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Abstract 

The integer least squares (ILS) estimation is commonly used for carrier phase ambiguity resolution (AR). More recently, 
the best integer equivariant (BIE) estimation has also attracted an attention for complex application scenarios, which 
exhibits higher reliability by a weighted fusion of integer candidates. However, traditional BIE estimation with Gauss-
ian distribution (GBIE) faces challenges in fully utilizing the advantages of BIE for urban low-cost positioning, mainly 
due to the presence of outliers and unmodeled errors. To this end, an improved BIE estimation method with Laplacian 
distribution (LBIE) is proposed, and several key issues are discussed, including the weight function of LBIE, determina-
tion of the candidates included based on the OIA test, and derivation of the variance of LBIE solutions for reliability 
evaluation. The results show that the proposed LBIE method has the positioning accuracy similar to the BIE using 
multivariate t-distribution (TBIE), and significantly outperforms the ILS-PAR and GBIE methods. In an urban expressway 
test with a Huawei Mate40 smartphone, the LBIE method has positioning errors of less than 0.5 m in three directions 
and obtains over 50% improvements compared to the ILS-PAR and GBIE methods. In an urban canyon test with a low-
cost receiver STA8100 produced by STMicroelectronics, the positioning accuracy of LBIE in three directions is 0.112 m, 
0.107 m, and 0.252 m, respectively, with improvements of 17.6%, 27.2%, and 26.1% compared to GBIE, and 23.3%, 
28.2%, and 30.6% compared to ILS-PAR. Moreover, its computational time increases by 30–40% compared to ILS-PAR 
and is approximately half of that using TBIE.

Keywords  Ambiguity resolution, Best integer equivariant estimation, Laplacian distribution, Urban environments, 
Low-cost GNSS receivers, Real-time kinematic

Introduction
Fast and reliable carrier phase ambiguity resolution (AR) 
is crucial for accurate positioning of the Global Naviga-
tion Satellite System (GNSS), which is widely used in 
the fields involving navigation, positioning, and timing 
(PNT). Currently, GNSS has entered a new developmen-
tal stage, providing users with abundant satellite and 
frequency resources and enabling the realization of cor-
rect AR with a high success rate and high probability (Li, 
2018; Odolinski & Teunissen, 2016). However, the chal-
lenge is that not all ambiguities can be reliably fixed and 
the efficiency of AR will also be decreased if more ambi-
guities are involved. Consequently, a partial ambiguity 
resolution (PAR) strategy has emerged to fix a subset of 
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the ambiguities and can significantly improve the reli-
ability of AR (Teunissen et al., 1999). Nevertheless, diver-
sified GNSS applications and different observation 
conditions often cause the gross errors and cycle slips in 
observations, which pose considerable challenges to reli-
able AR.

Integer ambiguity resolution (IAR) is typically solved 
using the integer least square (ILS) estimation, which has 
shown the highest success rate (Teunnissen, 1995; Xu 
et  al., 2012). To perform IAR, a three-step procedure is 
usually included (Li & Wang, 2012): (a) ignore the integer 
characteristic of ambiguities, and calculate the float solu-
tion using least squares (LS) or kalman filter (KF) estima-
tion, (b) fix the float ambiguity solution to integer values, 
and (c) update the float baseline solution using the fixed 
ambiguities and output the fixed solution. In the second 
step, it is essential to reject the incorrectly fixed ambigui-
ties as much as possible to avoid severe bias in position-
ing. Over the past few decades, numerous efforts were 
made to enhance the validation test, which can be mainly 
categorized into three types: (a) the discrimination tests 
constructed with the quadratic form of ambiguity residu-
als (Euler & Schaffrin, 1991; Frei, 1990; Han, 1997; Tibe-
rius & De Jonge, 1995; Wang et al., 1998), (b) the success 
or failure rate methods based on the theoretical frame-
work of ambiguity estimation (Li et  al., 2014; Verhagen 
et  al., 2013), and (c) an integrated method combining 
both (Zhang et al., 2015). In fact, these methods can be 
unified into the class of integer aperture (IA) estimators, 
and the fail-rate can be controlled by setting the size and 
shape of the integer aperture pull-in region of an IA-esti-
mator (Teunissen, 2003a). While these methods certainly 
reduce the acceptance of incorrectly fixed solutions, they 
have some challenges, such as the complexity of selecting 
critical values and the model’s inconsistency with real-
ity (Wu & Bian, 2015). It may lead to a low accuracy of 
float solution or the severe bias of incorrectly fixed solu-
tion, representing false-alarm and miss-detection errors, 
respectively. Especially in complex conditions with low-
cost receivers, it is particularly evident when the float 
ambiguities are biased (Li et al., 2022).

Considering the difficulty in obtaining the correctly 
fixed solution, Teunissen (2003b) introduced the best 
integer equivariant (BIE) estimation as an alternative to 
AR, which is considered the best in the sense of minimiz-
ing mean squared error (MMSE) by making a weighted 
sum of all potential ambiguity candidates. Since it is pro-
poed, many scholars have analyzed the performance of 
BIE. Verhagen and Teunissen (2005) initially validated 
the effectiveness of BIE estimation using simulation 
data. Afterwards, it was also assessed in GNSS relative 
positioning with the baselines of different lengths, and 
the results showed that it is comparable to the ILS fixed 

solution with a high success rate and superior to the 
ILS float solution with a low success rate (Odolinski & 
Teunissen, 2020). More recently, the BIE estimation has 
been applied to precision point positioning (PPP) and 
PPP-RTK (real-time kinematic) without external atmos-
pheric corrections, significantly reducing convergence 
time and improving positioning accuracy (Brack et  al., 
2023; Yang et  al., 2024). Additionally, Ma et  al. (2022) 
used the optimal integer aperture (OIA) test to combine 
ILS and BIE, and Zhang et  al. (2023a, 2023b) proposed 
the BIE estimation with quality control, further enhanc-
ing its performance in complex environments.

