
Gu et al. Satellite Navigation (2024) 5:6
https://doi.org/10.1186/s43020-024-00127-8

ORIGINAL ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Satellite Navigation
https://satellite-navigation.springeropen.com/

Accurate and efficient floor localization
with scalable spiking graph neural networks
Fuqiang Gu1, Fangming Guo1, Fangwen Yu2, Xianlei Long1*, Chao Chen1, Kai Liu1, Xuke Hu3, Jianga Shang4 and
Songtao Guo1 

Abstract 

Floor localization is crucial for various applications such as emergency response and rescue, indoor positioning,
and recommender systems. The existing floor localization systems have many drawbacks, like low accuracy, poor scal-
ability, and high computational costs. In this paper, we first frame the problem of floor localization as one of learning
node embeddings to predict the floor label of a subgraph. Then, we introduce FloorLocator, a deep learning-based
method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks.
This approach offers high accuracy, easy scalability to new buildings, and computational efficiency. Experimental
results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods. Notably,
in building B0, FloorLocator achieved recognition accuracy of 95.9%, exceeding state-of-the-art methods by at least
10%. In building B1, it reached an accuracy of 82.1%, surpassing the latest methods by at least 4%. These results indi-
cate FloorLocator’s superiority in multi-floor building environment localization.

Keywords  Indoor positioning, Deep learning, Floor localization, Spiking neural networks, Graph neural networks

Introduction
Indoor positioning has become increasingly popular
because of its widespread applications. It determines the
location of a target using positioning signals such as WiFi
(Zhou et al., 2022), Bluetooth (Zhao et al., 2023), inertial
sensors (Gu et al., 2018b), vision (Zhao et al., 2023), and
light (Zhuang et al., 2018). So far, plenty of indoor posi-
tioning systems have been proposed and developed, yet
most of them have focused on achieving 2D position-
ing. In complex structures like multi-floor buildings, the
task of floor identification is paramount. Floor localiza-
tion is a fundamental basis for plenty of applications and

services such as emergency response and rescue (Wein-
lich et al., 2018), indoor positioning (Gu et al., 2019b; El-
Sheimy & Li, 2021), and recommender systems (Deldjoo
et al., 2020).

Floor identification methods can be categorized as fin-
gerprinting (Zhang et al., 2020) and sensor-based meth-
ods (Qi et al., 2019; Ye et al., 2016). The fingerprinting
approaches, including WiFi fingerprinting and cellular
fingerprinting, are very popular due to the wide availabil-
ity of WiFi and cellular infrastructures. The typical fin-
gerprinting systems for floor localization include SkyLoc
(Varshavsky et al., 2007), StoryTeller (Elbakly & Youssef,
2020) and ZeeFI(Gu et al., 2019a). Yet, such methods
need a large amount of training data, which increases
with the number of floors as well as the area of interest.
Besides, the data need frequently re-collected to keep the
fingerprints update, which results in the poor scalability
of these methods.

To expedite the site surveys of these classical finger-
printing approaches, many sensor-based methods have

*Correspondence:
Xianlei Long
xianlei.long@cqu.edu.cn
1 College of Computer Science, Chongqing University, Chongqing, China
2 Department of Precision Instrument, Tsinghua University, Beijing, China
3 Institute of Data Science, German Aerospace Center (DLR), Jena,
Germany
4 School of Computer Science, China University of Geosciences, Wuhan,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43020-024-00127-8&domain=pdf
https://satellite-navigation.springeropen.com/

Page 2 of 16Gu et al. Satellite Navigation (2024) 5:6

been proposed, which can reduce the amount of train-
ing data by using the inertial sensors and/or barometers.
Popular sensor-based systems include FTrack (Ye et al.,
2012), F-Loc (Ye et al., 2014), B-Loc (Ye et al., 2016) and
BarFi (Shen et al., 2015), etc. While sensor-based meth-
ods can reduce the time and effort for site surveys by
using additional sensors such as inertial sensors and
barometers, they suffer from a limited coverage since
these sensors are not available in all devices.

Recently, deep neural networks have been successfully
applied in various domains, such as natural language pro-
cessing (Vaswani et al., 2017), image classification (Kriz-
hevsky et al., 2012), activity recognition (Gu et al., 2018a),
and indoor positioning (Wang et al., 2016). Because deep
learning models have the advantages of more powerful
representational ability, better generalizability, and unnec-
essary feature engineering, they have also been applied to
floor identification. StoryTeller (Elbakly & Youssef, 2020)
uses Convolutional Neural Networks (CNNs) for floor
identification, where WiFi signals are first used to gener-
ate images that are then fed to a CNN for predicting floors.
While StoryTeller is both Access Point (AP)-independent
and building-independent, it requires the knowledge of
physical building dimensions and 3D locations of APs,
which are impractical in some scenarios. ZeeFI (Gu et al.,
2019a) utilizes stacked autoencoders to identify floors,
alleviating the effort for data collection by automatically
recognizing the ground floor with smartphone-built sen-
sors. However, it uses only two layers of autoencoders, and
hence its representational ability is limited and might not
well deal with more complex cases. In (Zhang et al., 2020),
a cellular-based floor identification method is introduced,
which first uses a denoising autoencoder for data noise
reduction and feature extraction and then utilizes a Long
Short-Term Memory (LSTM) network for floor iden-
tification. However, these methods still suffer from the
limitations including poor scalability, low accuracy, high
computational cost, and requirement for additional infor-
mation (e.g., building dimensions, locations of APs).

The motivation of this study is to develop a novel
floor localization method that is scalable, accurate,
robust, and computationally efficient. Existing methods
often require a predefined and regular structure, which
is not always feasible given the dynamic nature of WiFi
APs. In this study, we introduce FloorLocator - a deep
learning-based floor identification method that inte-
grates computation-efficient Spiking Neural Networks
(SNNs) with powerful Graph Neural Networks (GNNs).
By organizing APs into a graph structure, we can effec-
tively handle situations where the exact positions of
AP nodes are unknown. This approach offers a more
adaptive and robust solution compared to conventional
methods. Additionally, the integration of SNNs into the

system is driven by their high computational efficiency,
making them an optimal choice for real-time floor
localization tasks.

The basic idea of FloorLocator is illustrated in Fig. 1.
We first represent raw WiFi scans into a RSS vector of
values between 0 and 1 using the powed method (Torres-
Sospedra et al., 2015). Then, we transform the RSS vec-
tor to a graph of visible APs before using a Spiking Graph
Neural Network (SGNN) to learn the mapping between
the ‘WiFi graph’ and the actual floor label. It includes two
phases: offline training and online testing. In the offline
phase, each RSS vector in the fingerprint database is first
organized in a WiFi fingerprint graph, which is then fed
into the SGNN together with its corresponding floor
label. After that, the network is trained by minimiz-
ing the loss between the predicted label and the actual
label. In the online phase, the upcoming WiFi scan is first
transformed into a RSS vector, which is then expressed as
a WiFi fingerprint graph. The trained network takes the
fingerprint graph as input and predicts the floor label of
the input WiFi scan.

In this work, FloorLocator is designed to offer several
advantages over existing SOTA floor localization meth-
ods, including StoryTeller (Elbakly & Youssef, 2020).
Specifically, based on graph theory, FloorLocator inno-
vatively utilizes graph topology to learn representations,
which enhances the transferability of the model. Then,
to achieve computational efficiency and energy savings,
FloorLocator employs an event-driven SNN architec-
ture. Finally, we perform extensive experiments to verify
Floorlocator’s robustness.

•	 We propose FloorLocator: a novel deep learning-
based floor identification method, which reduces the
burden of conventional WiFi fingerprinting by using
SNN and GNN.

•	 FloorLocator is both AP-independent and build-
ing-independent. FloorLocator is graph-based, and
hence it can be easily applied to new buildings or
environments by simply modifying the input graph.

