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Abstract 

The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance 
atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance 
the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autono-
mously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions 
for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satel-
lite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time 
scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accu-
racy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 
8.64 ×  104 s, and 1 ×  106 s, the frequency stabilities of the spaceborne timescale reach 1.35 ×  10–15, 3.37 ×  10–16, 
and 2.81 ×  10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction 
error is 3.16 ×  10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic 
polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.

Introduction
A 1-microsecond time deviation in a navigation satel-
lite can lead to a positioning error of 300  m for users. 
Therefore, a stable time scale is particularly important for 
the Global Navigation Satellite System (GNSS) (Tavella, 
2008, Tavella & Petit, 2020). Currently, the standard time 
scale for the four major GNSSs is primarily maintained 

through multiple high-performance atomic clocks 
located in timekeeping laboratories. For example, the 
standard time of the Global Positioning System (GPS) is 
established and maintained based on atomic clocks from 
satellites and ground stations, but the weight of satel-
lite clocks is very low. The BeiDou-3 Navigation Satellite 
System (BDS-3) uses multiple high-performance atomic 
clocks deployed in ground-based laboratories to gener-
ate the standard time scale (Senior & Coleman, 2017). 
However, this approach relies heavily on ground stations 
(Zhou et al., 2016), and there is a risk of system service 
interruption. For example, from July 12th to 17th, 2019, 
the Galileo navigation satellite system (Galileo) expe-
rienced a service interruption of 139  h due to a timing 
facility failure at the ground control center. The trend 
for next-generation navigation systems is to use multiple 
onboard atomic clocks and Inter-Satellite Links (ISLs) to 
form an in-orbit clock ensemble (Pan et al., 2018; Yang, 
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2018). Zhou et al. (2023) adopted a scheme to construct 
a distributed time scale. In this scheme, each satellite 
uses ISLs to measure clock errors by observing visible 
satellites in its vicinity. Time synchronization within the 
constellation is indirectly achieved through time scale 
algorithm calculations. However, this solution does not 
truly establish a unified constellation-level timescale. 
Yang et al. (2023) proposed linking the master clocks car-
ried by each navigation satellite through ISLs to form a 
large clock group and calculated the constellation-level 
time scale. However, this solution does not make full use 
of the backup atomic clocks onboard navigation satellites. 
We propose a two-level satellite time keeping system and 
calculate a space-based comprehensive time scale char-
acterized by exceptional stability. In the first-level time 
keeping system, each navigation satellite carries four 
atomic clocks to form a small clock ensemble, and the 
comprehensive time scale for a single satellite is calcu-
lated. In the second-level time keeping system, naviga-
tion satellites use ISLs to form a large constellation-level 
clock group, and a space-based comprehensive time scale 
is calculated. The time scale algorithm can merge multi-
ple atomic clocks into a virtual atomic clock that exhib-
its better frequency stability (Janis et  al., 2021; Wang & 
Rochat, 2022). Many researchers have proposed differ-
ent types of time scale algorithms, including the ALGOS 
algorithm, AT1 algorithm (Manandhar & Meng, 2022; 
Peng et al., 2019), Kalman filtering algorithm (Greenhall, 
2003), Kalman plus Weights (KPW) algorithm (Green-
hall, 2001), and wavelet decomposition algorithm (Per-
cival et  al., 2012). The KPW time scale algorithm can 
achieve good real-time performance, and the stability of 
the output time scale is better. Therefore, we adopt this 
algorithm to calculate the space-based comprehensive 
time scale.

During the long-term autonomous operation of a 
navigation constellation, it is also necessary to maintain 
time synchronization with the ground time reference. 
Therefore, accurate forecasting of the clock error of a 
space-based comprehensive time scale is also important. 
Common clock error prediction algorithms include lin-
ear models, quadratic polynomial prediction algorithms, 
Kalman prediction algorithms, gray models, and others 
(Davis et al., 2012). Since space-based atomic clocks are 
disturbed by factors such as mechanical vibration, elec-
tromagnetic radiation, and temperature changes, their 
clock error prediction models also include nonlinear 
random terms. Many studies have shown that neural 
network models have better forecasting effects on non-
linear data (Huang et  al., 2021a, 2021b). Among them, 
the Long Short-Term Memory (LSTM) neural network 
model exhibits a better forecasting effect on time series 
data (Greff et al., 2016; Wang et al., 2018). A continuous 

sampling method was applied to convert the forecast 
model from a single-variable model into a multivariable 
forecast model, thereby improving the forecast accu-
racy of the model. However, since continuous sampling 
leads to an increase in training samples and cannot best 
extract the long-term trend items in time series, these 
methods are less suitable for long-term forecasts of 
clock errors. Therefore, we use sparse sampling to con-
vert a single-variable model into a multivariable forecast 
model. This method improves the accuracy of long-term 
forecasts and reduces the computational complexity.

