounts of training data from the new buildings 
for fine-tuning the model.

Figure  17 demonstrates that about 10% new training 
data is enough to achieve floor identification accuracy 
close to the baseline where training and testing are con-
ducted using the full data. The overhead of collecting 
such an amount of training data is negligible compared to 
classical fingerprinting methods that need to recollect a 
complete fingerprint database. This implies that the pro-
posed method has excellent generalization ability and is 
scalable to new buildings. Such ability is attributed to the 
fact that we organize WiFi fingerprints in a graph of APs, 
making its easy adaptation to new scenarios by simply 
changing the input graph.

Through these ablation studies, we can conclude that 
FloorLocator has superior feature extraction ability by 
utilizing the data-oriented SGNN architecture. FloorLo-
cator is not only robust to noisy signals but also shows 
good generalization ability across different buildings. 
Therefore, the effectiveness and scalability of the entire 
method are verified.

Conclusions and discussion
In this study, we proposed a novel floor identification 
method named FloorLocator utilizing SGNNs. This 
method is scalable, accurate, and efficient. Our findings 
show that FloorLocator notably surpasses both tradi-
tional fingerprinting techniques and contemporary deep 
learning methods in three test scenarios, demonstrating 
its robustness even in environments with complex archi-
tectural layouts and varied configurations.

However, FloorLocator still faces a challenge in large 
environments: the computational efficiency of FloorLoca-
tor will degrade dramatically when the number of in the 
environment is very huge. In such cases, the constructed 
input graph becomes a high dimensional tensor, which 
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makes the convolution operation very slow. This aspect 
is particularly critical in scenarios where real-time floor 
localization is required.

Despite these challenges, FloorLocator has demon-
strated commendable resilience and accuracy in sce-
narios with sparse data available, much better than the 
conventional methods that rely heavily on dense WiFi 
data. This resilience highlights its potential for practical 
deployment in a variety of indoor settings, even those 
with limited access to comprehensive WiFi data.

In the future, we will extend FloorLocator to large envi-
ronments by constructing the input graph in a more effi-
cient way or dividing the environment into smaller areas 
so that the dimension of constructed input graphs is not 
too large. Optimizing the system for these extensive envi-
ronments will require innovative approaches to data pro-
cessing and neural network configuration, ensuring that 
FloorLocator maintains high-performance levels without 
compromising on the speed or accuracy.

Also, we will implement FloorLocator on neuromorphic 
hardware. The anticipated integration with neuromor-
phic hardware promises to further enhance FloorLoca-
tor’s computational efficiency, potentially transforming it 
into a more versatile and powerful tool for indoor floor 
localization. This advancement can extend the system 
to be used in real time scenarios such as emergency 
response, personalized indoor navigation, and location-
based services.

In conclusion, FloorLocator stands as an evidence to 
the potential of SNNs in challenging real-world applica-
tions, setting a new benchmark in indoor floor localiza-
tion. As we continue refining FloorLocator, we anticipate 
its evolution into a cornerstone technology in its domain, 
adaptable to the complexities of various indoor environ-
ments and capable of supporting a wide spectrum of 
applications.
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