•	 FloorLocator is efficient and robust. Its spiking-
based operation allows it to function in an energy-
efficient way. Also, it can integrate information over
time and filter out irrelevant information, making it
robust to noise.

•	 We implement and evaluate FloorLocator using pub-
licly available datasets collected in three different
buildings. Experimental results show that FloorLoca-
tor outperforms SOTA methods for floor identifica-
tion. Our method has higher accuracy, better scal-
ability, and greater efficiency compared to existing
methods.

Page 3 of 16Gu et al. Satellite Navigation (2024) 5:6 	

To the best of our knowledge, FloorLocator is the first
work that integrates event-driven SNNs with GNNs for
floor identification.

Method and system
In this section, we first introduce the theoretical founda-
tion of the proposed method, including GNNs and SNNs.
Then, we present the problem formulation of floor iden-
tification with SGNN before elaborating on the proposed
method.

Neural networks
This section describes the foundational concepts of
neural networks, with a focus on GNNs and SNNs,
which form the core of the proposed FloorLocator sys-
tem. We illustrate how GNNs, renowned for their effec-
tiveness in learning complex structures within graph
data, manage the intricate relationships between archi-
tectural elements to facilitate precise floor localization.
Concurrently, we introduce the dynamics of SNNs,
highlighting their computational efficiency and their
bio-inspired mechanisms that mimic human neural
activity patterns.

Graph neural networks
GNNs, a subset of neural networks, excel in feature
extraction through node interactions in graphs. Their
applications cover various fields, notably in graph min-
ing (Li et al., 2019), object classification (Gu et al., 2020),
recommender systems (He et al., 2020), and antibiotic
discovery (Stokes et al., 2020). This study particularly
focuses on Graph Convolutional Networks (GCNs),
which leverage spectral domain convolutions through
adaptable graph filters (Bianchi et al., 2021).

Let G = (V ,E) be a graph, where V = {v1, · · · , vn}
is the set of nodes, E = {e1, · · · , em} is the set of edges,
and ek = eij denotes an edge pointing from vi to vj . The
adjacency matrix A of the graph is an n× n matrix, and
Aij = 1 if eij ∈ E , otherwise, Aij = 0 . Thus, the node
embedding H (l+1) of a GCN layer in (Kipf & Welling,
2017) is described as:

where σ is an activation function (e.g., ReLU), W (l) is a
layer-specific learnable weight matrix, Ã is the normal-
ized adjacency matrix of A , and

(1)H (l+1) = σ(ÃH (l)W (l))

Actual LabelAAAAAAAAAAAAAAAAAAAAcccccccccccccccccccccAAAAAAAAAAAAAAAAAAAAAAAAAAAAcccccAAAAccccccccccAAAAAAAAAAAAAAAAAccccccctttttttccccccccccccccctcccccccccccctttttttttttttttttcccccccccccccccccctuuuuuuuuuuuuuuuuttttttttttuuuuuuutttuuuuuuuuuuutt aaaaaaaauuuuuuuuuuuuuaaauuuuaaaaaaauuuuuuuuuuuuuuuaaaaauuuuauuualaaaaaaaaaaaallllaaaaaaaaaaLLLLLLLLLLLLLLLLLLLLLaaaaaaaaaaaaaaLLLLLLLaaaaaaLLLaaaaaaaaaaLLLLLLLLLaaaLLaLaaaaaabbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaabbbbbaaaaaaaaaaaaaaaaaaaabbbbbbbaaaaaaaaaaaaaaaaaaaaeeeeeeeeeeeeeeeebbbbbbbbbbbbbbbbbeeeeeeebbbbbbbbbbbbbbbbbbbbbebbeeleeeeeeeeeeeeeeeeeellllllllllleeeeeeeeeeeeeeee
∑

∑ UT

UR

UT

UR
∑

∑

Offline phase

RSSI

<x, label>

Update
SpikingGNN Spiking GNN

Error

Online phase

Floor
decoding

WiFi

RSS representation
& floor encoding

(ri-rmin)β
————
(-rmin)β

Graph generation

Fingerprint database

Actual label

Network
weights

Optimal weight
database

WWWWiiWiWiWiWWiWWiiFiFiWiWiWiWWiWWiWiWiWiWWiWiWWiWiWWWiWW FiFiFFFFiiiFiFFFiFFFiiFF

UT

UR

UT

UR

Predicted
label

Final
floor

Fig. 1  Overview of FloorLocator. It takes as input WiFi scans, which are organized in a graph of visible APs before feeding into a spiking graph neural
network for training and predicting. Each module of FloorLocator will be detailed in Section V

Page 4 of 16Gu et al. Satellite Navigation (2024) 5:6

where I is the identity matrix.
Early GCN works often need to compute the spectrum

of the graph Laplacian (Bruna et al., 2014) or approximate
the spectrum (Defferrard et al., 2016) using high-degree
Chebyshev polynomials of the Laplacian matrix, which is
computationally expensive. In contrast, the GCN approach
in (Kipf & Welling, 2017) simplifies this by using first-order
Chebyshev polynomials of the graph Laplacian to cut down
computational costs. Further streamlining is seen in (Du
et al., 2018), which employs adjacency matrix polynomi-
als up to the second degree, further reducing complexity.
This efficient and effective method is utilized in our current
work.

Spiking neural networks
SNNs are brain-inspired neural networks that inherit the
biological spatial-temporal dynamics mechanisms and
rich spiking coding schemes (Roy et al., 2019). SNNs, being
closer to biological neural mechanisms than DNNs, are
very suitable for neuroscience-inspired models and are
compatible with energy-efficient neuromorphic hardware
like Intel Loihi and Tianjic. Key neuron models in SNNs
are the Spike Response Model (SRM) (Gerstner, 1995) and
Leaky Integrate-and-Fire (LIF) model (Wu et al., 2018).

We first introduce the SRM (Shrestha & Orchard, 2018).
where an input spike train xi(t) enters a neuron, incor-
porating the refractory kernel ν nd the neuron’s output
spike train s(t). In this model, input spikes are converted
into spike response signals ai(t) . These are scaled by syn-
aptic weights wi to produce post-synaptic potentials.
Consequently, the neuron’s membrane potential, u(t), is
determined by summing these potentials and refractory
responses, which is written as:

An output spike is fired when the membrane potential
surpasses a pre-defined threshold. The spike function
fs(·) can be written as:

where

Another popular SNN model is the LIF model, which is
more computationally tractable than SRM models while
maintaining biological fidelity to some extent.

The dynamics of LIF is governed by:

(2)Ã = D−1/2(A+ I)D−1/2

(3)u(t) = wTa(t)+ (ν ∗ s)(t)

(4)fs(u) : u → s, s(t) := s(t)+ δ(t − t(f+1))

(5)t(f+1) = min{t : u(t) = uT, t > t(f)}

where u(t) represents the internal membrane potential
of a neuron at time t,

∑

i wixi is the weighted summation
of the inputs from pre-neurons, and τ is a time constant.
Figure 2 visualizes the computational model of a SNN. In
this study, we use the LIF model due to its higher accu-
racy, lower computational cost, and easer training.

Problem formulation
We formulate the problem of floor identification with
SGNN as a problem of finding node embeddings to pre-
dict labels of a subgraph (corresponding to a WiFi finger-
print) given a graph with node attributes. Let G = (V ,E)
denote the fingerprint graph, where a node vi ∈ V is an
Access Point (AP), and an edge eij ∈ E is the edge con-
necting two APs vi and vj that are spatially close to each
other, which means that the two APs should at least
appear once in a fingerprint vector of the radio map. The
learning process of node embedding for floor identifica-
tion includes two steps:

(i) Aggregating messages The task of this step is to
aggregate messages from neighboring APs, which is writ-
ten as:

where h(l)v and m(l)
v denote the node embedding and the

message vector of AP v at l-th layer, f (l) represents the
aggregation function, N (v) is the neighboring nodes of v.