In this paper, the overall architecture of the autono-
mous timing scheme for navigation constellations is 
introduced in Section two. Section three focuses on the 
simulation and generation of atomic clock data, as well as 
the principles of time scale algorithms and the improved 
LSTM algorithm. Section four introduces the experimen-
tal simulation and results analysis. Section five presents 
the conclusions of the article.

Overview of the scheme framework
Currently, research on the time–frequency scheme for 
the next generation of navigation satellites can be divided 
into two main directions. Some scholars have proposed 
starting multiple atomic clocks on a single satellite and 
forming a small clock group. Although this solution 
improves the robustness of the single-satellite time scale, 
it does not study multiple satellites jointly maintain a 
constellation-level time scale. Other scholars have pro-
posed using ISLs to measure relative clock errors on mul-
tiple satellites and generate constellation-level time scale, 
but they still use the BDS-3 master clock model (only one 
master clock on a navigation satellite startup); this model 
does not make full use of all satellite clock resources. 
Since the next generation of navigation satellites will still 
be equipped with multiple atomic clocks and laser inter-
satellite link payloads, we combine the above approaches 
and propose a two-level space-based time scale genera-
tion architecture (a single-satellite clock group and con-
stellation-level clock group). A satellite first generates a 
more stable single-satellite comprehensive time scale and 
provides data input for the constellation-level time scale 
algorithm. Since the model fitting accuracy on single-
satellite time scale is higher than that of an atomic clock, 
so the frequency stability of the final calculated constel-
lation-level time scale is better. This two-level time keep-
ing architecture accounts for both frequency stability and 
robustness. Figure 1 describes the workflow of the single-
satellite time–frequency solution.

In Fig.  1, the single-satellite clock group is mainly 
composed of four atomic clocks carried on a timekeep-
ing node satellite. The clock error comparison sequences 
are input to the time scale algorithm calculation module 
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through the phase comparator, and the single-satellite 
time scale is calculated as the control reference. The 
time–frequency control module controls the ultrastable 
crystal oscillator and outputs physical time–frequency 
signals (Li, 2019; Wu et al., 2016). Figure 2 describes the 

constellation-level time scale generation and mainte-
nance architecture.

In Fig.  2, the computing node satellite (a timekeeping 
node satellite that performs time scale algorithm calcu-
lations) obtains the relative clock error between it and 
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each timekeeping node satellite by using ISLs (Yang 
et al., 2017). Then, the computing node satellite weights 
and combines multiple single-satellite time scales into a 
constellation-level comprehensive time scale. By broad-
casting the clock error between each satellite and the 
constellation-level time reference through ISLs, time 
synchronization of each satellite in the constellation can 
also be achieved. As time elapses, the relative clock error 
between the constellation-level time scale and the ground 
standard time increases, causing the navigation constel-
lation to drift relative to the ground standard clock. The 
satellite-ground comparison link can be used to regu-
larly measure the satellite-ground clock error data. After 
modeling and forecasting the satellite-ground clock error, 
high-precision time synchronization between the satel-
lite and the ground can be achieved.