It is also a hot issue to study the effectiveness of BIE esti-
mation from the probability distribution characteristics 
of GNSS observations. Teunissen (2003b) assumed the 
observations followed a Gaussian distribution and then 
derived an explicit expression. However, in urban envi-
ronments with low-cost devices, receivers may experience 
high occlusion, strong reflection, and frequent maneuvers, 
which can lead to a decline in observation quality. Specifi-
cally, outliers and unmodeled errors, such as multipath and 
non-line-of-sight (NLOS) errors, are prominent, which 
induces a strong heavy-tailed effect, resulting in a higher 
probability of abnormal events and deviating the distribu-
tion characteristics of GNSS observations from Gaussian 
distribution. At this time, the BIE estimator derived from 
Gaussian distribution (GBIE) encounters a serious prob-
lem of model distortion. For example, the contamination 
of the float ambiguity solution leads to a mismatch in its 
smaller variance, generating large quadratic form of ambi-
guity residuals, which may lead to an irrational allocation 
of weight for candidates and impact the reliability of BIE. 
Fortunately, recent literature claims that using those heavy-
tailed distributions aligns more closely with the actual error 
characteristics of GNSS observations and is an effective 
way to reduce incorrectly fixed ambiguities by spreading 
out the weights to other candidates. In this context, the BIE 
estimator using multivariate t-distribution (TBIE) has been 
proposed and its superiority was validated using both sim-
ulation and real-measured data (Duong et al., 2021; Odo-
linski & Teunissen, 2022; Teunissen, 2020). Additionally, 
Vollath and Talbot (2013) proposed the iFlex method in a 
patent to determine weights for candidates, which embod-
ied the idea of Laplacian distribution. Duong et al. (2021) 
subsequently validated it using PPP and found that it has 
similar positioning accuracy and better efficiency com-
pared to the multivariate t-distribution. In fact, the Laplace 
distribution is also considered a heavy-tailed distribution, 
exhibiting a greater prevalence of extreme values in its tails 
(Pisarenko & Rodkin, 2010). However, the current research 
on the BIE estimator using Laplacian distribution remains 
somewhat unclear, and its reliability and efficiency requires 
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further validation, especially for the data in urban environ-
ments with a higher incidence of outliers.

In this contribution, we propose an improved BIE esti-
mation method with Laplacian distribution (LBIE) to 
enhance the urban low-cost positioning and discuss several 
key issues. Firstly, we analyze the limitations of GBIE and 
introduce the weight function for LBIE. Secondly, we for-
mulate a criterion based on the OIA test to select the can-
didates included in the BIE estimation. Finally, we derive 
the variance–covariance (VC) matrix of LBIE solution to 
evaluate its reliability. Additionally, two real-measured 
vehicular experiments in urban environments were con-
ducted to assess the performance of the proposed method. 
And then, we give the conclusions at the end.

Principle of GNSS integer ambiguity resolution
In a short baseline relative positioning model, the most 
errors in observations, including ionospheric and tropo-
spheric delays, can be mitigated or even eliminated using 
the between-station and -satellite double-difference (DD) 
combination. The general linear equation of DD measure-
ments can be formulated as:

where y denotes the GNSS observations; E(y) and Qyy 
denote the mathematical expectation and VC matrix of 
y , respectively; Pyy denotes the corresponding weight 
matrix; a and b denote the integer-valued ambiguity 
and real-valued baseline vector, with a ∈ Zn and b ∈ Rp , 
respectively; A and B denote the corresponding coeffi-
cient matrices.

Integer least squares estimation.
The LS objective function to solve (1) can be formulated 

as:

where ��2Q = ()TQ−1() represents the quadratic form of 
residuals. Due to the inclusion of both integer and real 
parameters, (2) is a mixed LS problem that cannot be 
directly solved by the conventional LS method. Here, the 
orthogonal decomposition method (Teunissen, 1993) is 
adopted and the objective function can be converted to 
the following form:

where â and ⌣a denote the float and fixed ambiguity vec-
tors, respectively; Qââ denotes the VC matrix of â . 

(1)E(y) = Aa+ Bb,Qyy = P−1
yy

(2)min
︸︷︷︸

a,b

||y− Aa− Bb||2Qyy

(3)
⌣
a = arg min

a∈Zn
||â−

⌣
a||2Qââ

Generally, a three-step procedure is performed to solve 
the model (Li & Wang, 2012).

In step (a), ignore the integer characteristic of ambigui-
ties, and calculate the float solution as:

In step (b), fix the float ambiguity solution to integer 
values. Assuming S is an n-dimensional mapping space, 
the fixed ambiguity vector can be expressed as:

The next is to validate the reliability of the fixed ambi-
guities. Among the three types of validation methods 
mentioned before, the R-ratio test is the most popular, 
which can be defined as Euler and Schaffrin (1991), Wang 
et al. (2017):

where ⌣a1 and ⌣a2 represent the best and second-best ambi-
guity candidate, respectively; c is the threshold of R-ratio 
test, which is always larger than 1 and a larger value indi-
cates higher reliability of the fixed solution. It can be set 
to 1.5–3.0 empirically (Han, 1997; Landau & Euler, 1992; 
Takasu & Yasuda, 2010), or calculated by controlling 
the failure rate (Teunissen & Verhagen, 2009). Different 
thresholds can produce different results, with too strict 
leading to frequent false-alarm errors and too loose lead-
ing to a large number of miss-detection errors.

