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Abstract 

The Global Navigation Satellite Systems (GNSS), including the US’s GPS, China’s BDS, the European Union’s Galileo, 
and Russia’s GLONASS, offer real‑time, all‑weather, any‑time, anywhere and high precision observations by transmit‑
ting L band signals continuously, which have been widely used for positioning, navigation and timing. With the devel‑
opment of GNSS technology, it has been found that GNSS‑reflected signals can be used to detect Earth’s surface 
characteristics together with other signals of opportunity. In this paper, the current status and latest advances are 
presented on Global Navigation Satellite System‑Reflectometry (GNSS‑R) in theory, methods, techniques and obser‑
vations. New developments and progresses in GNSS‑R instruments, theoretical modeling, and signal processing, 
ground and space‑/air‑borne experiments, parameters retrieval (e.g. wind speed, sea surface height, soil moisture, 
ice thickness), sea surface altimetry and applications in the atmosphere, oceans, land, vegetation, and cryosphere are 
given and reviewed in details. Meanwhile, the challenges  in the GNSS‑R development of each field are also given. 
Finally, the future applications and prospects of GNSS‑R are discussed, including multi‑GNSS reflectometry, new 
GNSS‑R receivers, GNSS‑R missions, and emerging applications, such as mesoscale ocean eddies, ocean phytoplank‑
ton blooms, microplastics detection, target recognition, river flow, desert studies, natural hazards and landslides 
monitoring.
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Introduction
Global Navigation Satellite Systems (GNSS) include the 
US’s Global Positioning System (GPS), China’s BeiDou 
Navigation Satellite System (BDS), Russia’s GLONASS 
System (GLONASS) and Europe’s Galileo Navigation 
Satellite System (Galileo), as well as regional augmenta-
tion systems (e.g. Japan’s Quasi-Zenith Satellite System 
(QZSS) and India’s Regional Navigation Satellite System 
(IRNSS)). All of them are characterized by all-weather, 
real-time, any time, anywhere and high precision capa-
bilities. These systems continuously transmit L-band sig-
nals and are broadly used in Positioning, Navigation, and 
Timing (PNT). As various navigation satellite systems 
gradually improve and the number of GNSS observation 
stations increases, their application fields are becoming 
increasingly extensive. GNSS is not only used in PNT, but 
also can use its surface reflection signal for remote sens-
ing. GNSS satellites continuously broadcast radio signals 
to Earth, and some of them are reflected off the Earth’s 
surface. Delayed GNSS signals reflected from rough sur-
faces can provide different information about the direct 
and reflected signal paths (Jin et  al., 2011; Najibi & Jin, 
2013). This information includes changes in the wave-
form, amplitude, phase, and frequency of the reflected 
signal. Changes in polarization characteristics are directly 
associated with the properties of the reflecting surface. 
Combined to the receiver antenna position and medium 
information, the delay measurement and the reflecting 
surface properties can be used to determine the surface 
roughness and properties, namely GNSS-R (Global Navi-
gation Satellite System-Reflectometry).

In 1988, Hall and Cordey (1988) firstly proposed the 
use of GPS reflected signals for scatterometry applica-
tions. Later on, GPS reflection measurement was first 
proposed for altimetry by the European Space Agency 
(ESA) scientist Manuel Martin-Neirai in 1993, that is, 
the GPS surface reflection signal and the direct signal 
are received by the receiver together, and the delay 
between them can be used for altimetry applications 
(Martin-Neira, 1993), namely Passive Reflectometry 
and Interferometry System  (PARIS). In 1994, French 
scientists published the results that accidentally a 
receiver locked to sea surface reflected signals dur-
ing a flight test, but because of its impact on position-
ing accuracy, it is usually rejected as a multipath signal 
(Auber et al., 1994). In 1996, the scientists at National 
Aeronautical and Space Administration’s (NASA) 
Langley Research Center used dual-frequency GPS 
signals to perform sea forward scatter to obtain and 
eliminate ionospheric delays, which  made up for the 
shortcomings of traditional satellite altimeters. How-
ever, ground-based experiments showed that traditional 

receivers are difficult to track GNSS reflected signals 
for a long time and effectively. For phase locking, a new 
type of receiver should be developed (Katzberg & Gar-
rison, 1996). In 1997, the ESA carried out the GNSS-R 
sea surface altimetry experiment—the PARIS altimeter 
Zeeland Bridge I experiment in the Netherlands (Mar-
tin-Neira et  al., 2001). In October 2000, the National 
Oceanic and Atmospheric Administration’s (NOAA) 
aircraft, “Hurricane Hunter”, carried GNSS-R equip-
ment and flew into Hurricane "Michael" from the coast 
of South Carolina, and analyzed the reflection from 
the tropical cyclone sea surface. The returned GPS sig-
nal obtained the wind speed signature (Katzberg et al., 
2001). In 2003, the United Kingdom-Disaster Moni-
toring Constellation (UK-DMC) satellite successfully 
obtained the physical coefficients of the Earth’s surface, 
including sea surface roughness, by using the GNSS-R 
equipment carried on it (Gleason et al., 2005). The GPS 
reflection signal in the tranquil sea area can also obtain 
high-precision altimetry results (Gleason et al., 2010).

The first space-borne GNSS-R Technology Dem-
onstration Satellite-1 (TDS-1) launched in 2014, pro-
vided Delay-Doppler Map (DDM) data products and 
paved the way for the application of spaceborne GNSS 
reflection measurement. In addition, many other scien-
tific institutions have conducted a series of theoretical 
studies as well as experiments on GNSS-reflected sig-
nals, developed new GNSS-R receivers, and performed 
application tests across various platforms such as 
ground, coast, bridge, and aircraft, as well as examining 
the use of GNSS-R for estimating sea surface (such as 
height and wind speed) and land surface, and numer-
ous results and progress have been obtained. In par-
ticular, the Cyclone Global Navigation Satellite System 
(CYGNSS) mission, launched on December 15, 2016, 
consisting of eight microsatellites constellation jointly 
operated by the NASA and the University of Michigan 
(UM), provided a huge amount of space-borne GNSS-
R data and made a number of progress in oceans, e.g. 
wind speed, sea surface, and significant wave height 
(Cardellach et al., 2011; Clarizia & Ruf, 2016; Foti et al., 
2017; Qiu & Jin, 2020; Wang et  al., 2019; Yang et  al., 
2021a) and the land, e.g., soil moisture and soil freeze/
thaw cycles (Dong & Jin, 2021; Wu et al., 2020).

In this paper, the detailed principles, methods, and 
latest application progresses of GNSS-R are presented 
and reviewed, including instruments, theoretical 
modeling, signal processing, ground and space-/air-
borne experiments, and  remote sensing of the  atmos-
phere, oceans, lands, vegetation, hydrology, and ice and 
snow characteristics. Notably, the recent progresses 
on BDS-R and TDS-1/CYGNSS GNSS-R applications 
are highlighted. In the end, the future applications and 
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prospects of GNSS-R  are discussed, such as multi-
GNSS reflectometry, new  GNSS-R receivers, GNSS-R 
satellite programs, and small- to medium-sized feature 
and target detection.