Methodology
Digital generation of atomic clock data
Modeling and digitally generating atomic clock error data 
based on their characteristics can provide data input for 
various time scale algorithms. The clock error model of 
an atomic frequency standard is as follows (Diez et  al., 
2006):

where x0 is the initial time difference, y0 is the initial fre-
quency difference, D is the frequency drift rate, and ε(t) 
is the error term caused by various random noises. Les-
son (Leeson, 2016) derived power-law spectral expres-
sions for these noises.

where Sy
(

f
)

 is the spectral density of the atomic clock 
frequency noise and αi is the intensity coefficient of the 
five types of noise. The random noise of atomic clocks 
does not follow a stable normal distribution; therefore, 
the Allan variance is often used instead of the traditional 
standard deviation to express the frequency stability of 
the atomic frequency standard.

where σ 2
y (τm) represents the Allan variance, τm represents 

the sampling interval, k represents the group sequence 
number, and ωk is the average value of this group of clock 
errors. We can use the Allan variance to fit the atomic 
clock noise coefficient (Zucca et  al., 2005). In general, 
when simulating clock error data, the phase flicker noise 
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can be ignored. In this section, the other four types of 
noise are simulated, and the final simulated clock error is 
shown in Formula (4) (Shin et al., 2008):

where τ is the sampling period and yrw , yff  , ywf  , and ywp 
are frequency error terms caused by frequency random 
walk noise, frequency flicker noise, frequency white noise 
and phase white noise, respectively.

KPW time scale algorithm
The KPW time scale algorithm first utilizes the Kalman 
filtering model to forecast the clock error data from mul-
tiple atomic clocks. Then, weights are assigned based 
on the frequency stability of each atomic clock. Finally, 
multiple atomic clocks are weighted and fused to create a 
virtual atomic clock (Greenhall, 2001). The Kalman filter-
ing algorithm is a real-time prediction algorithm and can 
reduce the phase white noise of the system (Davis et al., 
2012). Furthermore, atomic clocks with better long-
term stability can be assigned larger weights in the time 
scale algorithm. Therefore, the comprehensive time scale 
exhibits good long-term and short-term stability, and the 
KPW time scale algorithm formula is as follows:

where xe,1(t) is the clock error of the reference clock rela-
tive to the comprehensive time scale, τ is the sampling 
period of the clock error data, xi,e is the clock error of 
each atomic clock relative to the comprehensive time 
scale, ŷi,e is the forecast of the frequency error of each 
atomic clock relative to the comprehensive time scale, D 
represents the frequency drift, and ωi is the weight allo-
cation array of the clock group (Hutsell, 1996).

LSTM clock error prediction algorithm
The time–frequency characteristics of constellation-level 
time scale are different from those of current space-based 
atomic frequency standards. Therefore, its clock error 
prediction model is also different from traditional clock 
error prediction models (linear models, quadratic poly-
nomial models, and Kalman filters). Because the LSTM 
network model can selectively store and forget histori-
cal information and maintain long-term memory of past 
data to better understand trends and patterns in time 
series data and make more accurate predictions (Xue 
et  al., 2018), we use the LSTM model to perform clock 
error prediction at the constellation-level time scale. The 

(4)
x(n) = x(n− 1)+ (yrw(n)+ yff (n)+ ywf (n)+ ywp(n))τ

(5)
xe,1(t) =

n
∑

i=1

ωi(t) · (xi,e(t)− (xi,e(t − τ )

+�t · ŷi,e(t − τ )+ 1/2D · (t − τ )2)
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LSTM algorithm is a special Recurrent Neural Network 
(RNN) proposed by Hochreiter and recently improved 
and promoted by Alex Graves (Hochreiter et  al., 1997; 
Greff et al., 2016). Figure 3 shows a schematic diagram of 
the LSTM algorithm.

As shown in the above architecture diagram, the LSTM 
algorithm mainly controls four thresholds. f (t) is the for-
get control unit and is used to select information from 
the previous round of training to enter the next round of 
training. i(t) is the input control unit, which determines 
whether short-term memory information is entered and 
marked as long-term memory information. c̃(t) is the 
selection unit and is used to decide which memories are 
useful information. g (t) is the output control unit, which 
is used to determine whether long-term memory can 
affect short-term memory and control the output of the 
algorithm (He et al., 2023). LSTM constellation-level time 
scale clock error prediction involves three main modules: 
data preprocessing, network model training and forecast-
ing, and data postprocessing. Figure 4 describes the pro-
cess of LSTM clock error prediction.

Data preprocessing

• First-order difference: The first-order difference in 
clock error data can improve the stability of the data, 
thereby reducing the complexity of the forecast-

ing model and improving the forecasting accuracy 
(Wang et al., 2016).