In step (c), if the validation test fails, indicating poten-
tial unreliability, the float solution is then output. Other-
wise, the fixed ambiguity vector is employed to update 
the float baseline solution:

where Q
b̂â

 , Q
âb̂

 , and Q⌣
b (

⌣
a)

⌣
b (

⌣
a)

 represent the VC matrix of 

â , b̂ , and 
⌣

b(
⌣
a) , respectively.

Best integer equivariant estimation
ILS estimation includes both float and fixed solu-
tions, depending on whether it passes the validation 
test. Nevertheless, it can be challenging to balance 
the false-alarm and miss-detection errors, which may 
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(â−
⌣
a)

Q⌣
b (

⌣
a)

⌣
b (

⌣
a)

= Q
b̂b̂

− Q
b̂â
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lead to a low accuracy of float solution or the severe 
bias of incorrectly fixed solution. In this case, the inte-
ger equivariant (IE) estimation can be another choice 
(Teunissen, 2003b). Firstly, considering an arbitrary 
linear function with two types of parameters, Eq. (1) 
can be rewritten as:

where la and lb denote the coefficient matrices of a and b , 
respectively. Then, the BIE estimation of θ can be given as 
follows (Teunissen, 2003b):

where z and β denote the integer ambiguity candi-
date and baseline vector, respectively; py(y) denotes the 
probability density function (PDF) of y , which is usually 
assumed to follow a Gaussian distribution with the PDF 
as follows:

where m denotes the dimension of the observation vec-
tor; det and exp denote the determinant operator and 
exponential operation, respectively. Then, the BIE esti-
mation of a and b in the Gaussian case can be simplifed 
as:

where wG
z (â) denotes the weight factor of â for Gaussian 

BIE, with 
∑

z∈Zn wG
z (â) = 1 . It can be found that the BIE 

(8)θ = lTa a+ lTb b

(9)θ̂BIE =

∑

z∈Zn
∫

Rp (lTa z + lTb β)py(y+ A(a− z)+ B(b− β))dβ
∑

z∈Zn
∫

Rp py(y+ A(a− z)+ B(b− β))dβ

(10)

py(y) =
1

(2π)
m
2
√
detQyy

exp
(

−
1
2
||y− Aa− Bb||2Qyy

)

(11)

âGBIE =
∑

z∈Zn
z

exp(−||â− z||2Qââ

/

2)

∑

z∈Zn exp(−||â− z||2Qââ

/

2)

=
∑

z∈Zn
zwG

z (â)

(12)b̂GBIE = b̂− Q
b̂â
Q−1
ââ

(â− âGBIE)

estimator is essentially a weighted sum of all potential 
ambiguity candidates, and its weight depends on the PDF 
of GNSS observations.

BIE estimation based on Laplacian distribution
Compared with the ILS estimator, the BIE estimator 
exhibits some excellent properties, including the inneces-
sity for the ambiguity reliability test, which reduces the 
risk of false-alarm and miss-detection errors. However, 
the BIE estimator is not always optimal in practical use, 
especially for urban environments with low-cost receiv-
ers, where GBIE poses an additional risk to AR. There-
fore, this section delves into a detailed examination of the 
limitations of GBIE and explores the key issues associ-
ated with its alternative, LBIE.

Weight determination for candidates
The reasonable determination of the weight for can-
didates is the key to BIE estimator. As (11) shown, the 
weight factor of GBIE can be expressed as:

Note that calculating the weight factor of GBIE involves 
two steps: first, perform an exponential operation on 
the quadratic form of residuals for each candidate, and 
then perform the normalization process. However, since 
the weight factor decreases exponentially, the weighting 
method may not always be effective, and a much lager 
weight may be assigned to the first best candidate once the 
quadratic form of residuals are excessively large. It implies 
that the performance of the BIE estimator at this point is 
similar to that of the ILS estimator, with an elevated risk 
of ambiguity misestimation, particularly when the sto-
chastic model is inaccurate (Duong et al., 2021). We use a 
simple example based on a set of urban vehicular data to 
illustrate it. The data was collected by a low-cost receiver 
STA8100 of STMicroelectronics on June 26th, 2023. 
Additionally, the Least-squares Ambiguity Decorrelation 
Adjustment (LAMBDA) algorithm was adopted to output 

(13)wG
z (â) =

exp(−||â− z||2Qââ

/

2)

∑

z∈Zn exp(−||â− z||2Qââ

/

2)
≤ 1

Table 1  Weight factors and quadratic form comparison of Gaussian and Laplacian distributions

Order Epoch 126,472 s with ILS Float Epoch 126,530 s with ILS Fixed

Gaussian Laplacian ||â− z||2
Qââ

Gaussian Laplacian ||â− z||2
Qââ

1 0.993 0.264 363.837 1.000 0.741 41.237

2 0.007 0.248 373.886 0.000 0.107 200.863

… … … … … …

9 0.000 0.038 717.505 0.000 0.010 558.537

10 0.000 0.036 732.136 0.000 0.010 562.145
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the estimated ambiguity candidates, with a limit of 500 for 
efficiency (Yang et al., 2024). Table 1 presents the weight 
factors of the first 10 candidates and their corresponding 
quadratic form of residuals. Two different epochs were 
compared, with one epoch outputting the float solution 
and the other epoch outputting the correctly fixed solu-
tion, respectively. The correctness of the fixed solution is 
validated against the reference truth provided by an inte-
grated navigation system.