(ii) Transforming messages The task of this step is to
transform messages to the next layer. Mathematically, the
process is described as:

where g (l) is the transformation function at l-th layer. For
batch execution, the above equation can be written as:

where fLIF is the LIF activation function, and other sym-
bols are the same as described in Eq. (1).

Then, the objective of floor identification with SGNNs
is to train the model by minimizing the total loss L which
includes the supervised loss and graph regularization
term, namely

(6)τ
du(t)

dt
= −u(t)+

∑

i

wixi

(7)m(l)
v = f (l)

(

h(l)v , {h
(l)
ζ : ζ ∈ N (v)}

)

(8)hl+1
v = g (l)(m(l)

v)

(9)H (l+1) = fLIF (ÃH
(l)W (l))

(10)L = L0 + �Lreg

Page 5 of 16Gu et al. Satellite Navigation (2024) 5:6 	

where L0 is the supervised loss, � is a weighting factor and
Lreg is the graph regularization term. In our work, we use
the mean squared error as the supervised loss, namely

where yi is the ground truth floor label for the i-th finger-
print, and ŷi is the estimated floor label. The graph regu-
larization term can be written as:

where ϕ(·) is a GNN-like differentiable function, and X i is
the node feature vector for AP vi.

The FloorLocator system
In this section, we first describe the architecture of
FloorLocator, followed by an introduction of RSS

(11)L0 =
1

n

n
∑

i=1

(yi − ŷi)
2

(12)Lreg =
∑

ij

Aij�ϕ(X i)− ϕ(X j)�
2

representation & floor encoding, and WiFi graph gen-
eration. Then we elaborate on each of its components:
TAGConv Layer, LIF module, DeepBlock module, Event-
based Batch Normalization module, FC Layer & Voting
Layer module. Finally, we introduce network training and
floor decoding.

System architecture
The FloorLocator system is specifically designed to
address the challenges of floor localization mentioned in
the introduction section. The architecture of FloorLoca-
tor is illustrated in Fig. 3. The system accepts WiFi finger-
prints (which can also be cellular fingerprints) as input.
These fingerprints are initially represented as RSS vectors
and subsequently organized into a graph based on the
proximity of their APs. This graph-based representation
is particularly beneficial in scenarios where the positions
of the AP nodes are unknown, allowing for a flexible and
adaptive structure. Following this, the graph data under-
goes a transformation into spikes after the first Topology

Input spike train

W

W

W

Output spike train
∑

UT

UR

Input spike train

Input spike train

Fig. 2  SNN computational model. It consists of a post-neuron driven by input pre-neurons. The membrane potential of the post-neuron is affected
by the input spikes from pre-neurons

Fingerprint TAGConv

DeepLayer DeepLayerDeepLayer DeepLayerDeepLayer DeepLayer

DeepBlock DeepBlock FC FC Voting Floor LabelTransition

Which floor
am I on?

Fig. 3  System architecture of FloorLocator. The input of FloorLocator is a WiFi fingerprint, and its output is the estimated floor label for the given
fingerprint. It consists of one TAGConv layer, two DeepBlocks, one transition layer (which is also a TAGConv layer), two FC layers and one voting
layer. Each DeepBlock is composed of three DeepLayers, and these DeepLayers are densely connected. Note that each TAGConv layer is followed
by an LIF activation and event-based batch normalization layer, while each FC layer is followed only by an LIF activation. These subsequent layers
are not shown in the figure for clarity

Page 6 of 16Gu et al. Satellite Navigation (2024) 5:6

Adaptive Graph Convolutional (TAGConv) (Du et al.,
2018) layer using the LIF activation function. The spike-
converted data is then processed.

RSS representation and Floor encoding
In this section, we first introduce the fingerprint data
representation method. The number of visible APs
changes with location, and hence the size of each finger-
print vector may be different. To fix the size of the finger-
print vector, we describe a fingerprint as a vector of RSS
from all the APs in the environment. Let x indicate the
fingerprint, and x =< r1, r2, · · · , rM > , where ri repre-
sents the signal strength received from the i-th AP and M
is the number of APs in the environment. To better learn
features from fingerprints via SGNNs, we describe the
fingerprint in positive values using the powed represen-
tation method in (Torres-Sospedra et al., 2015). The raw
RSS rssi is then described as a positive value pi as follows:

where τ is a RSS threshold (we set min as the threshold),
indicating if an is detected in a fingerprint. β is constant
parameter, which is simply set to the mathematical con-
stant e. These APs with RSS lower than τ are considered
as not-detected. Thus, the fingerprint x can be re-written
as a vector of positive values of all the APs in the environ-
ment, namely

Then, we describe how the floor information is encoded
into an identity matrix for easier processing. Floor labels
are generally categorical or are not fully numeric and
need to be converted to numbers (mostly integers) before
fed into a DNN or SNN. In this work, we encode the
floor label into an identity matrix with one-hot encoding,
where each row indicating a floor, has and only has one
element with value 1 representing the floor.

Graph generation
Classical fingerprinting methods need to store the APs’
IDs, which limit their scalability. A recently developed
method called StoryTeller ((Elbakly & Youssef, 2020) alle-
viates this requirement by transforming fingerprints into
images. While StoryTeller is scalable, it requires the loca-
tions of APs, which is impractical in some cases. In this
study, we organize the fingerprints in a graph, which does
not require the APs’ IDs, neither the locations of APs.
This makes our method more scalable and applicable to
different environments.

(13)fi =

{

(ri−rmin)
β

(−rmin)
β , ri ≥ τ

0, ri < τ

(14)x =< p1, p2, · · · , pM >

Specifically, we generate the fingerprint graph accord-
ing to the closeness of APs. Each visible AP is taken as
a node vi of the graph, and each edge eij connecting two
nodes (APs) represents the two APs close to each other.
When the two APs appear in the same fingerprint, we
add an edge to connect them until all the fingerprints
are traversed. The detailed steps of constructing the fin-
gerprint graph are represented in Fig. 4. The algorithm
takes as input a radio map D, and outputs the fingerprint
graph. It first generates the number of APs N by comput-
ing the length of any fingerprint vector (e.g., x0 ). Then,
we add each node into the node set of the graph. We use
the index of an AP appearing in the fingerprint as the
node ID, rather than their IDs. This allows our method
to be scalable to new environments since it alleviates the
dependence on APs’ IDs, which exists in traditional fin-
gerprinting methods. After that, we transverse each fin-
gerprint, and extract the indexes of APs that are visible
in the fingerprint into a set C. Finally, we add two edges
< vi, vj > and < vj , vi > into the edge set E of the graph if

Start

Input:Radiomap D = {x1, ..., xN}

Set M = length (x1)

Foreach i < M Add vi to V (vertices)

Foreach j < N

nonzero (xj)

If vi,vj ϵ C

Add eij,eji to E (edges)

Output:Graph G = (V,E)

Stop

yes

yes

no

no

Fig. 4  Fingerprint Graph Generation

Page 7 of 16Gu et al. Satellite Navigation (2024) 5:6 	

they are not in the edge set yet. The reason of adding the
two edges is to construct an undirected fingerprint graph.

Details of FloorLocator
In this section, we delve into the intricate components
that form the FloorLocator’s architecture. The ‘TAG-
Conv Layer’ adapts to topological nuances, a significant
leap from conventional layers. Moving forward, the ‘LIF
Activation’ implements the dynamics of spiking neu-
rons, a departure from standard activation functions. At
the heart of our architecture is ‘DeepBlock,’ a complex
assembly that enhances the network’s learning depth.
Stability is a key in learning, and ‘Event-based Batch
Normalization’ ensures this by mitigating the common
gradient-related issues. Finally, the ‘FC Layer and Voting
Layer’ work in unison to interpret and classify the pro-
cessed data, a critical final step in our system’s response
mechanism.