• Gross error removal and interpolation: Serious gross 
errors will affect the accuracy of clock error forecast-
ing. The Median Absolute Deviation (MAD) can 
indicate gross errors in the data sequence (Huang 
et  al., 2021a, 2021b). After all gross errors are 
removed, the cubic spline interpolation method can 
be used to smooth fill in missing values.

• Data splitting: The LSTM algorithm is categorized 
into single-step prediction and multistep prediction 
based on the type of input data. The single-step pre-
diction uses multiple historical data points to fore-
cast the next data points, and after obtaining new 
observation values, the last historical data points are 
updated before forecasting. The principle of mul-
tistep forecasting is to use multiple historical data 
points to forecast multiple data points. Since new 
observational clock errors cannot be obtained during 
the autonomous operation of a constellation, single-
step prediction is not suitable for clock error predic-
tion at the constellation-level time scale. Since each 
forecast value of a multistep forecast will be affected 
by the previous forecast error, which causes the fore-
cast error to increase rapidly, multistep forecasting is 
not suitable for long-term forecasts of clock errors at 
constellation-level time scales. Huang et  al., (2021a, 
2021b) used the equal interval sampling method to 

Fig. 3 LSTM model framework



Page 6 of 14Yang et al. Satellite Navigation            (2024) 5:15 

convert a clock error sequence into multiple vari-
ables, thereby transforming the clock error multi-
step forecast model into multiple single-step forecast 
models and reducing the forecast error. This princi-
ple is shown in Fig. 5.

 The clock error data in each window in Fig.  5 are 
continuous, so there is a problem of slow divergence 
of errors in long-term clock error forecasting. We use 
sparse sampling for data segmentation to improve 
the ability to remember long-term trend terms dur-
ing model training, thereby improving the accuracy 
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of long-term clock error forecasts. The clock error 
data are extracted at every p point to form N − dp 
windows. This principle is shown in Fig. 6.

 As shown in Fig.  6, for the sequence after the first-
order difference (�x1�x2 · · · �xN ) , p is the predic-
tion days, and a matrix of (N − dp)× (1+ dp) can 
be generated:

 Parameter d must satisfy Eq. 7:

 The first d data of each row in the matrix are input to 
the model as the training sequence, and the optimal d 
data points are used as training references. After 
training, the prediction model is obtained. In the pre-
diction stage, the last d data points trained are used 
as the input set of the prediction stage. The forecast 
output sequence is 
(

�x
1+(d+1)p

�x2+(d+1)p �x3+(d+1)p · · · �xN+p

)

 . The 
N − dp data outputted by the forecast are obtained 
from N − dp single-step predictions. Using this 
method can reduce the accumulation of long-term 
clock error prediction errors. Compared with contin-
uous sampling, as p increases, the training set also 
decreases accordingly, thereby reducing the model 
training time. This article focuses on the selection of 
the value of p . Many simulation experiments were 
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conducted, and it was determined that the best long-
term prediction accuracy can be achieved consider-
ing the value of p.

• Normalize the data: Data normalization can be 
applied to avoid the impact of different dimensions of 
each feature quantity and the target value on the pre-
diction performance, accelerate the gradient descent 
during network training, and increase the conveni-
ence of model processing.

Model design and prediction
The LSTM model used in this paper consists of an input 
layer, a hidden layer, and an output layer. The number 
of input data points is equal to the number of neurons 
in the input layer. Each LSTM layer of the hidden layer 
is connected to a dropout layer, which includes 32 hid-
den nodes. The dropout layer prevents overfitting during 

......∆x1 ∆x2 ∆x1+p ∆x1+2p

∆x1 ∆x2 ∆x2+p ∆x2+2p

∆x1+(d-1)p ∆x1+(d-1)p∆x1+2p∆x1+p∆x1 ∆x1+dp

∆x2+(d-1)p∆x2+2p∆x2+p∆x2 ∆x2+dp

∆xN-dp ∆xN-(d-1)p ∆xN-(d-2)p ∆xN-p ∆xN

∆x1+dp
...... ∆xN

∆x2+(d-1)p ∆x2+dp ∆xN

∆x1 ∆x2 ∆xN-dp ∆xN-(d-1)p ∆xN-2p ∆xN-p ∆xN

............ ......

......

............ ............ ......

............ ............ ......

......

......

...
...

...
...

...