Theory and methods
GNSS-R consists of collecting the reflected signals 
from sources of opportunity as well as, sometimes, 
the corresponding direct signals, and then performing 
some processing to retrieve geophysical parameters of 
interesting reflecting surface. By “reflected” signals it is 
understood the composite signal emanating from very 
many scatterers at and around the “specular” point. The 
specular reflection point is  to be defined as the loca-
tion on the reflecting surface with the shortest transit 
time among all possible transmitter-surface-receiver 
paths. Therefore, the coordinates of the specular reflec-
tion point can be estimated based on the positions of 
the transmitter, receiver, and reflecting surface. In prac-
tice, the exact position of the reflecting surface is not 
known, and a model is used as an approximation to the 
real reflecting surface, from which the specular point is 
estimated by numerical methods. An ideal model of the 
reflecting surface should have a resolution comparable 
to the wavelength, but this is impractical. Geoid models 
over the ocean and digital elevation models over land 
are used instead. Over land, because of the slopes of the 
terrain, it may happen that there are multiple reflection 
points, but they are typically clustered around the spec-
ular point one would find when removing those slopes. 
It is important to understand that GNSS-R has devel-
oped in this way, that is, by exploiting signals reflected 
at and around the specular point, as proposed by Mar-
tin-Neira (1993). Signals scattered from the  points far 
away from the specular point have generally too low 
power to be useful for retrievals and therefore are not 
used.

The signals reflected off the Earth’s surface, whether 
on the ground, air-borne, or on space-borne satellites, 
are captured by GNSS-R receivers. These observables 
are utilized in a range of applications such as land sur-
face and sea surface parameter estimations. The meth-
odology is categorized into 2 groups: the first one uses 
receivers equipped with at least 2 antennas to analyze 
the GNSS waveforms, while the second employs a clas-
sical GNSS receiver with a single antenna. The first 
group is suited for in-situ observations, aircraft, and 
satellite observations, while the second one is only 
applicable for in-situ observations or low-altitude 
flights.

In terms of signal acquisition and processing tech-
niques, there are conventional (cGNSS-R) and inter-
ferometric (iGNSS-R) receivers. cGNSS-R establishes 

the correlation at Tc between the reflected signal Sr(t) 
and a replica a* (t) of the receiver-generated Pseudo-
Random Noise (PRN) code, factoring a time log τ, and 
after compensating for Doppler frequency shift fd (Park 
et al., 2014a, b). The amplitude of the correlation Yc can 
be written as:

where t0 is the time that marks the point at which the 
coherent integration begins. In order to improve Yc, an 
incoherent average (Ni) must be used:

This technique has several advantages including the 
separation of the signals via their precise code, infinite 
Signal-to-Noise Ratio (SNR), smaller antennas, etc., 
however, some limited-bandwidth Pseudo-Random 
Noise  (PRN) codes, such as GPS L1 C/A code, are not 
suitable for altimetry (Park et  al., 2014a, b). This imple-
mentation is employed in the CYGNSS mission.

The second group including interferometric waveform 
receivers (iGNSS-R) employs the correlation between the 
reflected and the direct signal  (Sd) instead of the reflected 
signals and the replica (Park et al., 2014a, b):

Several advantages including the improved code-free 
SNR, increased bandwidth, the ability to utilize satellite 
television and radio signals, and cross-correlation dif-
ferential processing featuring low delay and readily easy-
to-track Doppler frequency dynamics are characteristics 
of this technique (Park et  al., 2014a, b). However, large 
antennas for up-looking are required for this technique 
(Zavorotny & Voronovich, 2000).

Geometry of GNSS‑R
A GNSS-R receiver has different access to direct and 
reflected signals, depending mainly on its altitude over 
the ground. Ground receivers at the top of a tripod or 
a mast, at the tip of a boom, on top of a building, etc.… 
receive direct signals from above their local horizon and 
reflected signals from below their local horizon plane. 
For these receivers nearby obstacles as trees, buildings, 
mountains, etc.… may limit the reception of the signals 

(1)Y c(t0, τ , fd) =
1
Tc

∫ t0+Tc

t0
Sr (t)a∗(t − τ)e−j2π(fc+fd )tdt.

(2)
〈∣∣Y c(τ , fd)

∣∣2〉 ≈
1

Ni

Ni∑
n=1

∣∣Y c(tn, τ , fd)
∣∣2.

(3)

Y i(t0, τ , fd) =
1
Tc

∫ t0+Tc

t0
Sr(t)Sd(t − τ)e−j2π(fc+fd)tdt

(4)
〈∣∣∣Y i(τ , fd)

∣∣∣
2
〉
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1

Ni

Ni∑
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∣∣∣Y i(tn, τ , fd)
∣∣∣
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of opportunity. The Earth can be approximated as flat 
with the delay separation between reflected and direct 
signals typically less than one chip of the modulating sig-
nal. Near-ground receivers embarked on drones, aircraft, 
or balloons, have a similar geometry to ground receivers, 
except that the Earth curvature may have to be consid-
ered for certain applications such as altimetry, and some 
direct signals can be acquired from below the local hori-
zon. This relative delay between the reflected and the 
direct signals may exceed one chip, enabling the sepa-
ration in the delay of the reflected waveform from the 
direct one. Finally, for space-borne GNSS-R receivers, 
the reflected signal is captured by the low-Earth-orbit 
satellites (e.g., TDS-1 or CYGNSS satellite). The Earth’s 
reflected surface is not flat, while it can be approximate 
by an ellipsoid.

Single antenna interference
The Interference Pattern Technique (IPT) utilizes a single 
antenna equipped with dual polarization, combining both 
polarizations to generate interference in the measured 
SNR, comprising both the reflected SNR  (SNRr) and direct 
SNR  (SNRd). This interference facilitates the estimation of 
soil moisture content (SMC) and vegetation characteristics. 
The  IPT can be categorized into two primary types: the 
interference pattern technique and the multipath method/
SNR method. The interference pattern technique relies on 
analyzing the interference diagram (main observable) gen-
erated by the interaction between the reflected and direct 
signals. In order to simplify the modeling of the interfer-
ence pattern and to optimize signal reception, the receiving 
antenna is oriented horizontally (Fig.  1). This orientation 
results in a symmetrical antenna gain pattern, ensuring 
that signal differences arise solely from the surface. In addi-
tion, the antenna is linearly polarized (vertically) in the IPT 
for multiple reasons: (1) the need of simultaneous recep-
tion of both direct and reflected signals; (2) horizontal 
and vertical components exhibit more variations with the 

angle of incidence θ than the Right-Hand Circular Polariza-
tion (RHCP) and Left-Hand Circular Polarization (LHCP) 
components, making the linear polarization more sensi-
tive to interactions between the reflecting surface and the 
RHCP wavelengths; and (3) the combination of direct and 
reflected signals at the antenna generates both positive 
and negative interferences. The interference pattern var-
ies with the angle of incidence θ as the launching satellite 
moves. The Brewster angle generates a singularity (notch) 
in the interference pattern, resulting in a minimum observ-
able amplitude in the signal’s oscillations. The position and 
amplitude of the notch are two parameters that reflect sur-
face properties and can be used to retrieve surface proper-
ties. The fluctuations in the amplitude of both polarizations 
increase with increasing SMC, and v-polarization is more 
sensitive to SMC than h-polarization. Meanwhile, the 
notch position and amplitude of v-polarization are both 
sensitive to SMC.