In the Gaussian case, the weight factor of the first can-
didate consistently dominates, exceeding 0.99, while the 
others are extremely small. It indicates that the AR perfor-
mance of GBIE closely resembles that of the best integer 
candidate. When there is a significant difference between 
the best and second-best candidates (accepted by the vali-
dation test), the Gaussian weight is correct and results 
in the BIE solution that closely aligns with the ILS fixed 
solution (epoch 126,530  s). However, when the differ-
ence is not significant (rejected by the validation test), the 
ILS estimator produces a float solution, while the Gauss-
ian weight of the first best candidate remains dominant 
(epoch 126,472 s). For example, the Gaussian weight drops 
sharply from 0.993 to 0.007, while the quadratic form of 
residuals only increases from 363.837 to 373.886. This 
indicates that the weight function of GBIE is too optimis-
tic to maintain the reliability of BIE estimator. Therefore, 
we introduced the mathematically non-rigorous Laplacian 
distribution to address the issue of irrational allocation 
of Gaussian weight. If the GNSS observations y follow a 
Laplacian distribution, the PDF can be expressed as:

where � is a scaling factor, an empirical threshold that can 
be set to 4 (Vollath & Talbot, 2013), and will be analyzed 
in the following. Similar to GBIE, the BIE estimation of a 
and b in the Laplacian case can be simplified as:

where wL
z (â) denotes the weight factor of â for Laplacian 

BIE, with 
∑

z∈Zn wL
z (â) = 1 . It can be found that unlike 

GBIE, LBIE assigns more weight to other candidates by 
applying a square root operation to the quadratic form 

(14)

py(y) =
1

2�
�
detQyy

exp



−

�

||y− Aa− Bb||2Qyy

�





(15)âLBIE =
∑

z∈Zn
zwL

z (â)

(16)b̂LBIE = b̂− Q
b̂â
Q−1
ââ

(â− âLBIE)

(17)wL
z (â) =

exp(−
√

||â− z||2Qââ

/

�)

∑

z∈Zn exp(−
√

||â− z||2Qââ

/

�)

of residuals and multiplying it by a scaling factor. And it 
is an effective way to prevent incorrectly fixed solution 
and increase reliability, even if the accuracy may be lost 
somewhat when the success rate of ILS is high, as the 
correct best candidate may be contaminated through the 
weighted fusion. Figure  1 shows the distribution of the 
weight factors of the best candidate for all epochs (nearly 
3000 s) in this set of data, with blue and red bars repre-
senting Gaussian distribution and Laplacian distribu-
tion, respectively. The processing strategy is the same as 
before. A higher weight factor indicates a stronger influ-
ence of the best candidate on the weighted fusion. It can 
be found that in the Gaussian case the weight of the best 
candidate consistently dominates, while the Laplacian 
case assigns less weight, providing additional reliability. 
In conclusion, we recommend using the more reliable 
Laplacian distribution to determine the weights for can-
didates, particularly when the quadratic form of ambi-
guity residuals are excessively large, possibly due to the 
deficiencies in the stochastic model.

To further validate the distribution characteristics of 
GNSS observations using real-measured data, we ana-
lyzed the differences between float and fixed ambigu-
ity solutions, defined as ambiguity residuals. The data 
remains consistent with the one described earlier. 
Additionally, the float solution is obtained from the KF, 
and the fixed solution is estimated using the ILS esti-
mation, implemented by the LAMBDA algorithm with 
an R-ratio test of threshold 2.5. The correctness of the 
fixed solution is validated against the reference truth 
provided by an integrated navigation system. Assum-
ing that the GNSS observations follow a Gaussian dis-
tribution, the ambiguity residuals can be expressed as 
Duong et al. (2021):

Due to the presence of reference satellites, the ambi-
guity parameters are highly correlated, resulting in 
a fully populated VC matrix. Therefore, Cholesky 

(18)�a = â−
⌣
a ∼ N (0,Qââ)
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Fig. 1  Weight distribution of the best ambiguity candidate 
for Gaussian and Laplacian distributions
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factorization is adopted to normalize �a in the follow-
ing process:

where �a denotes the standardized ambiguity residuals, 
and Im denotes the m-dimensional identity matrix. Then, 
the frequency distribution histogram of standardized 
ambiguity residuals and the PDFs of the two distribu-
tions are plotted in Fig. 2. The MATLAB toolbox “Distri-
bution Fitter” is employed to generate the best fit of the 
Gaussian distribution, represented by the blue solid line 
in the figure. The red solid line represents the Laplacian 
distribution with a scaling factor of 3. It can be found 
that the Laplacian distribution provides a better fit than 
the Gaussian distribution. Note that the scaling factor 
is closely related to the characteristics of GNSS receiv-
ers and observation environments and needs to be finely 
processed.

Number determination of candidates
Another key issue in the application of BIE is determining 
the number of ambiguity candidates to be included. Due 
to the impossibility in obtaining a theoretical estimation of 
BIE using infinite sets of candidates in space Zn , approxi-
mation processing is required. Fortunately, the weight for 
candidates follows an exponential form and rapidly decays 
as the distance between the integer candidate and the 
float solution increases. Consequently, various methods 
have been successively proposed to limit the number of 
candidates, including the fixed threshold test, central Chi-
squared test based on a given significance level (Teunis-
sen, 2005b), weight ratio test in the iFlex method (Vollath 
& Talbot, 2013), OIA test (Ma et al., 2022), and an unsu-
pervised machine learning strategy (Zhang et  al., 2023a). 

(19)Qââ = LLT

(20)�a = L−1�a ∼ N (0, Im)

Among them, the fixed threshold test is not sensitive to the 
data and faces the challenges in balancing performance and 
efficiency. The central Chi-square test suffers from model 
distortion issues, leading to poor stability in practical use. 
The latter two methods evaluate the weight factor of the 
latest included candidate and do not stop the selection 
until its weight factor is significantly smaller than the best 
candidate or the total weight of all candidates included. 
The unsupervised machine learning strategy uses the 
K-means++ algorithm to select candidates, involving an 
iterative process. Considering both efficiency and perfor-
mance, we utilize the OIA test for number determination 
of candidates and discuss the distinctions between the iFlex 
test and OIA test.