Fig. 6 Sparse sampling interval schematic diagram

LSTM layer 1

DropOut layer 1

LSTM layer 2

DropOut layer 2

Network structure design

Input layer

Output layer

FC layer

Hidden
layer 

Fig. 7 LSTM model architecture diagram



Page 8 of 14Yang et al. Satellite Navigation            (2024) 5:15 

training, and the discard rate is 0.2. Figure  7 illustrates 
the specific LSTM model structure.

Table 1 contains the specific parameter settings for the 
LSTM model.

Data postprocessing
After the LSTM model prediction is complete, the pre-
dicted data are denormalized and inversely first-differ-
enced to obtain the predicted clock error sequence. The 
simulation experiment results and analysis are intro-
duced in detail in the next section.

Simulation and analysis
Clock error data simulation
The specific scenario simulated in this paper is as follows. 
Each timekeeping node satellite is equipped with 2 pas-
sive hydrogen atomic clocks and 2 mercury ion atomic 
clocks, and there are 6 timekeeping node satellites in 
the navigation constellation. The hydrogen atomic clock 
has been applied to the BDS-3 satellite, and its reliabil-
ity has been verified in advance. Since new satellite-borne 
atomic clocks, such as mercury ion clocks, have not yet 
been in orbit for a long time, the stability of the single-
satellite times cale was ensured by using hydrogen clocks 
and high-performance mercury ion clocks to form a 
small clock group. We downloaded precision clock error 
data of six BDS-3 hydrogen clocks from the International 
GNSS Service (IGS) website and obtained frequency sta-
bility data of space-based mercury ion clocks tested in 
orbit (Burt et  al., 2021). Then, we used the clock error 
fitting algorithm introduced earlier to digitally gener-
ate 2 sets of clock error data for each hydrogen clock, 
and based on the stability of the mercury ion clock, we 
digitally generated 12 sets of clock error data. Since the 
hydrogen clock and mercury ion clock error data used 
in our simulation are measured by a satellite-to-ground 
comparison link, they include errors in the ionosphere 
and troposphere. Future laser intersatellite links are basi-
cally not affected by these errors, so the future clock error 

measurement noise will be smaller than that in our simu-
lation experiment. Figure 8 shows the stability compari-
son of each hydrogen clock and the two hydrogen clocks 
generated by fitting. Figure 9 shows a comparison of the 
stabilities of the mercury ion clocks and 12 fitted clocks.

Figures 8 and 9 show that the frequency stability of the 
simulated atomic clock is very close to that of the actual 
atomic clock in orbit. Atomic clocks deployed in orbit are 
affected by periodic noise. Since this periodic noise can 
be modeled and eliminated through spectral analysis, the 
clock error simulation in this article does not consider 
periodic noise.

Constellation‑level time scale generation
We set the numbers of 12 hydrogen atomic clocks and 
12 mercury ion atomic clocks as H1-H12 and M1-M12, 
respectively. Two hydrogen clocks and 2 mercury ion 
clocks on each timekeeping node satellite form a small 
clock group, and the KPW scale algorithm is employed 
to calculate the single-satellite time scale (TA1-TA6). Fig-
ure 10 shows the frequency stability of each atomic clock 
and six single-satellite time scales.

Figure 10 shows that when the smoothing time is less 
than 3 ×  105  s, all single-satellite timescales are more 
stable than those of hydrogen atomic clocks or mercury 
ion clocks. A single satellite clock group consists of two 
types of atomic clocks, and the number of atomic clocks 
is small. Therefore, the KPW time scale algorithm cannot 
effectively suppress frequency flicker noise and frequency 
random walk noise. Therefore, when the smoothing time 
is greater than 3 ×  105 s, the frequency stabilities of TA2, 
TA4 and TA6 are between those of the two mercury 
ion clocks. Each timekeeping node satellite measures 
the clock error relative to the calculation node satellite 
through the laser intersatellite link and provides data 
input for the second-level KPW time scale algorithm. 
The second-level KPW time scale algorithm outputs the 
constellation-level time scale TA, and its frequency sta-
bility comparison with TA1-TA6 is shown in Fig. 11 and 
Table 2.