Using the IPT equation, the maxima Pqmax and minima 
Pqmin power values can then be obtained as (Rodriguez-
Alvarez et al., 2009; Arroyo et al., 2014):

where θ is the elevation angle, Fn(θ) ) is the antenna radia-
tion pattern, E0i is the incident electric field amplitude, 
and Rp(θ , ε) is the Fresnel reflection coefficient at p polar-
ization. Then, the total reflection coefficient of the entire 
interference pattern at p polarization can be expressed as 
(Arroyo et al., 2014):

where the reflection coefficient is a function of the eleva-
tion angle θ and the soil dielectric constant ε . 

∣∣∣R̂p(θ , ε)
∣∣∣ is 

the amplitude estimator using the Fresnel Reflection 
coefficient at different elevation angles at p polarization 
(Arroyo et al., 2014). Thus, 

∣∣∣R̂p(θ , ε)

∣∣∣ is   linked to the soil 
moisture content at different θ values.

For the multipath method (Fig. 2), since h is the antenna 
height and SNRr is a periodic function of the carrier phase, 
it can be expressed as:

where Ar is the combination of the reflected power and 
gain pattern, proportional to the reflected power from 

(5)Pqmax(θ , ε) = Fn(θ) ·
∣∣E0i

∣∣2 · ∣∣1+ ∣∣Rp(θ , ε)
∣∣∣∣2

(6)Pqmin(θ , ε) = Fn(θ) ·
∣∣E0i

∣∣2 · ∣∣1− ∣∣Rp(θ , ε)
∣∣∣∣2

(7)
∣∣∣R̂p(θ , ε)

∣∣∣ ≈
√

Pqmax(θ ,ε)

Pqmin(θ ,ε)
−1

√
Pqmax(θ ,ε)

Pqmin(θ ,ε)
+1

(8)SNRr = Ar cos

(
4πh

�
sin(θ)+ ψr

)
,

GNSS receiver

(Linear polarization)

s
ΘΘ

Θ

Fig. 1 Single‑antenna GNSS‑R geometry for the IPT method. From 
https:// tel. archi ves‑ ouver tes. fr/ tel‑ 01417 284

https://tel.archives-ouvertes.fr/tel-01417284
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the ground, and ψr is the phase. Both depend on the 
angle of incidence θ.

Changes in soil moisture can be estimated by analyzing 
temporal fluctuations in the phase of SNR data for direct 
and reflected signals.

GNSS‑R dual antennas
In general, receivers equipped with dual antennas 
capturing direct signals through an RHCP antenna 
oriented to the zenith, while the reflected signals are 
captured using an LHCP antenna, with each signal’s 
power measured independently (Fig.  3). Three types 
of observing systems are feasible, depending on the 
antenna configuration:

An up-looking RHCP paired with a down-looking 
LHCP antenna receives the direct and surface-reflected 
signals, respectively. The reflectivity (Γ0) can be deter-
mined either by using the ratio of the reflected signal 
to the direct signal (Gleason et  al., 2005), or through 
a bistatic radar equation (Masters et  al., 2004). Sub-
sequently, ε can be retrieved from Γ0 using a surface 
roughness parameter within a specific scattering model 
(Ulaby et  al., 1982). These observations are influenced 
by ε, θ, and the surface roughness.

A configuration featuring one upward-looking antenna 
(RHCP) and two downward-looking antennas (one RHCP 
and one LHCP) enables measurement of both cross-
polarized and co-polarized components of Γ0 (Zavorotny 
& Voronovich, 2000). SMC is anticipated to correlate well 
with the ratio of the two Γ0, independent of the effect of the 
surface roughness.

For horizontal and vertical polarizations, the ratio of 
reflected to direct power can be expressed as a function of 
the surface roughness and soil reflectivity Γ0. The effect of 
surface roughness can be mitigated by utilizing the orthog-
onal polarization power ratio. This demonstrates its appli-
cability across a broad range of roughness, by retrieving 
the dielectric constant through the ratio of power densities 
scattered at hh and vv polarizations at different angles of 
incidence θ. To improve the calculation of ε, assuming that 
the ratio is a function of ε and θ, it is necessary to measure 
at least two different θ using the least squares method (Jia 
et al., 2019).

In all the three cases, the DDM is the basic observable 
when using the GNSS-R dual antenna configuration:

GNSS

receiver

s
ΘΘ

Θ

Tide Gauge

Sea Level

H

σ

h
tg

=
h

h
S

N
R

b)

Fig. 2 a Displays the phasor diagram of the received GNSS signal with demonstrating the relationships between the components in quadrature (Q) 
and phase (I) of the signal. b The geometry of the omnidirectional single antenna GNSS‑R receiver. From https:// tel. archi ves‑ ouver tes. fr/ tel‑ 01417 
284
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Fig. 3 Geometry of a dual‑antenna GNSS‑R. From https:// tel. archi 
ves‑ ouver tes. fr/ tel‑ 01417 284
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The  DDM represents the power of the signal as 
depicted in this equation. Across various points on the 
observation surface, the DDM illustrates the contribu-
tions of each τ and f. The bistatic radar coefficient (σ0) 
is subsequently estimated from the peak of the reflected 
signal waveform. On smooth surfaces, the coher-
ent component is significant and could be estimated 
through the direct signal, the Fresnel reflection coeffi-
cient (R), and a rough term depending on θ:

This method is predominantly used for oceanic stud-
ies and SMC measurements. Subsequently, the surface 
reflectivity (Γ0) can be estimated by the ratio of the 
reflected to direct signal. For this approach, the Doppler 
shifts of both reflected and direct signals are assumed 
to be identical, with an additional delay accounting for 
the reflected signal due to the measurement geometry. 
The corresponding equation can be expressed as:

where <  > represents the average operator, �τ denotes the 
delay between direct and reflected signals, Yd,p is the cor-
relation of the direct signal with the polarization p, and 
Yr,q is  the correlation of the reflected signal with polari-
zation q. The Interferometric Complex Field (ICF) con-
stitutes another observable, defined as the time series 
representing the maximum ratio of the reflected signal to 
the direct signal:

where R(t) and D(t) represent the maxima of the wave-
forms in the time series, and r(t), d(t), φr, and φd are 
denoted as the amplitude and corresponding phase. The 
ICF serves as an indicator of surface roughness, dielectric 
properties, and SMC characterization (Alonso-Arroyo 
et al., 2014).

Observations and missions
Ground-based observations, airborne platforms, and 
spaceborne GNSS-R missions constitute the three types 
of missions. In the case of ground-based platforms, 
either two antennas are utilized to separately receive 
the direct and reflected signals, or a single antenna is 

(9)

〈∣∣Y (τ , f )
∣∣2〉 =

T2
i PtGt�2

(4π)3

∫∫

A

Gr ( �ρ)

R20( �ρ)R2( �ρ)
σ 0
pqx

2( �ρ, δτ , δf )d �ρ

(10)

〈∣∣Y (τ , f )
∣∣2〉

spec
=

∣∣Y0(τ , f )
∣∣2|R|e−8π2σ 2

h cos2(θ)/�2 .

(11)Ŵpq =

∣∣∣∣
〈
Yr,q(�τ , f )

Yd,p(0, f )

〉∣∣∣∣
2

.