The basic idea of the iFlex test is to include those candi-
dates that exhibit no substantial difference in the weight 
factor compared to the best candidate. The level of differ-
entiation is determined by applying an empirical threshold, 
expressed as follows:

where wz1(â) is the weight factor of the first best candi-
date, and wzj (â) is the weight factor of the jth candidate. 
As the candidates output by the LAMBDA algorithm 
are sorted according to the quadratic form of ambiguity 
residuals, this equation implies that the weight factor of 
the discarded candidates is at least γ1 times smaller than 
the weight factor of the best candidate. The smaller the 
value of γ1 , the more candidates are included in the BIE 
estimator. Typically, it can be set to 0.01 (Vollath & Tal-
bot, 2013), at which point the discarded candidates have 
little impact on the final BIE solution. Subsequently, 
introducing (13) and (17) into (21) provides the formula 
to select candidates for Gaussian distribution and Lapla-
cian distribution, respectively:

where zj is the latest included candidate with the larg-
est quadratic form of residuals. Teunissen (2005a) first 
defined the OIA estimator as the one with the largest 
possible success rate under a given fail-rate. Later, the 
OIA test was employed for ambiguity validation in Wu 
and Bian (2015), and Ma et al. (2022) expanded its appli-
cation to determine the number of candidates in BIE. The 
OIA test criterion for GBIE can be expressed as follows:

(21)
wzj (â)

wz1(â)
≤ γ1

(22)||â− zj||
2
Qââ

≥ ||â− z1||
2
Qââ

− 2 ln(γ1)
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√
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Qââ

− � ln(γ1)]
2
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where γ2 is a test threshold, which can be set to 0.01 
concerning γ1 in the iFlex test. It can be found that the 
OIA test converges faster with the increase of the quad-
ratic form of residuals, compared to the iFlex test, as the 
denominator is the sum of the weight of all the candi-
dates. Similarly, the OIA test criterion for LBIE can be 
derived as:

To further compare the performances of the two meth-
ods, we analyze the numerical characteristics of the BIE 
solutions derived from a different number of candidates. 
In the analysis, we use the LBIE estimator, employing 
the same data and processing strategy as before. Three 
different methods are compared, including the fixed 
threshold test, iFlex test, and OIA test. Figure  3 shows 
the differences between the float solutions, integer can-
didates determined by different methods, BIE solutions, 
and their “true values”. Additionally, the blue circle rep-
resents the float solutions, the red triangle represents the 
BIE solutions, and the yellow star represents the integer 
candidates. For display purposes, we set the best candi-
date as the true value, coinciding with the horizontal axis. 
The remaining candidates fluctuate on both sides of the 
horizontal axis, with a maximum deviation close to 9 
cycles, indicating the poor accuracy of float solution. It 
can be found that the number of candidates determined 
by the OIA test is only 27, significantly lower than the 
fixed threshold test of 500 and the iFlex test of 110. Fur-
thermore, the difference between different BIE solutions 
is insignificant, which essentially coincide with the best 
candidate. It suggests that only a few candidates play 
a dominant role in the BIE estimator, and the OIA test 

(24)
wG
zj
(â)

j∑

i=1

wG
zi
(â)

=
exp

(

−||â− zj||
2
Qââ

/

2
)

j∑

i=1

exp
(

−||â− zi||
2
Qââ

/

2
)
≤ γ2
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wL
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exp

(
−||â− zj||Qââ

/
�
)
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exp
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−||â− zi||Qââ

/
�
)
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adopted in this paper effectively controls the number of 
candidates involved.

Reliability evaluation of BIE solution
In the past few years, many GNSS applications emerged in 
urban environments, so the measure of trust in the correct-
ness of the navigation information is receiving an increas-
ing attention. It is essentially a problem of GNSS integrity 
in urban environments, but unfortunately, there are no 
mature methods that can be implemented by urban GNSS 
receivers alone (Zhu et al., 2018). The ILS estimation par-
tially addresses the concept of integrity by distinguish-
ing between float and fixed solutions through ambiguity 
validation. Once the ambiguities are successfully fixed, the 
accuracy of baseline can reach the centimeter level, lead-
ing GNSS users to place trust in the fixed solution and 
demand a higher fixed rate. However, for BIE estimation, 
while it mitigates the risk of incorrectly fixing and bias due 
to unfixed solution, the indiscriminate output of results 
poses a significant challenge to the further application of 
the provided information. Therefore, the evaluation of 
BIE solution is of great necessity. Yu et al. (2021) derived 
the VC matrix of GBIE estimator and proposed a criterion 
for determining reliability. This section further derives the 
VC matrix of LBIE estimator and applies it to the reliability 
evaluation of BIE solution.

Assuming that the number of ambiguity candidates t 
used for the weighted fusion of LBIE estimator has been 
determined by the OIA test according to (25), (15) can be 
rewritten as:

Then, differentiating (26) yields the following formula:

with:

(26)âLBIE =

t∑

i=1

ziw
L
zi
(â)

(27)dâLBIE =

t∑

i=1

dwL
zi
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dâ

0 5 10 15 20
−9
−6
−3
0
3
6
9

−9
−6
−3
0
3
6
9

−9
−6
−3
0
3
6
9

#Num=500
0 5 10 15 20
#Num=110

0 5 10 15 20
#Num=27

Ambiguity vector

Bi
as

 (c
yc

le
)

Cands FLO BIE

Fig. 3  Differences between the integer candidates and their true values, from left to right are fixed threshold (500), iFlex test, and OIA test
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where Tj = exp(−||â− zj||Qââ

/
�) . Further differentiation 

can be performed to derive ∂Tj

/
∂ âT as:

Substituting (29) into (28), we can obtain the following 
formula:

Thus, we can calculate the VC matrix of âLBIE by apply-
ing the law of error propagation:

Then, Q
b̂LBIE b̂LBIE

 is also calculated according to (15), 
similar to the Gaussian case, which is illustrated clearly in 
Yu et al. (2021):

with:

Finally, the trace of the VC matrix can serve as an indi-
cator of reliability evaluation, following the criterion:

It implies that the BIE solution is accepted as the out-
put only when its accuracy surpasses that of the float 
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zTi

(32)Q
b̂LBIE b̂LBIE

= KQââK
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solution. This criterion stems from the practical scenario 
where the accuracy of the BIE solution may not always 

be optimal if the float ambiguity solution is biased due 
to the significant unmodeled errors. Based on the afore-
mentioned analysis, the algorithm flowchart of the pro-
posed improved BIE estimation method in this paper is 
depicted in Fig. 4. Initially, the float solution is estimated 
through the KF model with velocity constraint, fol-
lowed by a Z-transformed decorrelation to reconstruct 
the float ambiguities and its VC matrix according to the 
LAMBDA algorithm; next, the ambiguity candidates are 
searched, and the included candidates are determined by 
the OIA test according to (25); subsequently, the included 
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Fig. 4  Flowchart of the improved BIE estimation method

Table 2  Common processing strategies of ILS-PAR, GBIE, 
TBIE, and LBIE solutions

Items Strategies

Constellations and frequencies GPS (L1 + L5)/Galileo (E1 + E5a)/BDS 
(B1I + B2a)

Ephemeris Broadcast ephemeris

Cut-off elevation 15°

Cut-off C/N0 25dB-Hz

Weighting function C/N0-dependent weighting function

Ambiguities Multi-epoch solution

σ
2

P
/σ2

L
(300 : 1)2
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candidates are used to calculate the BIE solution through 
a weighted sum, whose weight factors are determined 
using (17); finally, the VC matrix of the BIE solution is 
computed to perform the reliability evaluation.

Field test results and discussions
Experiment description
The algorithm implementation is based on the GNSS 
dynamic positioning software (KinPOS V3.0) developed 
by the School of Geodesy and Geomatics at Wuhan Uni-
versity. The parameter settings and processing strategies 
are outlined in Table 2. Four different estimation meth-
ods are compared, i.e., (a) ILS fixed solution realized by 

the LAMBDA algorithm with a PAR strategy based on 
carrier-to-noise ratio (CNR), where the iteration contin-
ues until passing the R-ratio test with a threshold of 2.5 
or the remaining ambiguities falling below 6 (hereinafter 
referred to as ILS-PAR); (b) the traditional GBIE with the 
iFlex test, where γ1 is set to 0.01 (hereinafter referred to 
as GBIE); (c) BIE estimation using multivariate t-distri-
bution with 3 degrees of freedom, where Euclidean norm 
of coordinates’ corrections is used to select candidates 
(Duong et al., 2021, hereinafter referred to as TBIE); (d) 
the proposed LBIE with the OIA test, where γ2 is set to 
0.01 (hereinafter referred to as LBIE). For the BIE esti-
mation, an upper limit of 500 is applied to prevent over-
searching of ambiguity candidates.

As shown in Table 3, two typical vehicular experiments 
in urban environments were performed for evaluation 
of performance. The first experiment was conducted 
on the Gaoxin Avenue in Wuhan City, with a relatively 
open observation environment (hereinafter referred 
to as test 1). Here the engineering prototype of Hua-
wei Mate40 smartphone was used and placed on the 
top of the vehicle. The trajectory and equipment instal-
lation of the experiment are depicted in Fig. 5. The sec-
ond experiment was conducted in the High-tech Zone 
of Chengdu City with complex observation environ-
ments, i.e., tunnels, viaducts, buildings, and trees, which 
is a typical urban environment (hereinafter referred to as 
test 2). For this test, a low-cost GNSS receiver, STA8100 

Table 3  Detailed experimental information of the two tests

Test 1 Test 2

Experimental time November 14, 2021 June 26, 2023

Rover station Engineering prototype 
of Huawei Mate40 smart-
phone

STMicroelectronics 
STA8100 single-
chip GNSS receiver

Reference station Trimble Alloy with UniS-
trong UA91 3D choke-
ring antenna

FindCM service 
from Qianxun 
Spatial Intelligence 
Inc

Baseline length < 20 km < 5 km

Data duration 10 min 1 h

Simpling interval 1 s

Huawei Mate40
StarNeto XW-GI7680

Fig. 5  Trajectory (left) and equipment setup (right) in test 1

Open sky Viaduct

Tunnel Buildings

GNSS chip STA8100
StarNeto XW-GI7660

Fig. 6  Trajectory (left) and equipment setup (right) in test 2
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from STMicroelectronics, was used, and the trajec-
tory and equipment installation are depicted in Fig.  6. 
Additionally, in all tests, the StarNeto XW-GI7680 and 
XW-GI7660 integrated navigation systems were used to 
provide references, which was processed by IE software. 
To analyze the quality of GNSS observations in urban 
environments, the DD and triple-difference (TD) combi-
nations are used to extract the residuals of pseudorange 
and carrier phase, respectively (Tao et al., 2023).

Performance in the urban expressway for smartphone
Figure 7 depicts the number of visible satellites and posi-
tion dilution of precision (PDOP) values in test 1. It can 
be found that the number of satellites exceeds 30, with 
fluctuations of 2–3 over time, and the PDOP values con-
sistently remain within 2, indicating a good quality of 
observations. The comparison of pseudorange DD resid-
uals and carrier phase TD residuals for the smartphone 
are also depicted in Fig. 8 and Table 4, respectively. Even 
in the open conditions, the pseudorange noise of L1, 
E1, and B1I of smartphones are 8.133  m, 3.974  m, and 
5.538  m, with a discernible abnormal probability distri-
bution. Remarkably, the pseudorange accuracy of the L5 
band surpasses the L1 band, presenting opportunities for 
the applications of high-precision kinematic positioning 
algorithms on smartphones (Miao et al., 2022). Addition-
ally, BDS B1I and B2a exhibit the highest proportion of 
carrier phase noise, exceeding 20% and 30% for more 
than 1 cycle, while GALILEO E1 and E5a display the 
smallest carrier phase noise.