Figure  11 and Table  2 show that the TA has a better 
overall advantage than does the single-clock frequency 
stability or frequency uncertainty. When the averaging 
interval of the Allan deviation is 300  s, the frequency 
uncertainty can reach 1.35 ×  10–15, the frequency uncer-
tainty at 1 ×  104  s can reach 3.68 ×  10–16, the frequency 
uncertainty at one day can reach 3.37 ×  10–16, and the 
frequency uncertainty at 1 ×  106 can reach 2.81 ×  10–16. 
We find that when the smoothing time is 300 s, the fre-
quency uncertainty of the TA is 3.2 times smaller than 
the average frequency uncertainty of M1-M12 and 15 
times smaller than the average frequency uncertainty of 
H1-H12. When the smoothing time is 1E6, the frequency 

Table 1 LSTM model parameter list

No. Parameter Value

1. Optimizer Adma

2. Number of LSTM layers 2

3. Training times 2000

4. Number of input data 8

5. Number of output data 1

6. Batch quantity 16

7. Learning rate 0.01

8. Learning rate reduction factor 0.2
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uncertainty of the TA is 5.1 times smaller than the aver-
age frequency uncertainty of M1-M12, and the frequency 
uncertainty of the TA is 17 times smaller than the aver-
age frequency uncertainty of H1-H12. The next section 
provides a detailed analysis of the simulations of different 
clock error prediction algorithms.

LSTM‑based clock error prediction
First, first-order difference processing is performed on 
the TA’s original clock error data, and the MAD algo-
rithm is used to determine the gross errors in the data. 
The gross errors are then smoothed using the cubic 
spline interpolation algorithm. Figure 12 shows the effect 
of detecting and processing gross errors.

In the upper subfigure of Fig.  12, the blue curve rep-
resents the first-order difference data of the TA clock 
error, and the detected gross errors are marked with 
a red circle. In the lower subfigure of Fig.  12, the green 
points represent the cubic spline interpolation method-
corrected gross error data. Then, the preprocessed first-
order difference data are divided, the LSTM network 
model is trained, and forecasting operation processing is 
performed. Based on the sparse sampling method intro-
duced in Fig. 6, P = 1,2,…,20, and forecasts are made ten 
times according to each parameter. Then, the ten forecast 
errors are averaged, and the forecast error curve is drawn 
in Fig. 13.

Figures 13 and 14 show that when P = 8, the long-term 
forecast error for more than five days is the smallest. 
Compared with that of the continuous sampling method 

Averaging time (s)
a b c

d e f

10−13

10−14

10−15

104300 300 300

300 300 300

106

Averaging time (s)
104 106

Averaging time (s)
104 106

Averaging time (s)
104 106

Averaging time (s)
104 106

Averaging time (s)
104 106

Al
la

n 
de

vi
at

io
n

10−13

10−14

10−15 10−15

Al
la

n 
de

vi
at

io
n

10−13

10−14

Al
la

n 
de

vi
at

io
n

10−13

10−14

10−15

Al
la

n 
de

vi
at

io
n

10−13

10−14

10−15 10−15

Al
la

n 
de

vi
at

io
n

10−13

10−14

Al
la

n 
de

vi
at

io
n

Fit value
C26
H1
H3

Fit value
C27
H2
H4

Fit value
C28
H5
H7

Fit value
C29
H6
H8

Fit value
C30
H9
H11

Fit value
C34
H10
H12

-13

Fig. 8 The spectral density was fitted based on the clock error data actually measured by 6 atomic clocks (C26–C30 and C34), and the fitted values 
were used to simulate the clock error data of 12 hydrogen clocks (H1–H12), the fitting results of six atomic clocks are shown in subfigures a–f 
respectively

103300 104 105 106

Averaging time (s)

10−14

10−15

Al
la

n 
de

vi
at

io
n 

M1
M2
M3
M4
M5

M6
M7
M8
M9
M10

M11
M12
 Typical value

Fig. 9 The clock error data (M1–M12) of 12 mercury ion clocks are 
simulated based on the fitting values of typical spectral density 
values of mercury ion clocks



Page 10 of 14Yang et al. Satellite Navigation            (2024) 5:15 

with P = 1, the five-day forecast accuracy increases by 
75%, and the ten-day forecast accuracy increases by 72%. 
Let P = 1 and P = 8 be trained and forecasted ten times, 
respectively; the errors in each forecasting progress are 
shown in Fig. 15.