(12)ICF(t) =
Yr,q(i,�τ , f )
Yd,p(t, 0, f )

=
R(t)
D(t)

=
r(t)
d(t)

e−i(φr (t)−φd (t)),

employed to capture both signals, while in the case of 
aircraft or satellite platforms, only the dual antenna is 
employed.

Ground GNSS‑R observations
Several ground-based experiments have demonstrated 
the GNSS-R’s sensitivity to geophysical parameters such 
as soil moisture, snow depth, biomass content, sea sur-
face height, sea ice, surface mean square slope, and wind 
speed (Chew et al., 2016; Edokossi et al., 2020; Qian & Jin, 
2016; Yan & Huang, 2019c; Alonso-Arroyo et al., 2017). 
In fact, multipath effects of ground-based GNSS receivers 
have been demonstrated in many studies and utilized to 
retrieve soil moisture and biomass content (Chew et al., 
2016; Zavorotny et al., 2009). The IPT was employed to 
retrieve SMC (Mironov et  al., 2012; Rodriguez-Alvarez 
et al., 2009, 2010) and Arroyo et al. (2014) demonstrated a 
dual-polarization GNSS-R IPT capability to increase the 
soil moisture estimate accuracy. Ground-based experi-
mental campaign, the Land MOnitoring with Navigation 
Signals (LEiMON), was conducted by Egido et al. (2012) 
to enhance the accuracy of the reflectivity measurements. 
Soulat et al. (2004) tested ground-based GNSS observa-
tions to retrieve sea state (surface mean square slope and 
wind speed). The sea surface height was retrieved using 
the ground-based GNSS-R (Cardellach et  al., 2011; Jin 
et  al., 2017a; Ribot et  al., 2014; Ruffini et  al., 2004). In 
2013, Beihang University, China Meteorological Admin-
istration (CMA) and ESA conducted the first typhoon 
observation using coastal GNSS-R (Typhoon Investiga-
tion using GNSS-R Interferometric Signals, TIGRIS) in 
Yangjiang and Shenzhou, Guangdong, China (Li et  al., 
2014a, b; Martín et al., 2014).

Airborne GNSS‑R experiments
GNSS-R dual antenna is mostly used in airborne mis-
sions and several missions have demonstrated the capa-
bility of airborne observations for parameters retrieval 
(Jia et al., 2016; Katzberg et al., 2006a; Klemas et al., 2014; 
Martin et  al., 2011; Masters et  al., 2004; Motte et  al., 
2016; Troglia Gamba et  al., 2015). Soil moisture con-
tent was extracted from airborne experiments (Katzberg 
et al., 2006b; Masters et al., 2004). Egido et al. (2014) used 
low-altitude airborne to perform polarimetric meas-
urements of SMC, and Motte et  al. (2016) introduced 
the  GLObal navigation satellite system Reflectometry 
Instrument (GLORI) to retrieve soil moisture, vegeta-
tion water content, forest biomass content, and in-land 
water bodies. Frappart et al. (2021), Jia (2018), and Tro-
glia Gamba et al. (2015) employed airborne technique for 
in-land water body surface detection. Ribot et al. (2014) 
used experimental airborne campaigns for retrieving sea 



Page 7 of 42Jin et al. Satellite Navigation            (2024) 5:19  

surface height. Cardellach et al. (2003) and Garrison et al. 
(2002) employed airborne field campaigns to retrieve sea 
state parameters. Ocean wind speed and surface rough-
ness were recently studied using DDM observables from 
a receiver mounted on an aircraft. Aircraft experiments 
for sea and freshwater ice conditions and the freeze/thaw 
state of frozen ground were described in Komjathy et al. 
(2000).

Spaceborne GNSS‑R missions
The UK Disaster Monitoring Constellation (UK-DMC) 
satellite represented the first spaceborne GNSS-R mis-
sion,  launched in 2003, followed by the UK TechDemo-
Sat-1 mission in 2014, and NASA’s CYGNSS with a small 
8-satellite constellation in 2016. Bufeng-1 A/B is the first 
Chinese GNSS-R mission, while FY-3/GNOS-II oper-
ated by China Meteorological Administration is the first 
operational mission launched in 2021 that combines 
GNSS-R and GNSS radio occultation using multiple 
GNSS constellations. Spire CubeSats and ESA FSSCAT 
CubeSats have also been successfully launched since 
2019. Additionally, the  ESA Passive REflecTomeTry and 
dosimetrY  (PRETTY) satellite (for GNSS-R altimetry) 
was launched in October 2023, and the NASA Signals 
of Opportunity P-band Investigation (SNOOPI) mission 
(first reflectometry mission at P-band) is expected to be 
launched in 2024. The Hydrological Global Navigation 

Satellite System (HydroGNSS) is planned to be launched 
in 2025 by ESA and targets to collect data on the hydro-
logical climate variables. 3CAT-2 was an Experimental 
Nano-Satellite for GNSS-R Earth Observation developed 
by Universitat Politècnica de Catalunya (UPC). GNSS-R 
spaceborne missions are summarized in Table 1.

Status and advances
Instruments
Currently, the cGNSS-R, L1/LHCP, and GPS are the 
most common configurations used even though iGNSS-
R offers improved accuracy in ocean altimetry products. 
The next generation of GNSS-R instruments is currently 
being developed to expand upon the capabilities of the 
SGR-ReSI instrument in NASA’s CYGNSS mission (Ruf 
et al., 2016). This instrument operates on the low (L1/E1) 
and high (L5/E5) bandwidth signals of GPS and Galileo 
satellites, while CYGNSS uses only the GPS L1 signal 
(Ruf et al., 2016). Table 2 summarizes the characteristics 
of ground-based, air-borne, and space-borne GNSS-R 
instruments.

Ocean altimetry
GNSS-Reflectometry was first used to study ocean altim-
etry or sea surface height. Martin-Neira (1993) first 
proposed the concept of the PARIS. GNSS-R altimetry 
facilitates the detection of the height difference between 

Table 1 GNSS‑R spaceborne missions and instruments. Left‑ and Right‑Hand Circular Polarization (L/R‑HCP)

Mission Launched date GNSS‑R type Band/Pol used GNSS constellations

UK‑DMC (Gleason et al., 2005) 2003 cGNSS‑R L1 / LHCP GPS

UK‑TDS‑1 (Unwin et al., 2016) 2015 cGNSS‑R L1 / LHCP GPS

CYGNSS (Ruf et al., 2016) 2016 cGNSS‑R L1 / LHCP GPS

3Cat‑2 (Carreno‑Luengo et al., 2016) 2016 cGNSS‑R
rGNSS‑R
iGNSS‑R

L1, L2 / LHCP, RHCP GPS
GLONASS
Galileo
BDS

SMAP GNSS‑R (Carreno‑Luengo et al., 2017) 2017 cGNSS‑R L2 / H, V GPS

BuFeng‑1 A/B (Jing et al., 2019) 2019 cGNSS‑R L1 / LHCP GPS
BDS

Spire series (Masters, 2019) 2019 cGNSS‑R L1 / LHCP GPS
Galileo

Fengyun‑3 series (Sun et al., 2023) 2021 cGNSS‑R L1 / LHCP GPS
Galileo
BDS

3Cat‑5 A/B (FSSCat mission) (Camps et al., 2022) 2020 cGNSS‑R L1 / LHCP GPS
Galileo