TAGConv layer
Instead of using the popular graph convolution (Kipf &

Welling, 2017), we adopt the TAGConv (Du et al., 2018)
because of its excellent performance in terms of accuracy
and computational efficiency. It utilizes a set of fixed-size
learnable filters to simultaneously extract both node fea-
tures and the strength of correlation between nodes. Let
Gc,k represent the k-th graph filter. The resulting k-th fea-
ture map h(l)k on layer l is given by the equation:

where xc is the c-th input feature vector of nodes, Cl
denotes the count of input features per node at layer l,
and bk is a tunable bias vector. To adapt the convolution
operation to various graph topologies, it’s crucial to tailor
the graph filter. A common method involves defining the
graph filter using the normalized adjacency matrix Ã of
the graph,

with gc,f ,k as the graph filter’s polynomial coefficient and
Ã as the normalized adjacency matrix.

LIF activation
ReLU (Glorot et al., 2011) and its variants, like LReLU

(Maas et al., 2013) are prevalent activation functions in
CNNs. However, ReLU is not suitable for SNNs. Instead,

(15)h
(l)
k =

Cl
∑

c=1

G
(l)
c,kx

(l)
c + bk

(16)G
(l)
c,k =

K
∑

i=0

g
(l)
c,k ,iÃ

i

we employ the LIF model, widely recognized for mod-
eling spiking neuron dynamics (Roy et al., 2019). As
depicted in Fig. 5, the LIF model illustrates that a neu-
ron’s membrane potential accumulates incoming spikes
and experiences leakage over time. Upon reaching the
threshold uT , the neuron emits a spike and enters a
refractory period.

The LIF activation function, fl is mathematically
expressed as:

where uR and uT denoting the reset value and firing
threshold, respectively. Essentially, the LIF function trig-
gers a neuron to fire a spike when its membrane poten-
tial reaches or exceeds uT , following which the potential
resets to uR.

DeepBlock
DeepBlock is a key component of FloorLocator, which

is composed of three DeepLayers. These DeepLayers are
densely connected to learn features more effectively from
graph-structured fingerprint data. Each DeepLayer con-
tains two TAGConv layers, two event-based Batch Nor-
malization (BN) layers, and two LIF activation layers.
Such a design is inspired by the basic block of ResNet,
which can effectively eliminate problems of gradient van-
ishing and explosion by adding skip connections.

Figure 6 compares the basic block of ResNet with the
basic block (DeepLayer) of our design. The distinctions
between ResNet and our proposed method are threefold:

•	 Convolution Operation Unlike the conventional con-
volution operation in ResNet, we employ TAGConv

(17)fl(u) = 1 & u(t) ← uR u(t) ≥ uT

Refractory period

UT

UR

Input spike Output spike

Membrane potential

O Time (ms)

U
 (m

v)

Fig. 5  The dynamics of LIF spiking neurons. The post-neuron
integrates incoming spikes into its membrane potential, and fires
a spike when the membrane potential surpasses a threshold uR . After
that, its membrane potential is set to a pre-set value uR

Page 8 of 16Gu et al. Satellite Navigation (2024) 5:6

to handle graph-structured fingerprint data. This
choice is motivated by the capability of GNNs to
effectively process WiFi APs without the prior knowl-
edge of their structure. In contrast, CNNs organize
nodes into a regular rectangular structure.

•	 Activation Function The commonly used ReLU func-
tion in ResNet is substituted with the LIF activation
in our design. This change is essential because ReLU
is incompatible with spiking data. SNNs are known
for their computational efficiency, and their combi-
nation with GNNs can enhance the model’s compu-
tational efficiency.

•	 Normalization Layer We replace the BN layer of
ResNet with EBN to tackle gradient vanishing and
explosion challenges.

Furthermore, DeepLayer is designed to take spikes as
input and output spikes, diverging from the real-valued
data processing in traditional networks. In the FloorLo-
cator architecture, we incorporate two DeepBlocks. The
number of DeepBlocks is determined by empirical study.
Our experiments show that two DeepBlocks suffice to
achieve excellent floor identification accuracy.

Event-based batch normalization
In this part, we introduce EBN in detail. As we know,

gradient vanishing and explosion are the main prob-
lems that prohibit a model from going deeper. A com-
mon solution to the problems in deep neural networks
is to utilize BN, which enables the model to converge
stably and go deeper. However, BN cannot be directly
used in SNNs due to the existence of additional tem-
poral dimensions and different activation mechanisms.
To avoid gradient vanishing and explosion in the pro-
posed method, we adopt the EBN method (Zheng
et al., 2021) and normalize the pre-synaptic inputs
along the channel dimension. The inputs of each neu-
ron are adjusted into the interval ranging from 0 to
UT  , where UT epresents the pre-defined spiking firing
threshold (0.5 is used in this work). Such an adjust-
ment can balance the inputs and neuronal membrane
potential to avoid the membrane potential being
over-saturated or the input information being over-
expressed. Mathematically, the EBN is described as:

(18)x̂li =
uT (x

l
i − E(xli))

√

D(xli)+ ǫ

(19)yli =γix̂
l
i + βi

where xli represent the i-th channel feature map of xl , uT
represents the Spiking firing threshold, E(xli) and D(xli)
denote the Expectation and Variance of xl over the mini-
batch. ǫ is a tiny constant to avoid dividing by zero error,
eeγi and βi are two learnable parameters.

In the training process, the Expectation and Variance
of xi can be computing by

In the inference stage, we cannot directly compute
the Expectation and Variance of xi due to the batch
is not applicable. Therefore, we estimate the Expecta-
tion of E(xli) and D(xli) in the whole dataset, which can
be obtained by moving average solution in the training
stage. More details about such estimations can be found
in (Zheng et al., 2021).

FC layer and voting layer
At the top of FloorLocator are two FC layers and one

voting layer. The FC (Fully Connected) layer in our net-
work operates similar to those in standard neural net-
works, defined as,

(20)E(xli) =mean(xli)

(21)D(xli) =mean((xi − E(xli)
2)

Fig. 6  Different basic blocks of commonly-used ResNet
and the proposed method. a Basic block of ResNet. b Basic block
(DeepLayer) of the proposed method

Page 9 of 16Gu et al. Satellite Navigation (2024) 5:6 	

where x is the inputs from previous layer, W is the weight
matrix, b is the bias vector, and h is the output feature.

For decoding the network’s output, we use a voting
layer, following the approach in (Wu et al., 2019). Each
output label is linked to a neuron in this layer. The class
prediction is based on the neuron that receives the
highest number of votes (or spikes) averaged across a
time window.

Network training and online localization
Our network associates the output vector to each floor
label by voting, and the final output OL in a given time win-
dow is written as

where U represents the constant voting matrix used for
decoding spikes, while ot signifies the output feature
from the final layer at time t.

To accommodate the error backpropagation, we take the
mean square error between the average voting result and
the label vector y as the loss function.

However, the spiking function poses a significant chal-
lenge as it is not differentiable, which makes it impossi-
ble to use the error backpropagation method directly. To
elaborate on this challenge, let’s take a look at the expres-
sion for calculating weight gradients obtained through

(22)h = Wx + b

(23)OL =
1

T

T
∑

t=1

Uot

(24)L =
∥

∥y −OL

∥

∥

2

Spatial-Temporal Back-Propagation (STBP) (Wu et al.,
2018):

In the above equation, y represents the target output vec-
tor, W denotes the SNN’s weight matrix, L represents
the loss function, and ∂y(t)

∂u(t) represents the gradient of the
spiking activity function. The weight update formula is as
follows:

Here, η represents the learning rate. However, because
∂y(t)
∂u(t) is either zero everywhere or a very large value in rare
cases. As a result, the weights may not be updated at all,
or they may be updated to a large value, leading to unsta-
ble training.