Figure  15 shows that the two values of short-term 
forecast errors within 6  h are not very different; how-
ever, as the forecast time increases, the forecast error at 

P = 1 diverges faster. However, Fig. 14 also shows that as 
the P value increases, the forecasting error also tends to 
increase. Therefore, the reasonable selection of the sam-
pling interval can reduce errors in clock error prediction 
and model training time. In this paper, P = 8 is selected as 
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the optimal sampling interval by traversing different val-
ues. Next, 30  days of historical data are used to predict 
the clock error of the TA over the next 10 days. Figure 16 

and Table  3 show the comparison results for the com-
monly used Kalman filter forecast algorithm, linear fore-
cast algorithm and Quadratic Polynomial (QP) forecast 
algorithm.

As shown in Fig.  16 and Table  3, the QP algorithm 
has the smallest one-day prediction error, which can 
reach 1.25 ×  10–11  s; the LSTM algorithm has the small-
est 5-day prediction error, which can reach 9.30 ×  10–11 s; 
and the 10-day long-term predicting residual of the 

Table 2 Frequency stability analysis

Time scale types ADEV of 300 s ADEV of 1 ×  104 s ADEV of 1 d ADEV of 1 ×  106 s

Average of H1–H12 5.66 ×  10–14 1.04 ×  10–14 5.19 ×  10–15 4.89 ×  10–15

Average of M1–M12 4.45 ×  10–15 1.14 ×  10–15 1.08 ×  10–15 1.43 ×  10–15

Average of TA1–TA6 3.28 ×  10–15 8.34 ×  10–16 7.63 ×  10–16 9.53 ×  10–16

TA 1.35 ×  10–15 3.68 ×  10–16 3.37 ×  10–16 2.81 ×  10–16
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LSTM algorithm is also the smallest, which can reach 
3.16 ×  10–10  s. In terms of the ten-day forecasting accu-
racy, the LSTM algorithm is 27% and 36% better than 
the accuracies of the QP and Kalman algorithms, respec-
tively. Therefore, the LSTM algorithm can be used to 
make long-term predictions on a constellation-level 
time scale and improve the level of satellite-ground time 
synchronization.

Conclusions
To enhance the high-precision autonomous timing capa-
bility of next-generation navigation satellites, this paper 
first proposed a two-level time scale autonomous genera-
tion architecture. This architecture not only improves the 
robustness of the single-satellite time–frequency system 
but also improves the frequency stability of the space-
based time scale. Then we used sparse sampling to trans-
form univariate data into a multivariate LSTM model to 
improve the accuracy of clock error long-term predic-
tion on space-based time scale. We simulated this solu-
tion using 12 hydrogen clocks and 12 mercury ion atomic 
clocks. When the smoothing times were 300  s, 1  day, 
and 1E6 s, the corresponding frequency stabilities of the 
space-based time scale were 1.35 ×  10–15, 3.37 ×  10–16, 
and 2.81 ×  10–16, respectively. Compared to those of the 
mercury ion atomic clocks, the frequency stabilities 
improved by 3.2 times and 15 times when the smooth-
ing time was 300 s and 1 ×  106 s, respectively. The 10-day 
forecast error can reach 3.16 ×  10–10  s. Compared with 
those of the continuous sampling LSTM, Kalman filter, 
polynomial and quadratic polynomial models, the corre-
sponding prediction accuracies were 1.72, 1.56, 1.83 and 
1.36 times greater, respectively. The research presented 
in this article has engineering guiding significance for 
the long-term autonomous timing of future navigation 
constellations.

The simulation scenario in this article was applied 
to deploy 6 timekeeping node satellites in a Medium 
Earth Orbit (MEO) to form a constellation-level clock 
group. Satellites deployed in the MEO, Geostationary 
Earth Orbit (GEO) and Inclined GeoSynchronous Orbit 
(IGSO) have different orbit determination accuracies, rel-
ativistic effects and measurement link noise. Therefore, it 

is necessary to continue to study the impact of deploy-
ing timekeeping node satellites in different orbits. Since 
atomic clocks are easily affected by environmental factors 
such as mechanical vibration, electromagnetic interfer-
ence and temperature changes in space, in the future, 
as the amount of in-orbit data from new atomic clocks 
increases, we will also conduct research on the impact of 
these error sources.
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