3Cat‑4 (J. F. Munoz‑Martin et al., 2018) 2021 cGNSS‑R L1, L2 / LHCP GPS
Galileo

PRETTY (Dielacher et al., 2019) 2022 iGNSS‑R
cGNSS‑R

L5 / RHCP GPS
Galileo

TRITON (Juang et al., 2016) 2023 cGNSS‑R L1/LHCP GPS

HydroGNSS (Unwin et al. 2021) 2025 cGNSS‑R L1/LHCP + RHCP
L5/LHCP + RHCP

GPS
Galileo
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Table 2 Available information on existing GNSS‐R receivers. Types of GNSS‑R instruments include S for Spaceborne, A for Airborne, 
and G for Ground‑based. GPS‑IR represents GPS Interferometric Reflectometry

ID HW/ SW Number RF 
Port

Frequency 
Bands

BB 
Bandwidth 
(MHz)

Sampling 
Rate (MHz)

Output Rate 
(Hz)

Receiver 
Technique

GNSS 
Constellation

Type

GORS‑1(2) 
(Helm et al., 
2007)

HW 2 (4) L1, L2 – – – cGNSS‑R (C/A, 
L2C)

GPS, Galileo G, A

TR SW 2 L1, L2 – – – Raw GPS G

BJ SW 4 L1, L2 18 20 20,000 Raw GPS G

TriG 
(extended)

HW 8 (16) Any 4 within L 
band

2 to 40 config 20/40 0.1–1000 Any: software 
config

GPS, GLONASS 
Galileo

G

OceanPal/SAM SW 2 L1 4 16.367 1000 Raw GPS G

OpenGPS 
(Helm, 2008)

HW 2 L1 – 5.7 < 1000 cGNSS‑R (C/A) GPS G

COMNAC SW 1 L1 – 5.7 – Raw GPS G

Ublox LEA‑4 T HW 1 L1 2 4 – cGNSS‑R (C/A) GPS G

NordNav SW 1(4) L1 2 16.4 – Raw GPS G

GRAS HW 3 L1, L2 20 28.25 1000 cGNSS‑R (C/A) GPS G

DMR (Unwin 
et al., 2013)

HW 4 L1, L2 4 16 variable cGNSS‑R, raw GPS S

SGR‑ReSI‑Z HW 6 L1, L5 4 at L1
20 at L5

49.6 1 cGNSS‑R, raw GPS
Galileo

S

NGRx (C. Ruf 
et al., 2020)

HW 20 L1, L5 32 65 variable cGNSS‑R, raw GPS, Galileo, 
other

S

POLITO‑
GNSS‑R

SW 1 L1 – 8.1838 – Raw GPS G

GRIP‑SARGO HW 2 L1, L5, E1, E5 52 ≤ 150 1 cGNSS‑R GPS Galileo G

GLORI (Motte 
et al., 2016)

SW 4 L1 4 16.4 cGNSS‑R GPS A

GOLD‑RTR 
(Nogués‑
Correig et al., 
2007)

HW 3 L1 8 20 1000 cGNSS‑R (C/A) GPS G, A

PIR/A (Rius 
et al., 2012)

HW 3 L1 12 80 1000 iGNSS‑R Any at L1 G, A

SPIR (Ribó 
et al., 2017)

SW 16 L1, L5 80 40 40,000 Raw Any at L1, L5 G, A

SPIR‑UAV SW 8 L1, L5 80 40 40,000 Raw Any at L1, L5 A

DODEREC 
(Nogués et al., 
2003; Nogues‑
Correig, 2002)

HW 3 L1 – 20.46 – cGNSS‑R (C/A) GPS G

SMIGOL 
(Rodriguez‑
Alvarez et al., 
2009)

HW 1 L1 2.2 5.745 1 GPS‑IR (C/A) GPS G

PYCARO 
(Carreno‑
Luengo et al., 
2014; Olivé 
et al., 2016)

SW 2 L1, L2 20 > 100 MHz Tc and Ti 
config

cGNSS‑R, 
rGNSS‑R 
iGNSS‑R

GPS, GLO‑
NASS, Galileo, 
BDS

G, A, S

PYCARO‑2 SW 2 L1, L2, L5 B1, 
B2, B3 E1, E5

50 > 100 MHz 1 cGNSS‑R, 
rGNSS‑R

GPS, GLO‑
NASS, Galileo, 
BDS

G

MIR (Onrubia 
et al., 2019)

HW/SW 2 L1, L5 24 32.736 (× 2) Tc and Ti 
config

Raw GPS Galileo G, A
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the receiver and the reflecting surface. The distances 
between the transmitter, receiver, and/or surface are the 
observables to be considered in the measurement (Card-
ellach et  al., 2011) as it is shown in Fig.  4. Perfectly flat 
surfaces such as water or ice can be considered for altim-
etry measurement (Fabra et  al., 2011; Hajj & Zuffada, 
2003). The  circular regression technique referred to as 
carrier phase altimetry is more precise than  the group 
delay altimetry (code delay) technique (Kucwaj et  al., 
2017).

Radar altimetry considered as the primary spaceborne 
sea surface observation technology, is constrained by 
the mode of sub-satellite observation, suitable only for 
features on scales larger than 400  km (Fu et  al., 2010). 
GNSS-R is an effective technique that overcomes this 
limitation and facilitates the observation of small- to 
medium-scale and submesoscale sea surface heights 
with enhanced spatial and temporal resolution (Clarizia 
& Ruf, 2016). UK-DMC launched in 2003 and equipped 

with GNSS-R receiver, demonstrated its feasibility for 
altimetry technique. TDS-1 was launched in July 2014, 
and  could output the delay-Doppler maps (DDMs) 
(Unwin et al., 2016). NASA’s CYGNSS mission employed 
an improved receiver to monitor ocean wind speed (Ruf 
et al., 2012). Thanks to the advances in GNSS-R technol-
ogy, the Delay–Doppler Mapping Instrument (DDMI) 
can also process the signals transmitted by GPS, Galileo, 
and BDS.

To date, the only launched  space mission  dedicated 
to altimetry is ESA’s PRETTY mission. It operates at L5, 
the longest of the GNSS wavelengths, approximately 
25 cm, to maximize coherence over the sea surface and 
the sea ice when observed at grazing elevation angles 
(below some 15°). The 3U CubeSat is pointed in such a 
way that the RHCP GNSS-R antenna, attached to one of 
its faces, looks towards the limb of the Earth. Both the 
direct and the reflected signals are received through the 
same antenna. When a coherent reflection occurs, car-
rier-phase-based precise altimetry can be performed. 
Otherwise, a less precise group delay altimetry is carried 
out. From the carrier-phase observations centimeter-
level  precision altimetric profiles can be extracted. To 
convert those profiles into absolute height the carrier-
phase ambiguity must be solved or, alternatively, an 
auxiliary observation needs to be ingested. Group delay 
measurements provide absolute heights directly, after 
correcting for atmospheric effects.