Previous studies tackled the non-differentiable chal-
lenge by using Surrogate Gradients (SG) (Wu et al., 2019;
Shrestha & Orchard, 2018; Wu et al., 2018). To address
this issue, we adopt a rectangular function (Wu et al.,
2019) to approximate the derivative of the spiking func-
tion. Figure 7 illustrates the comparison between the
rectangular function and the spiking activation function.
The rectangular function is defined as follows:

where a is a width parameter set to 0.5 in this study. In
the ablation study, we will analyze the effect of different
values.

(25)�W =
∂L

∂W
=

T
∑

t=1

∂L

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂W

(26)W = W − η�W

(27)f (u) =
1

a
sign

(

|u− uT | <
a

2

)

y

x

1.0
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

−4 −2 0 2 4
x

−4

∂y —
— ∂x

−2 0 2 4
0

a Spiking function vs. Ramp function b Spiking function gradient vs. Rectangular approximation

Spiking function gradient
Rectangular approximation

Spiking function
Ramp function

Fig. 7  a Comparison of spiking and ramp activation functions: It can be observed that when the slope of the ramp function is sufficiently large, it
approximates the spiking activation function; b Comparison of Spiking Activation Function Gradient and Surrogate Rectangular Function: When
the width parameter is small, the figure of the rectangular function’s gradient is similar to that of the spiking activation function

Page 10 of 16Gu et al. Satellite Navigation (2024) 5:6

After training the network, it can predict the floor
label of upcoming WiFi scans. The process of online
floor localization is described below: first, the upcom-
ing WiFi scan is represented as a RSS vector with
values between 0 and 1, and then the RSS vector is
expressed as a WiFi fingerprint graph according to the
visible APs in the WiFi scan. After that, the WiFi graph
is fed to the trained network to output the floor label,
which is subsequently translated to a meaningful floor
label (e.g., categorical character).

Experiments and results
Experimental setup
We evaluate the proposed method on three public
scenarios (buildings) of the commonly used UJIIn-
doorLoc datasets (Torres-Sospedra et al., 2014).UJI-
IndoorLoc datasets are multi-building and multi-floor
WiFi fingerprint datasets, which were collected with
the assistance of more than 20 users using more than
25 Android devices. There are 520 APs visible in the
database. Table 1 shows the details of the three test
buildings.

While the dataset is relatively large, there still exists
an imbalance in the data that the number of samples
for each floor is not equal. Such an imbalance will
affect the performance of deep learning models. To
address this issue, we perform random oversampling
to increase the number of samples in minority classes
until a balance is reached. Such an operation is also for
a fair comparison with SOTA StoryTeller (Elbakly &

Youssef, 2020) that adopts the same strategy for data
augmentation.

We implement the proposed method in PyTorch.
The Adam optimizer is used to optimize the model
on the training dataset. The number of epochs is set
to 100, and the learning rate is 0.001. We repeated the
training and test procedure for five rounds with differ-
ent random seeds and reported the average accuracy.
Table 2 shows the values of hyperparameters.

Experimental results
We first evaluate the proposed method on three
test buildings and compare it with the classical

Table 1  Details of test scenarios

Building No. Floors Samples

B0 4 5785

B1 4 5503

B2 5 9760

Table 2  Hyperparameter setting

Parameter Value

Optimizer Adam

Learning rate 0.001

Number of epochs 100

Batch size 128

Spiking firing threshold 0.5

Width parameter a 0.5

KNN neighbor configurations (k) and FloorLocator
1

100

95

90

85

80

Ac
cu

ra
cy

 (%
)

75

70

65

60

Results of KNN
Results of FloorLocator

3

82.8 82.8 83.2 84.3

95.9

82.5

5 7 9 FloorLocator

Fig. 8  Floor identification accuracy of FloorLocator as compared
to the classical kNN in Building 0 (B0)

KNN neighbor configurations (k) and FloorLocator
1

90

85

80

Ac
cu

ra
cy

 (%
)

75

70

65

60

Results of KNN
Results of FloorLocator

3

77.5 78.2 77.9 77.9

82

78.5

5 7 9 FloorLocator

Fig. 9  Floor identification accuracy of FloorLocator as compared
to the classical kNN in Building 1 (B1)

Page 11 of 16Gu et al. Satellite Navigation (2024) 5:6 	

fingerprinting method - kNN (k Nearest Neighbors).
The kNN is selected for performance comparison in
ablation studies because of its popularity and wide-
spread use in fingerprinting positioning. It often serves
as a benchmark in many indoor localization systems
and provides a baseline against which we can measure
the improvement offered by the proposed FloorLo-
cator. Later, we will also compare the performance of
the proposed method with other SOTA methods. The
value of k method ranges from 1 to 9 with an interval
of 2. Figures 8, 9, 10 the floor identification accuracy
in different buildings with the proposed FloorLocator
compared to kNN method. It can be seen that FloorLo-
cator significantly outperforms the popular in all three
testbeds. The accuracy is improved by about 11.6% in
Building 0, 3.5% in Building 1, and 6.8% in Building 2,
respectively.

Compared to kNN, which needs to store APs’ IDs and
is building-dependent, our method is both AP-independ-
ent and building-independent, making it more scalable
for new buildings. This attribute is due to the organiza-
tion of fingerprints in a graph, which allows us to better
capture the neighborhood correlation between samples
on the same floor. These results indicate FloorLocator
can learn useful feature embeddings from data, which
helps the method capture more distinguishable features
and get high accuracy. While kNN locates the floors
using raw data, it results in a relatively lower accuracy.

Comparison to state‑of‑the‑art methods
In this subsection, we compare the proposed method
with SOTA methods for floor identification. The systems
considered are as follows:

•	 StoryTeller (Elbakly & Youssef, 2020): A CNN-based
method for floor identification. It first converts WiFi
fingerprints into images that are fed to the VGG-19
(Simonyan & Zisserman, 2015) network.

•	 kNN: The popular method for floor localization,
which is widely used (Luo et al., 2019).

•	 TrueStory (Elbakly et al., 2018): A neural network-
based floor estimation method, which uses a multi-
layer perceptron network to fuse weak learners’ out-
puts.

•	 Locus (Bhargava et al., 2015): A heuristics-based
algorithm for floor identification.

Since the reference (Elbakly & Youssef, 2020) reported
the performances of StoryTeller, TrueStory, and Locus in
the Building 0 and 1 of the same UJIIndoorLoc dataset,
we directly report their floor identification accuracy men-
tioned in (Elbakly &Youssef, 2020). For kNN, we imple-
ment it by ourselves. All methods are evaluated using the
same training and test data for a fair comparison.

Figure 11 shows the performances of different meth-
ods in Building 0 and Building 1. It demonstrates that
FloorLocator performs the best among these methods.
Specifically, FloorLocator achieves about 96% and 82%
correct floor estimates in Buildings 0 and 1, respectively.
It surpasses StoryTeller, which is also AP-independent
and building-independent, by about 16.5% in Building 0
and 19.3% in Building 1. The reasons why FloorLocator
outperforms StoryTeller can be summarized as follows:
first StoryTeller is a CNN-based approach, which needs
to convert a WiFi scan to an image. During the conver-
sion, there might be some information loss, affecting the
performance of subsequent localization. By contrast, our
method is graph-based, which uses the graph topology
to learn useful representations. This allows it to better
capture the spatial relationship between APs, which can
be difficult to model using a CNN. Second, FloorLocator
is more robust to noise than CNN-based methods. The
integrate-and-fire neuron activation enables it to filter
out irrelevant information.