As depicted in Fig.  9, in the urban expressway test 
for the smartphone, the ILS-PAR method only fixes the 
ambiguity successfully in a few epochs and yields limited 
improvement compared to the float solution. Similarly, 
the successful estimation rate of GBIE is only 14.77% for 
the computer truncation error generated by the direct 
exponential operation on the quadratic form of ambigu-
ity residuals. Contrastingly, the TBIE and LBIE solutions 
have similar positioning errors of less than 0.5 m in east 
(E), north (N), and up (U) directions, and obtain more 
than 50% improvements compared to other methods. 
The idea of assigning more weight to other candidates 
indeed improves the AR performance of smartphone 
positioning in kinematic urban environments. Note 
that there are also some discontinuous jump points in 
the positioning error sequence of LBIE solution, which 
can be attributed to two main factors: firstly, the failure 
of the variance reliability test leads to the output of the 
float solution; secondly, the LBIE solution also encoun-
ters occasional ambiguity estimation errors, albeit with a 
lower probability of occurrence.

Performance in the urban canyon for STA8100
As depicted in Fig. 10, in open-sky conditions, the visibil-
ity of satellites hovers around 30, but it fluctuates greatly 
and sometimes even drops below 10 in urban-canyon 
conditions. The frequent changes in the observation 
environment lead to a varying geometric distribution of 
satellites and discontinuity of carrier phase observations, 
which poses great challenges to AR. Figure 11 and Table 5 
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Table 4  Statistics of pseudorange DD and carrier phase TD 
residuals in test 1

Phase TD (%) Code DD 
RMS (m)

> 1 cycle > 5 cycle > 10 cycle

GPS L1 8.50 0.30 0.00 8.133

L5 17.39 0.00 0.00 0.595

GAL E1 0.80 0.00 0.00 3.974

E5a 6.58 0.00 0.00 0.540

BDS B1I 29.41 11.29 3.31 5.538

B2a 18.23 6.17 1.10 0.793
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present a comparison of pseudorange DD residuals and 
carrier phase TD residuals for multi-GNSS observations 
with STA8100, respectively. Notably, in the urban-canyon 
test, the pseudorange accuracy of L1, E1, and B1I is poor, 
with root mean square (RMS) values of approximately 
5.357 m, 4.195 m, and 3.820 m, respectively, nearly twice 
that of L5, E5a, and B2a. This aligns with the design 

concept of the L5 band. Additionally, carrier phase noise 
accounts for nearly 15% for more than 1 cycle and 10% 
for more than 10 cycles, except for E5a. The B2a exhibits 
the largest percentage of 28.47% for more than 1 cycle, 
indicating frequent cycle jumps in carrier phase observa-
tions and significantly impacting the accurate fixation of 
ambiguities.

The positioning errors of four different methods in 
open-sky conditions (epoch 126,431  s to 126,846  s) 
are depicted in Fig.  12, with RMS values highlighted in 
red. The green, blue, and red lines are for the E, N, and 
U directions, respectively. In open-sky conditions, the 
float ambiguities can be easily resolved, and all methods 
demonstrate high positioning accuracy, with TBIE and 
LBIE showing slight improvement. In addition, due to 
the dominant weight factor of the best candidate in the 
weighted fusion, the GBIE solution follows a similar error 
sequence trend to that of the ILS-PAR.

Figure 13 further depicts the positioning errors of four 
different methods in typical urban-canyon conditions 
(epoch 127,445  s to 127,969  s), where roads are sur-
rounded by tall buildings and dense trees. It is evident 
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that the float solution maintains a high level of accuracy, 
within 1 m. However, due to frequent occurrace of gross 
errors and cycle slips, the ILS-PAR estimator still strug-
gles to fix ambiguity. Notably, the GBIE solution exhib-
its two situations attributed to the large quadratic form 
of ambiguity residuals. On the one hand, at successful 
GBIE epochs, the weight factor of the best candidate 
approaches 1, resulting in positioning accuracy similar 
to that of the correctly fixed solution. This helps mitigate 
false-alarm errors caused by unreasonable setting of the 
R-ratio test threshold compared to the ILS-PAR. On the 
other hand, due to the direct exponential operation on 
the residual quadratic form, the weight factor of the best 
candidate may be zero, resulting in GBIE estimation fail-
ure and the output of a float solution with poor accuracy. 
Conversely, the LBIE solution addresses the accuracy lay-
ering issue between the float and fixed solutions through 
weighted fusion and avoids estimation failure. It achieves 
accuracy of 0.03  m, 0.05  m, and 0.16  m in E, N, and U 

directions, respectively, surpassing the performance of 
ILS-PAR and GBIE methods, and comparable to that of 
the TBIE method.

Figure 14 depicts the cumulative distribution function 
(CDF) of the positioning errors for all epochs, which can 
lead to similar conclusions. The TBIE and LBIE solu-
tions demonstrate significant superiority, while GBIE 
slightly outperforms ILS-PAR. Specifically, the pro-
portion of positioning errors less than 1.0  m is 97.85%, 
98.25%, 97.85, and 98.12% for ILS-PAR, GBIE, TBIE, and 
LBIE, respectively. In the zoom-in window, the propor-
tion of positioning errors within 0.1 m is approximately 
55.42% and 60.30% for ILS-PAR and GBIE. Meanwhile, 
TBIE and LBIE achieve 82.41% and 81.65%, representing 
an improvement of over 20%. Summarizing the statistical 
results for all epochs in Table 6, the positioning accuracy 
of LBIE in E, N, and U directions is 0.112 m, 0.107 m, and 
0.252 m, respectively, slightly better than TBIE and much 
better than GBIE and ILS-PAR. Specifically, it exhibits 
improvements of 17.6%, 27.2%, and 26.1% over GBIE, 
and 23.3%, 28.2%, and 30.6% over ILS-PAR, respectively, 
which reflects the significant reliability of BIE estimation 
with heavy-tailed distributions.