Ocean wind
When the wind blows, the sea surface becomes rough 
under the wind-generated waves. The GNSS satellite 
signal illuminates the rough sea surface and undergoes 

Table 2 (continued)

ID HW/ SW Number RF 
Port

Frequency 
Bands

BB 
Bandwidth 
(MHz)

Sampling 
Rate (MHz)

Output Rate 
(Hz)

Receiver 
Technique

GNSS 
Constellation

Type

FMPL‑1 
(Munoz‑Martin 
et al., 2018)

HW/SW 2 L1, L2 2 4.096 Tc and Ti 
config

cGNSS‑R GPS S

FMPL‑2 
(Munoz‑Martin 
et al., 2020)

HW/SW 2 L1, E1 2.4 4.096 Tc = 1 or 4 ms; 
Ti config

cGNSS‑R GPS L1 C/A 
Galileo E1

S

FMPL‑3 HW/SW 2 L5 E5a 24 10.230 Tc and Ti 
config

cGNSS‑R GPS L5 Galileo 
E5a

S

GENESIS (Qiu 
et al., 2023)

HW 16 All L‑band – 2–40 I/Q 
config

1000 cGNSS‑R, 
GNSS‑RO, 
GNSS‑PRO

All GNSS 
and SBAS, ≥ 2 
freq. each

A, S

GRrSv.3 (Xing 
et al., 2022)

HW 4 L1, B1 4 16.369 1000 cGNSS‑R GPS
BDS

G

GNOS‑II (Sun 
et al., 2019)

HW 8 L1, B1, E1 8 4.096 1 cGNSS‑R GPS
BDS
Galileo

S

Fig. 4 Geometry of GNSS‑R altimetry. h is the antenna height 
from the reflected surface (Jin et al., 2017a)
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diffuse reflection. The peak value and shape of the DDM 
or delay  waveform are closely linked to the wind speed 
and the sea surface’s roughness. As wind speed increases, 
the sea surface comes rougher, approaching diffuse 
reflection, which results in a smaller peak value of the 
DDM or delay  waveform and flatter waveform edges. 
Conversely, the closer proximity to specular reflection 
yields a larger peak value and steeper waveform edges. 
Therefore, ocean wind speed can be retrieved by the 
DDM or delay waveform.

Bistatic radar equation
Based on Kirchoff Approximation to Geometric Optics 
(KA-GO), the expectation of DDM can expressed as an 
integral of the glistening area (Zavorotny & Voronovich, 
2000):

where the left side of the equation indicates the correlated 
power value between the reflected signal component, 
characterized by delay size τ and Doppler frequency  f  , 
and the local pseudo-random code of the receiver in the 
GNSS multipath reflected signal. This side typically uti-
lizes the relative values of signal delay and Doppler fre-
quency in reference to the specular reflection point. The 
symbols of the 〈〉 operation indicate the averaging 
or expectation; � on the right side of the equation is the 
GNSS signal carrier wavelength; Pt and Gt are the GNSS 
satellite transmitting power and antenna gain. PtGt rep-
resents the Effective Isotropic Radiated Power (EIRP) of 
the GNSS satellite, which usually varies not much in the 
sea surface area integrating around the specular point; Gt 
is the gain of the transmit antenna; �2(�τ)S2

(
�f

)
 is the 

Woodward Ambiguity Function (WAF) of the GNSS-R 
bistatic radar describing the selection of the correlation 
power with respect to the Doppler frequency and the 
time delay; −→ρ  represents the position of each point on 
the sea surface; Rt and Rr represent the distances from 
the specular point to the transmitter and receiver, respec-
tively; σ 0 is the GNSS-R normalized  bistatic scattering 
cross-section, which is related to the wind speed and can 
be expressed as:

where R is the Fresnel reflection coefficient, −→q  is the 
bisector, qz and q⊥ are the vertical and horizontal com-
ponents, and P() symbolizes the PDF of the sea surface 
slope, commonly assumed to follow a Gaussian distribu-
tion as a function of mean square slope:

(13)

∣∣Y (
τ , f

)∣∣2 =
�2PtGt
(4π)3

∫∫ Gr ( �ρ)�2(�τ)S2
(
�f

)

R2t ( �ρ)R2r ( �ρ)
σ0( �ρ)d( �ρ)

(14)σ0 = π|ℜ|2P

(
−
�q⊥
qz

)
�q4

q4z

By assuming a 0° wind direction, the PDF can simpli-
fied to be:

where −→s = −
−→q ⊥
qz

 denotes the surface slope and m is the 
mean square slope. The mean square slope can be related 
to the wind speed by a wind spectrum (Zavorotny & 
Voronovich, 2000) or an empirical model (Katzberg et al., 
2006a).

Observables
As wind speed is related to the magnitude and shape 
of the DDM  or delay waveform, for simplifications, 
the  observables can be extracted from the DDM and a 
geophysical model function can be trained for the rela-
tionship between the observable and wind speed. There 
are a large number of observables, among which the most 
commonly used ones are the Normalized Bistatic Radar 
Cross-Section (NBRCS) and Leading-Edge Slop (LES), 
especially for spaceborne missions.

Assuming that the geometry and power terms are the 
same as the ones at the specular point, the bistatic radar 
equation can be simplified to be:

where Aeff =
∫∫

�2(�τ)S2
(
�f

)
ds is the effective scat-

tering area at the specular point. The Bistatic Radar 
Cross-Section (BRCS) can be calculated as:

The NBRCS, σ0 is computed as the BRCS normalized 
by the effective scattering area:

To reduce noise, the NBRCS can be extended to the 
Delay-Doppler Map Average (DDMA), which is the aver-
age of NBRCS for several DDM bins in proximity to the 
specular point. The averaging area is determined by the 
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requirement of the spatial resolution. For example, the 
averaging box for CYGNSS limited by the 25-km resolu-
tion is 3 delay bins times 5 Doppler bins.

The LES is defined as the slope of the leading edge 
for the integrated delay waveform. The integrated delay 
waveform is the averaged delay waveform for several 
Doppler bins. The LES can be computed by the least 
square fitting method:

where m is the number of fitting points, and (xi, yi) is the 
coordinate of points.

Retrieval algorithm
Wind speed retrieval based on the observables and GMF 
is the most mature method up to now as it is easy to 
implement. For airborne cases, there are a large num-
ber of observables based on the shape and power of the 
DDM (Li et  al., 2023; Rodriguez-Alvarez et  al., 2013). 
However, for spaceborne missions, limited by the spatial 
resolution, usually only a small part of the DDM can be 
used for retrieval, and thus the DDM power magnitude is 
more sensitive to wind speed rather than the shape.