It is also interesting to note that kNN performs better
than StoryTeller and other baseline methods. This might
lie in deep learning-based methods, including StoryTeller
and TrueStory, which may lose some useful information
in the representation and/or conversion of WiFi scans.
However, kNN has poorer generalization ability to new
environments compared to FloorLocator and StoryTeller
that are easily scalable.

The above experiments of FloorLocator against kNN
and other SOTA methods demonstrate the superiority
of the proposed method, which not only extracts rich

KNN neighbor configurations (k) and FloorLocator
1

100

95

90

85

80

Ac
cu

ra
cy

 (%
)

75

70

65

60

Results of KNN
Results of FloorLocator

3

86.2 86.9 86.9 86.6

93.7

86.6

5 7 9 FloorLocator

Fig. 10  Floor identification accuracy of FloorLocator as compared
to the classical kNN in Building 2 (B2)

Page 12 of 16Gu et al. Satellite Navigation (2024) 5:6

floor-aware information, but also learns robust topology
representations by filtering out useless features through
the innovative SGNNs architecture.

Ablation experiment
To figure out the different impacts of different compo-
nents involved in FloorLocator, we conducted several
ablation studies. In the following, the effects of AP den-
sity, RSS threshold, RSS representations, width param-
eters, data size, and the generalization to new buildings
will be presented and analyzed.

Effect of AP density
To understand the impact of AP density on FloorLoca-
tor’s performance, we conducted tests with varying AP
densities. To do this, we randomly remove certain APs
from both the training data and test data and use the
remaining data for training the model and testing. AP
density represents the ratio of the number of remain-
ing APs to the total number of APs before the removal
operation. Figure 12 shows how different numbers of
APs in the training and test data affect the accuracy of
the floor identification of our method. We can see that
the accuracy decreases as the density of the APs used
in the training declines. However, it is observed that
FloorLocator can achieve relatively high accuracy even
when 50% APs are removed, resulting in an accuracy
of about 89.5% in Building 0, 66.1% in Building 1, and
82.6% in Building 2.

Figure 12 implies that FloorLocator is robust to the
change of APs mainly due to the use of spike-based
communication and activation mechanisms. Floor-
Locator can produce stable accuracy when there is a

relatively high AP density, especially when AP density
is greater than 70%.

Effect of RSS threshold
RSS threshold has an impact on the performance of the
proposed method. Thresholding is a technique com-
monly used to remove irrelevant or noisy RSS values
from fingerprints. To evaluate the effect of different
threshold values on the performance, we conducted 100
training sessions on the B0 dataset and recorded the test-
ing accuracy. The threshold values used range from to the
minimum value in the dataset. Experimental results are
shown in Fig. 13, indicating that a larger threshold value
will filter out a substantial amount of information, lead-
ing to poorer performance. By contrast, a small threshold
value will not reduce the testing accuracy yet remain-
ing all values will somehow increase the computational
complexity. Our analysis suggests that a threshold within
the range of -85 to strikes an optimal balance. In this
range, weaker, possibly irrelevant signals are effectively
discarded, thereby optimizing computational efficiency
without compromising accuracy. Notably, thresholds
near appear to remove too many vital data, leading to a
drop in performance.

Through the comparison in Fig. 13, we can draw that
the selected range of -85 to -100dB ensures the retention
of signals critical for achieving the desired testing accu-
racy, simultaneously filtering out the most disruptive
noise.

Effect of RSS representations
We investigated the effect of various fingerprint rep-
resentation methods on the performance of our model.
Specifically, we considered four methods: positive values,

100

90

79.4

84.3

95.9

62.8

37.34

32.4

78.5

82.1

Results of StoryTeller
Results of TrueStory
Results of Locus
Results of KNN
Results of FloorLocator

40.5
38.0

80

70

60

50

40

30

20
B0 B1

Building number

Ac
cu

ra
cy

 (%
)

Fig. 11  Floor identification accuracy of FloorLocator (our method)
as compared to other methods in Building 0 and Building 1

10 20 30 40 50 60 70 80 90
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy curve of B0
Accuracy curve of B1
Accuracy curve of B2

Ratio of AP numbers (%)
Fig. 12  Effect of AP density on the floor identification accuracy
of FloorLocator in three test scenarios

Page 13 of 16Gu et al. Satellite Navigation (2024) 5:6 	

zero-to-one normalized values, exponential values, and
powered values, as suggested by Torres et al. (Torres-
Sospedra et al., 2015). After training our model for 100
epochs on the B0 dataset, we assessed the test accu-
racy. As shown in Fig. 14, our model effectively achieved
optimal accuracy using the positive values, zero-to-one
normalized values, and powered values representation
methods. However, the exponential values method was
less effective. A possible explanation for the underper-
formance of the exponential values method is its poten-
tial to produce the values greater than 1, some of which
can be significantly high. This characteristic might be
incompatible with the inherent features of our SNN. Spe-
cifically, SNNs emit spikes only under certain conditions
within a specified time frame. If a normalization pro-
cess provides unsuitable data, the neurons may become
hyperactive, resulting in continuous firing. Given that
the exponential method might yield a prevalence of high
values, detecting subtle variations in the original dataset
becomes increasingly challenging. Interestingly, the posi-
tive values representation seems to further hasten our
method’s convergence to optimal accuracy.

As can be seen in Fig. 14, the powed representation
method can achieve a balance between accuracy and
training efficiency.

Effect of width parameter
Since the spiking function is non-differentiable, we intro-
duce a rectangle function to approximate the derivative
of the spiking function. Here we analyze the influence of
different width parameters of the rectangle function on
the testing accuracy using the B0 dataset after training
our model for 100 epochs. The value of the width param-
eter covers the commonly used values, namely 0.1, 0.5,
1.0, 2.0, 5.0, 7.5, and 10.0, respectively.

Figure 15 illustrates the relationship between our
model’s performance and the width parameter value,
which ranges from 0.5 to 10.0. Within this range, our
model tends to achieve optimal performance. In contrast,
extremely low values, such as 0.1, impede the model’s
convergence on testing accuracy. Interestingly, while a
smaller width parameter provides a more precise rep-
resentation of the pulse function, the model’s optimal
performance appears to lean towards the larger values.
This inclination might stem from the instances where the
network grapples with significant gradient explosions,
especially when the gradient closely resembles the pulse
process. A broader rectangle function, offering smoother
derivatives, aids the model in achieving a more seam-
less convergence. However, setting the width parameter
too large, for instance beyond 10, leads to unpredict-
able training behaviors. This underlines the crucial task
of judiciously selecting a width parameter. Such a choice
should ideally encapsulate the dual objectives of aptly
approximating the pulse function while also facilitating
efficient model training.

Effect of data size
As we know, deep neural networks often require a large
amount of data to train the models. Therefore, in this
section, we evaluate the effect of data size on the per-
formance of FloorLocator. Figure 16 demonstrates that
FloorLocator is easier to train and achieves a good floor
identification accuracy (about 94% in Building 0, 70.8%
in Building 1, and 92.2% in Building 2) with only 30%
This significantly reduces the time and effort required for
collecting training data, allowing it to scale to new envi-
ronments. Thus, FloorLocator can easily adapt to few-
shot applications, which indicates the excellent feature

20 40 60 80 100

20

40

60

80

100

0

Accuracy curve for τ = −75
Accuracy curve for τ = −80
Accuracy curve for τ = −85
Accuracy curve for τ = −90
Accuracy curve for τ = −95
Accuracy curve for τ = −100
Accuracy curve for τ = Minimum value

Accuracy curve for τ = −70

Number of training epochs

Ac
cu

ra
cy

 (%
)

Fig. 13  Effect of RSS threshold ( τ)

20 40 60 80 100

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Number of training epochs

Accuracy curve for Positive representation
Accuracy curve for Exponential
representation
Accuracy curve for ZeroToOneNormalized
representation
Accuracy curve for Powed representation

0

Fig. 14  Effect of RSS representation

Page 14 of 16Gu et al. Satellite Navigation (2024) 5:6

extraction ability of FloorLocator within a limited num-
ber of samples.