Analysis of time consumption
To evaluate the efficiency of the four different meth-
ods, the time consumption of the entire RTK position-
ing process was calculated. The computations were 
executed in Visual Studio 2019 on a computer equipped 
with a 12th Gen Intel (R) Core (TM) i7-12700  K 
3.60 GHz processor running Windows 10 64-bit Profes-
sional. As shown in Fig. 15 and summarized in Table 7, 

Table 5  Statistics of pseudorange DD and phase TD residuals in 
test 2

Phase TD (%) Code DD 
RMS (m)

> 1 cycle > 5 cycle > 10 cycle

GPS L1 18.01 15.10 12.76 5.357

L5 17.62 14.83 13.23 2.506

GAL E1 18.87 15.75 13.88 4.195

E5a 5.98 3.45 2.83 2.967

BDS B1I 20.25 16.89 14.87 3.820

B2a 28.47 24.93 23.65 2.155
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ILS-PAR involves exactly 2 candidates to perform the 
R-ratio test. For GBIE, due to the rapid decrease in the 
weight factors during the weighted process, the average 
number of candidates is approximately 2, with test val-
ues of 1.77 and 2.42, respectively, posing a significant 

risk of wrong fixing of ambiguities. However, TBIE and 
LBIE address it better by spreading out the weights to 
other candidates, with the former averaging over 60 
candidates and the latter over 10. As for the efficiency 
shown in Fig.  16 and Table  7, there is marginal differ-
ence between GBIE and LBIE, with both increasing by 
approximately 30–40% compared to ILS-PAR. It is pri-
marily because the main part of the computational time 
in AR is the search process for ambiguity candidates, 
and both BIE methods have the same pre-searching 
number of 500, while the number for ILS-PAR is only 
2. It is worth noting that the computational time using 
TBIE is approximately twice that of using LBIE, as it 
involves the process of calculating the updated coordi-
nate vector for each integer candidate.

Conclusions
Compared to the float and fixed solutions, the BIE esti-
mator considers almost all integer candidates of ambigu-
ity, aligning with the concept of full probability estimation 
and proving more suitable for urban environments. This 
paper introduces an improved BIE estimation method 
with Laplacian distribution to enhance the performance 
of urban low-cost positioning. Firstly, the Laplacian dis-
tribution is incorporated into the weighting function of 
BIE to address the issue of irrational weight allocation 
associated with Gaussian distribution. Additionally, a cri-
terion based on the OIA test is employed to determine 
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in test 2
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Table 6  Statistics of RMS of positioning errors in ILS-PAR, GBIE, 
TBIE, and LBIE solutions

Method E (m) N (m) U (m)

ILS-PAR 0.146 0.149 0.363

GBIE 0.136 0.147 0.341

TBIE 0.116 0.111 0.261

LBIE 0.112 0.107 0.252
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the number of candidates. Finally, the VC matrix of the 
LBIE solution is derived to evaluate its reliability.

Two typical vehicular experiments in urban environ-
ments were conducted to evaluate the performance 
of the proposed BIE estimation by using the Huawei 
Mate40 smartphone and STMicroelectronics low-cost 
receiver STA8100, respectively. Four different methods 
are compared, i.e., ILS-PAR, GBIE, TBIE, and LBIE. The 
results show that the proposed LBIE method has similar 
positioning accuracy to TBIE and significantly outper-
forms the ILS-PAR and GBIE methods by spreading out 
the weights to other candidates. For the urban express-
way test with the smartphone, the LBIE method has 

positioning errors of less than 0.5 m in three directions 
and obtain more than 50% improvements compared to 
the ILS-PAR and GBIE methods. For the urban canyon 
test with the STA8100 receiver, the positioning accuracy 
of LBIE in three directions is 0.112 m, 0.107 m, and 0.252 
m, respectively, with improvements of 17.6%, 27.2%, and 
26.1% compared to GBIE, and 23.3%, 28.2%, and 30.6% 
compared to ILS-PAR. Moreover, its computational 
time increases by 30%-40% compared to ILS-PAR and is 
approximately half of that using TBIE.

In summary, the proposed LBIE method significantly 
improved positioning accuracy and reliability, effectively 
addressing the challenges of AR in urban low-cost RTK 
positioning. Due to space limitations, the thresholds used 
were not discussed in detail, especially the scaling fac-
tor of the Laplacian distribution. Future research should 
explore adaptive adjustments of the thresholds for dif-
ferent scenarios, enhancing the universality of strategies. 
Additionally, other sensors, such as inertial measurement 
units, can be introduced into urban vehicular RTK posi-
tioning to provide continuous and accurate position-
ing and navigation services, further enhancing GNSS 
integrity monitoring of vehicle positioning in urban 
environments.
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Table 7  Average number of ambiguity candidates and time 
consumption in ILS-PAR, GBIE, TBIE, and LBIE solutions

Method Average candidates Average time (ms)

Test 1 Test 2 Test 1 Test 2

ILS-PAR 2.00 2.00 5.01 8.19

GBIE 1.77 2.42 6.68 10.76

TBIE 64.98 61.69 13.18 23.90

LBIE 16.73 11.51 7.09 10.61
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