There are various methods for the training of the GMF. 
It can be trained by generating a set of look-up tables 
(LUT) (Clarizia et al., 2014) or non-linear fitting (Ruf & 
Balasubramaniam, 2018). The training is usually imple-
mented by different incidence angles. Because of the 
non-linear relationship between the  observables and 
wind speed, and the difference in sea state, the GMF can 
also be trained for low and high wind speeds separately 
(Ruf & Balasubramaniam, 2018). Some statistical meth-
ods have been proposed for the training and show good 
results (Clarizia & Ruf, 2020; Guo et al., 2021; Wu et al., 
2022). Some optimization methods can used to addition-
ally enhance the retrieval accuracy. A minimum variance 
estimator can be used to aggregate the results of multiple 
observables to improve accuracy (Clarizia et  al., 2014). 
Significant wave height (SWH) information was found to 
be useful in correcting the sea state effect and showing 
improvement in wind speed retrieval, especially at low 
wind speeds (Clarizia & Ruf, 2017; Pascual et al., 2021). 
A track-wise bias correction method can effectively cor-
rect the bias in the estimated transmitting power and 
antenna pattern and show great improvement, although 
pre-knowledge wind speed information from a numerical 
weather prediction (NWP) model is required. Generally, 
the wind speed error of well-calibrated GNSS-R observa-
tions is around 1.5 m/s when compared to NWP models 
or other satellite observations, and 1.2–1.5 m/s with extra 

(20)LES =
m

∑m
i=1 xiyi −

∑m
i=1 xi

∑m
i=1 yi

m
∑m

i=1 x
2
i −

(∑m
i=1 xi

)2

optimizations (Clarizia & Ruf, 2020; Huang et al., 2022) 
under low to medium wind speeds.

The second type of retrieval method is based on 
waveform fitting using a physical model. This method 
has been widely used for airborne cases and even wind 
direction can be retrieved (Yang et  al., 2022; Zhang 
et  al., 2024). However, it is difficult to apply for space-
borne cases as the footprint of the DDM can cover an 
area of over 100 km. Huang et al. (2019; 2020) proposed 
a method based on a physical DDM forward model that 
creates a grid of wind fields in the glistening zone, and 
then the wind speed at each grid can be inverted by 
sequential DDMs using the physical model and extended 
Kalman filter. A swath of wind field can be retrieved 
when compared to traditional a track of wind speeds at 
specular points. Similarly, Cardellach et  al. (2020) pro-
posed a method using a physical model and variational 
assimilation method, which shows better retrieval results 
at high wind speeds when compared to traditional meth-
ods. However, currently, none of the methods above has 
been used operationally due to the complexity of imple-
mentation and computational cost.

The third type of retrieval method is based on machine 
learning  (ML). There is a large bundle of ML-related 
methods in recent years  (Liu et  al., 2023; Reynolds 
et  al., 2020). Machine learning (ML) has the advantage 
of extracting high non-linear relationships between a 
large number of variables. The input variables are usu-
ally not limited to observables that are used by tradi-
tional methods but also include multiple geometry and 
instrument terms such as incidence angle, antenna gain, 
and PRN code. Therefore, the ML method has the advan-
tage of correcting potential calibration errors. Further-
more, some ML methods such as convolutional neural 
networks can extract information from the entire DDM 
(Arabi et al., 2023; Guo et al., 2021). The accuracy of most 
ML methods presents slightly better retrieval accuracy 
than GMF methods with RMSE under 1.5  m/s globally. 
However, the performance in the retrieval of high wind 
speeds is still challenging for both.

Typhoon monitoring
Typhoon, as an extreme weather system, is a high-alti-
tude cyclone phenomenon that often occurs in tropical 
and subtropical oceans. According to the different sea 
areas the typhoons have different names. When it occurs 
in the Northwest Pacific, it is generally called as typhoon, 
while those occurring in the Atlantic and East Pacific are 
commonly referred to as hurricanes. Vigorous cyclone 
often causes weather disasters, such as heavy rainfall, 
thunderstorms, strong winds, tornadoes, and hail. Those 
natural disasters are harmful to daily life, transportation, 
industrial, and agricultural production, therefore, have an 
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important influence on social activities. China has a long 
coastline located in the northwest Pacific Ocean. The 
China Meteorological Administration found that approx-
imately 8–10 typhoons make landfall in China every year. 
The detection, estimation, and prediction of typhoons 
are a common concern for all societies. Especially, the 
accurate positioning of the typhoon center and the pre-
diction of typhoon path are closely related to the forecast 
qualities of thunderstorms and the strong winds it brings. 
Therefore, accurate predictions of typhoon center posi-
tioning and typhoon path are the most important work in 
precise typhoon prediction and scientific analysis of dis-
aster reduction.

GNSS-R serves as a passive remote sensing technique. 
The successes of numerous spaceborne GNSS-R  mis-
sions, including UK-DMC, UK-TDS-1, CYGNSS, and 
BuFeng-1 A/B, alongside extensive airborne and ground-
based experiments, underscores the huge potential of 
GNSS-R for measuring Earth surface parameters. In 
comparison with traditional remote sensing techniques, 
GNSS-R offers the advantage of low-cost and low-power 
observations. Once microsatellites are equipped to form 
a constellation, and  high spatial and temporal resolu-
tion can be achieved on a global scale. Furthermore, 
GNSS-R’s operation at L-band makes it less susceptible 
to precipitation, rendering it particularly suitable for 
typhoon observations. Some studies have concentrated 

on detecting and estimating typhoons using coastal, air-
borne, and spaceborne GNSS-R.

The first typhoon observation of coastal GNSS-R was 
conducted by Beihang University and ESA in Yangjiang 
and Shenzhou of Guangdong province, China, from July 
to September 2013 (Li et al., 2014a; Martín et al., 2014). 
During the experiment, the GPS and BDS reflected 
signals were acquired when the typhoons “Jebi” and 
“Utor” passed through the observation areas. Figure 5b 
shows the observable evolutions of the reflected sig-
nals from the BDS GEO satellite in time and frequency 
domains, as well as wind speed during the typhoon 
“Jebi” and “Utor”. There was a good correlation between 
the observables of the reflected signal and typhoon 
wind speeds, with the observed maximum wind speeds 
reaching up to 35 m/s (Li et al., 2016). After then, more 
observables sensitive to typhoon wind speed were pro-
posed (Wang et al., 2016, 2019).

From 2000 to 2005, NASA’s Langley Research Center 
equipped the GPS reflection receiver on the NOAA 
Aircraft Operations Center (AOC) Hurricane Hunter 
P-3’s to acquire GPS reflected signals from several 
typhoons and tropical storms. The first retrieval of 
typhoon wind speed using airborne GNSS-R was 
performed on the data from the typhoon “Michael” 
(Katzberg et  al., 2001). The analysis revealed that the 
received signal power levels were relatively strong, 
showing comparability to that observed at considerably 

Fig. 5 a The track history of the typhoons “Jebi” and “Utor”. The blue triangle marker indicates the location of the experimental site. b Comparison 
of sea surface wind speed and coastal GNSS‑R observables in time and frequency domains during “Jebi” and “Utor” (Li et al., 2016)
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lower wind speeds. A more detailed analysis and results 
were presented in Katzberg et  al. (2006a), in which a 
simple function, as shown in Eq.  (21), was developed 
to model the mean square slope with wind speed from 
tropical storms.

where σ‖ and σ⊥ are respectively mean square slope par-
allel and perpendicular to wind direction, and f (U) is a 
function of wind speed U as:

This model is different from that of typhoon-free sea in 
(Cox & Munk, 1954), and has been widely used to model 
the mean square slope in the case of typhoons. This work 
also indicated that the retrieval approach designed for 
typhoon-free sea may be underestimated for high wind 
speed in the case of typhoons. A summary of wind speed 
retrieval using airborne GNSS-R during several typhoons 
was presented by Katzberg et  al. (2013). The results 
indicated that reflected GPS signals could be utilized to 
observe sea surface wind speeds from near-zero to in 
excess of 40 m/s.