Generalization to new buildings
Generalization ability is important for a floor identifica-
tion system to be scalable. Generalization here means
how well a model pre-trained in a building works in a
new building with only a limited amount of training data
from the new building. We trained our model on the
training data from Building 0 and evaluated its perfor-
mance in new buildings (Building 1 and Building 2) with
different amounts of training data from the new buildings
for fine-tuning the model.

Figure 17 demonstrates that about 10% new training
data is enough to achieve floor identification accuracy
close to the baseline where training and testing are con-
ducted using the full data. The overhead of collecting
such an amount of training data is negligible compared to
classical fingerprinting methods that need to recollect a
complete fingerprint database. This implies that the pro-
posed method has excellent generalization ability and is
scalable to new buildings. Such ability is attributed to the
fact that we organize WiFi fingerprints in a graph of APs,
making its easy adaptation to new scenarios by simply
changing the input graph.

Through these ablation studies, we can conclude that
FloorLocator has superior feature extraction ability by
utilizing the data-oriented SGNN architecture. FloorLo-
cator is not only robust to noisy signals but also shows
good generalization ability across different buildings.
Therefore, the effectiveness and scalability of the entire
method are verified.

Conclusions and discussion
In this study, we proposed a novel floor identification
method named FloorLocator utilizing SGNNs. This
method is scalable, accurate, and efficient. Our findings
show that FloorLocator notably surpasses both tradi-
tional fingerprinting techniques and contemporary deep
learning methods in three test scenarios, demonstrating
its robustness even in environments with complex archi-
tectural layouts and varied configurations.

However, FloorLocator still faces a challenge in large
environments: the computational efficiency of FloorLoca-
tor will degrade dramatically when the number of in the
environment is very huge. In such cases, the constructed
input graph becomes a high dimensional tensor, which

20 40 60 80 100

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Number of training epochs

Accuracy curve of a = 1
Accuracy curve of a = 2
Accuracy curve of a = 5
Accuracy curve of a = 7
Accuracy curve of a = 10

Accuracy curve of a = 0.5

0

Accuracy curve of a = 0.1

Fig. 15  Effect of width parameter (a) of the spiking derivative
approximation function

10 20 30 40 50 60 70 80 90
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy curve of B2
Accuracy curve of B1
Accuracy curve of B0

Ratio of training data (%)
Fig. 16  Effect of the amount of used training data on the floor
identification accuracy of FloorLocator in three test scenarios

10 20 30 40 50 60 70 80 90
Ratio of training data for finetuning (%)

60

65

70

75

80

85

90

95

100

Accuracy curve for train on B1 test on B1
Accuracy curve for train on B0 test on B1
Accuracy curve for train on B2 test on B2
Accuracy curve for train on B0 test on B2

Ac
cu

ra
cy

 (%
)

Fig. 17  Floor identification accuracy achieved using different
amounts of data from a new building to fine-tune the model
that is pretrained using some other building

Page 15 of 16Gu et al. Satellite Navigation (2024) 5:6 	

makes the convolution operation very slow. This aspect
is particularly critical in scenarios where real-time floor
localization is required.

Despite these challenges, FloorLocator has demon-
strated commendable resilience and accuracy in sce-
narios with sparse data available, much better than the
conventional methods that rely heavily on dense WiFi
data. This resilience highlights its potential for practical
deployment in a variety of indoor settings, even those
with limited access to comprehensive WiFi data.

In the future, we will extend FloorLocator to large envi-
ronments by constructing the input graph in a more effi-
cient way or dividing the environment into smaller areas
so that the dimension of constructed input graphs is not
too large. Optimizing the system for these extensive envi-
ronments will require innovative approaches to data pro-
cessing and neural network configuration, ensuring that
FloorLocator maintains high-performance levels without
compromising on the speed or accuracy.

Also, we will implement FloorLocator on neuromorphic
hardware. The anticipated integration with neuromor-
phic hardware promises to further enhance FloorLoca-
tor’s computational efficiency, potentially transforming it
into a more versatile and powerful tool for indoor floor
localization. This advancement can extend the system
to be used in real time scenarios such as emergency
response, personalized indoor navigation, and location-
based services.

In conclusion, FloorLocator stands as an evidence to
the potential of SNNs in challenging real-world applica-
tions, setting a new benchmark in indoor floor localiza-
tion. As we continue refining FloorLocator, we anticipate
its evolution into a cornerstone technology in its domain,
adaptable to the complexities of various indoor environ-
ments and capable of supporting a wide spectrum of
applications.

Author contributions
Fuqiang Gu proposed the main idea, Fangming Guo conducted experiments,
wrote up the manuscript under the supervision of Fuqiang Gu, and Chao
Chen. Kai Liu, Songtao Guo, Xuke Hu, and Jianga Shang helped in the formula-
tion of the main idea and experimental analysis. Fangwen Yu and Xianlei Long
assisted the experiments and analysis.

Funding
This work is supported by the National Natural Science Foundation of China
(No. 42174050, 62172066, 62172064, 62322601), National Science Founda-
tion for Excellent Young Scholars (No. 62322601), Open Research Projects of
Zhejiang Lab (No. K2022NB0AB07), Venture & Innovation Support Program for
Chongqing Overseas Returnees (No. cx2021047), Chongqing Startup Project
for Doctorate Scholars (No. CSTB2022BSXM-JSX005), Excellent Youth Founda-
tion of Chongqing (No. CSTB2023NSCQJQX0025) , China Postdoctoral Science
Foundation (No. 2023M740402), and Fundamental Research Funds for the
Central Universities (No. 2023CDJXY-038, 2023CDJXY-039).

Availability of data and materials
The datasets generated and/or analysed during the current study are available
online via https://​archi​ve.​ics.​uci.​edu/​datas​et/​310/​ujiin​doorl​oc.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 7 July 2023 Accepted: 19 December 2023

References
Bhargava, P., Krishnamoorthy, S., Shrivastava, A., Nakshathri, A. K., Mah, M., &

Agrawala, A. (2015). Locus: Robust and calibration-free indoor localiza-
tion, tracking and navigation for multi-story buildings. Journal of Location
Based services, 9(3), 187–208.

Bianchi, F. M., Grattarola, D., Livi, L., & Alippi, C. (2021). Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44, 3496.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and
locally connected networks on graphs. In International conference on
learning representations (ICLR 2014).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems (pp. 3844–3852).

Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. (2020). Recommender systems
leveraging multimedia content. ACM Computing Surveys (CSUR), 53(5),
1–38.

Du, J., Zhang, S., Wu, G., Moura, J. M., & Kar, S. (2018). Topology adaptive graph
convolutional networks. In International conference on learning representa-
tions (ICLR 2018).

Elbakly, R., Aly, H., & Youssef, M. (2018). Truestory: Accurate and robust rf-based
floor estimation for challenging indoor environments. IEEE Sensors Jour-
nal, 18(24), 10115–10124.

Elbakly, R., & Youssef, M. (2020). The storyteller: Scalable building-and ap-inde-
pendent deep learning-based floor prediction. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(1), 1–20.

El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future
trends. Satellite Navigation, 2(1), 1–23.

Gerstner, W. (1995). Time structure of the activity in neural network models.
Physical Review E, 51, 738–758. https://​doi.​org/​10.​1103/​PhysR​evE.​51.​738

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics (pp. 315–323).

Gu, F., Blankenbach, J., Khoshelham, K., Grottke, J., & Valaee, S. (2019). Zeefi:
zero-effort floor identification with deep learning for indoor localization.
In IEEE global communications conference (GlobeCom)

Gu, F., Hu, X., Ramezani, M., Acharya, D., Khoshelham, K., Valaee, S., & Shang,
J. (2019). Indoor localization improved by spatial context-a survey. ACM
Computing Surveys, 52(3), 64:1-64:35. https://​doi.​org/​10.​1145/​33222​41

Gu, F., Khoshelham, K., Valaee, S., Shang, J., & Zhang, R. (2018). Locomotion
activity recognition using stacked denoising autoencoders. IEEE Internet
of Things Journal, 5(3), 2085–2093.

Gu, F., Khoshelham, K., Yu, C., & Shang, J. (2018). Accurate step length estima-
tion for pedestrian dead reckoning localization using stacked autoencod-
ers. IEEE Transactions on Instrumentation and Measurement, 68, 2705.

Gu, F., Sng, W., Taunyazov, T., & Soh, H. (2020). Tactilesgnet: A spiking graph
neural network for event-based tactile object recognition. In 2020 IEEE/
RSJ International conference on intelligent robots and systems (IROS) (pp.
9876–9882).

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020). Lightgcn: Simplify-
ing and powering graph convolution network for recommendation. In
Proceedings of the 43rd international ACM SIGIR conference on research and
development in information retrieval (pp. 639–648).

https://archive.ics.uci.edu/dataset/310/ujiindoorloc
https://doi.org/10.1103/PhysRevE.51.738
https://doi.org/10.1145/3322241

Page 16 of 16Gu et al. Satellite Navigation (2024) 5:6

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph con-
volutional networks. In J. international conference on learning representa-
tions (ICLR 2017).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60 (6),
84–90.

Li, Y., Gu, C., Dullien, T., Vinyals, O., & Kohli, P. (2019). Graph matching networks
for learning the similarity of graph structured objects. In International
conference on machine learning (pp. 3835–3845).

Luo, J., Zhang, Z., Wang, C., Liu, C., & Xiao, D. (2019). Indoor multifloor localiza-
tion method based on wifi fingerprints and lda. IEEE Transactions on
Industrial Informatics, 15(9), 5225–5234. https://​doi.​org/​10.​1109/​TII.​2019.​
29120​55

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proceedings of the thirtieth interna-
tional conference on machine learning (ICML) (Vol. 30).

Qi, H., Wang, Y., Bi, J., Cao, H., & Si, M. (2019). Fast floor identification method
based on confidence interval of wi-fi signals. Acta Geodaetica et Geo-
physica, 54(3), 425–443.

Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intel-
ligence with neuromorphic computing. Nature, 575(7784), 607–617.

Shen, X., Chen, Y., Zhang, J., Wang, L., Dai, G., & He, T. (2015). Barfi: Barometer-
aided wi-fi floor localization using crowdsourcing. In 2015 IEEE 12th
international conference on mobile Ad Hoc and sensor systems (MASS), (pp.
416–424).

Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in
time. In Advances in neural information processing systems (pp. 1412–1421).

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In International conference on learning
representations (ICLR 2015).

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M.,
MacNair, C. R., French, S., Carfrae, L. A., & Bloom-Ackermann, Z. (2020). A
deep learning approach to antibiotic discovery. Cell, 180(4), 688–702.

Torres-Sospedra, J., Montoliu, R., Martínez-Usó, A., Avariento, J. P., Arnau, T. J.,
Benedito-Bordonau, M., & Huerta, J. (2014). Ujiindoorloc: A new multi-
building and multi-floor database for wlan fingerprint-based indoor
localization problems. In 2014 International conference on indoor position-
ing and indoor navigation (IPIN) (pp. 261–270).

Torres-Sospedra, J., Montoliu, R., Trilles, S., Belmonte, Ó., & Huerta, J. (2015).
Comprehensive analysis of distance and similarity measures for wi-fi fin-
gerprinting indoor positioning systems. Expert Systems with Applications,
42(23), 9263–9278.

Varshavsky, A., LaMarca, A., Hightower, J., & De Lara, E. (2007). The skyloc floor
localization system. In Fifth annual IEEE international conference on perva-
sive computing and communications, 2007. PerCom’07 (pp. 125–134).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30.

Wang, X., Gao, L., Mao, S., & Pandey, S. (2016). Csi-based fingerprinting for
indoor localization: A deep learning approach. IEEE Transactions on
Vehicular Technology, 66(1), 763–776.

Weinlich, M., Kurz, P., Blau, M. B., Walcher, F., & Piatek, S. (2018). Significant accel-
eration of emergency response using smartphone geolocation data and
a worldwide emergency call support system. PloS One, 13(5), e0196336.

Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropaga-
tion for training high-performance spiking neural networks. Frontiers in
Neuroscience, 12(331), 1–12.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., & Shi, L. (2019). Direct training for spiking
neural networks: Faster, larger, better. In Proceedings of the AAAI conference
on artificial intelligence (Vol. 33, pp. 1311–1318).

Ye, H., Gu, T., Tao, X., & Lu, J. (2014). F-loc: Floor localization via crowdsourcing.
In 20th IEEE International Conference on parallel and distributed systems
(ICPADS) (2014) (pp. 47–54).

Ye, H., Gu, T., Tao, X., & Lu, J. (2016). Scalable floor localization using barometer
on smartphone. Wireless Communications and Mobile Computing, 16(16),
2557–2571.

Ye, H., Gu, T., Zhu, X., Xu, J., Tao, X., Lu, J., & Jin, N. (2012). Ftrack: Infrastructure-
free floor localization via mobile phone sensing. In IEEE international
conference on pervasive computing and communications (PerCom), 2012
(pp. 2–10).

Zhang, Y., Ma, L., Wang, B., & Qin, D. (2020). Building floor identification method
based on dae-lstm in cellular network. In 2020 IEEE 91st Vehicular Technol-
ogy Conference (VTC2020-Spring) (pp. 1–5).

Zhao, H., Shang, J., Liu, K., Chen, C., & Gu, F. (2023). Edgevo: An efficient and
accurate edge-based visual odometry. In IEEE International Conference on
Robotics and Automation (ICRA).

Zhao, Y., Gong, W., Li, L., Zhang, B., & Li, C. (2023). An efficient and robust finger-
print based localization method for multi floor indoor environment. IEEE
Internet of Things Journal. https://​doi.​org/​10.​1109/​JIOT.​2023.​32986​03

Zheng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2021). Going deeper with directly-
trained larger spiking neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence (Vol. 35, pp. 11062–11070).

Zhou, B., Gu, Z., Gu, F., Wu, P., Yang, C., Liu, X., Li, L., Li, Y., & Li, Q. (2022). Deepvip:
Deep learning-based vehicle indoor positioning using smartphones. IEEE
Transactions on Vehicular Technology, 71(12), 13299–13309.

Zhuang, Y., Hua, L., Qi, L., Yang, J., Cao, P., Cao, Y., Wu, Y., Thompson, J., & Haas, H.
(2018). A survey of positioning systems using visible led lights. IEEE Com-
munications Surveys & Tutorials, 20(3), 1963–1988.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TII.2019.2912055
https://doi.org/10.1109/TII.2019.2912055
https://doi.org/10.1109/JIOT.2023.3298603

	Accurate and efficient floor localization with scalable spiking graph neural networks
	Abstract
	Introduction
	Method and system
	Neural networks
	Graph neural networks
	Spiking neural networks

	Problem formulation
	The FloorLocator system
	System architecture
	RSS representation and Floor encoding
	Graph generation
	Details of FloorLocator

	Network training and online localization

	Experiments and results
	Experimental setup
	Experimental results
	Comparison to state-of-the-art methods

	Ablation experiment
	Effect of AP density
	Effect of RSS threshold
	Effect of RSS representations
	Effect of width parameter
	Effect of data size
	Generalization to new buildings

	Conclusions and discussion
	References