As compared to the studies of monitoring typhoons 
using coastal and airborne GNSS-R, more works were 
focused on detecting and measuring typhoons using 
spaceborne GNSS-R through theoretical simulation and 
analyzing actual data from in-orbit spaceborne missions. 
Two types of works have been focused on typhoon meas-
urement. One work was to accurately retrieve typhoon 

(21)
{

σ� = 0.45 ·
(
0.000+ 0.00316 · f (U)

)
σ⊥ = 0.45 ·

(
0.003+ 0.00192 · f (U)

)

(22)f (U) =





U 0.00 < U ≤ 3.49
6 · ln (U)− 4.0 3.49 < U ≤ 46.00

0.411 ·U 46.00 < U

wind speed. Foti et  al. (2017) firstly processed the data 
from TDS-1 passing through typhoons and preliminar-
ily demonstrated that spaceborne GNSS-R could be 
employed to retrieve typhoon wind speed. The sensitiv-
ity of the CYGNSS observables to typhoon wind speed 
was examined by Guan et al. (2019), and it was found that 
CYGNSS-derived wind speed exhibited similar behavior 
to ASCAT, WindSat, and SMAP data juxtaposed around 
the eye of Typhoon "Irma", albeit underestimated at 
high wind speed. The relationships between the CYG-
NSS observables and wind speeds of both Fully Devel-
oped Sea (FDS) and Young Sea/Limited Fetch (YSLF) 
were explored (Ruf & Balasubramaniam, 2018). The 
results found that, as shown in Fig. 6, the dependency of 
the observables on wind speed varies between tropical 
cyclones and FDS conditions. The dependence of DDMA 
and LES on wind speed is independent of the  sea state 
when wind speed is below 10  m/s. Above 10  m/s, the 
wind speed dependence of the DDMA and LES in YSLF 
conditions progressively diverges from those in FDS con-
ditions (Wang et al., 2023). The different dependencies of 
the spaceborne GNSS-R observables on wind speed of 
FDS and YSLF conditions indicate that a special retrieval 
model of typhoon wind speed should be developed, 
such as in Ruf & Balasubramaniam  (2018) and  Wang 
et  al.  (2023). To improve the accuracy of retrieving 
typhoon wind speed, some novel algorithms were also 
proposed and tested. As an example, Huang et al. (2019, 
2020) introduced extended Kalman filtering and data 
assimilation to the retrieval models of wind speed. The 
test results of the CYGNSS data showed that those novel 
retrieval models can perform better than the previous 
models in typhoon conditions, such as Rodriguez-Alva-
rez and Garrison (2015).

Fig. 6 Relationships of DDMA (a) and LES (b) with wind speeds for FDS and YSLF conditions (Ruf & Balasubramaniam, 2018)
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The other work was to perform the detection of 
typhoons and the estimation of typhoon structure, such 
as the maximum wind speed, typhoon eye position, and 
radio of maximum wind speed using spaceborne GNSS-
R. Park et  al. (2014b) discussed the feasibility of space-
borne GNSS-R detecting typhoons and locating cyclone 
eye by using an end-to-end performance simulator for 
GNSS Reflectometry, Radio Occultation, and Scatterom-
etry onboard International Space Station (GEROS-ISS) 
mission. The proposed methodology is to reconstruct 
or map the scattering coefficients on the spatial domain 
from the DDM. This methodology was further dem-
onstrated (Li et  al., 2015), where a Spatial Integration 
Approach (SIA) was introduced to retrieve the scatter-
ing coefficients in the spatial domain from the DDM to 
detect oil slick and typhoon, as well to determine oil slick 
size and typhoon location. Figure  7 shows an example 
of detecting typhoons using this methodology, in which 
the reconstruction approach of the scattering coefficients 
is the constrained least squares (CLS) filter (Valencia 
et  al., 2011). Compared to the DDM, the reconstructed 
scattering coefficients in the delay-Doppler domain can 
highlight the scattering coefficients of typhoon area due 

to removing the modulations of the Woodward ambigu-
ity function, antenna pattern, and propagation factors. 
Once the scattering coefficients are mapped from the 
delay-Doppler domain to the spatial domain, the typhoon 
area is clearly manifested in the spatial domain. However, 
this methodology is sensitive to the DDM SNR (higher 
SNR can obtain a better performance), and should solve 
an ambiguity problem (two spatial scattering cells in the 
spatial domain map into the same delay-Doppler bin in 
the DDM).

Another simpler approach to detecting typhoons is to 
use the specificity of the DDM in the case of typhoons. 
Wang et  al. (2023) found that, as the specular point 
passed through a typhoon, there was an abnormal shift 
in DDM asymmetry. They identified two subsequent 
features–the slope and extremum difference–along the 
specular point’s trajectory, as indicators for typhoon 
detection. Figure 8 illustrates the subsequence features as 
the specular points traversed the typhoons “Champi”, “In-
Fa”, “Linda”, and “Mindulle”. The defined two subsequence 
features are sensitive to the four typhoons. As the specu-
lar points passed through the typhoons, the subsequent 
slopes exhibited anomalous “heartbeat” fluctuations, 

Fig. 7 a Ground‑truth scattering coefficients in the spatial domain; b Noise‑free DDM in the case of typhoon; c Reconstructed noise‑free 
scattering coefficients in the delay‑Doppler domain using CLS filter; d–f Reconstructed and mapped scattering coefficients in the spatial domain 
from the noise‑free DDM and the DDM with the SNR of 8 and 2 dB, respectively (Valencia et al., 2011)
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while the extremum differences displayed bimodal anom-
alous fluctuations. The spatial and temporal distribution 
of wind speeds retrieved through spaceborne GNSS-R 
also aids in typhoon identification. Park et al. (2018) and 
Al-Khaldi et  al. (2021a) developed a threshold-based 
(range or standard deviation of wind speeds within a 
time clump) detection mechanism to indicate convective 
activities. The algorithm to fix the typhoon center (May-
ers & Ruf, 2019a, 2019b) used a parametric typhoon wind 
model to bets-fit spaceborne GNSS-R wind speed data. 
It should be noted that these approaches have a  strong 
dependence on the quality and temporal resolution of the 
retrieved wind speed from spaceborne GNSS-R.

At present, two types of approaches have been involved 
to estimate the parameters of typhoon structure. One 
method is to use the spatial and temporal distributions 
of wind speed retrieved via spaceborne GNSS-R. Similar 
to the procedure of fixing  the typhoon center, the best-
fitting of a parametric typhoon wind model to the spa-
ceborne GNSS-R wind speed measurements also can be 
utilized to estimate the parameters of typhoon structure, 
such as the maximum wind speed, radius of maximum 
wind speed, and 50-kt wind radii (Morris & Ruf, 2017a, 
2017b). The corresponding estimation errors for maxi-
mum wind speed, radius of maximum wind speed, 34-kt, 
50-kt, and 64-kt wind radii respectively are − 5.29  m/s, 
− 1.2 km, − 120.5 km, − 31.9 km, and − 2.8 km. The esti-
mation accuracies strongly depend on the accuracies of 
the parametric typhoon wind model and GNSS-R wind 
speed. The other method entails directly estimating 
typhoon parameters from spaceborne GNSS-R observa-
tions, like delay waveforms. An estimation algorithm for 

typhoon maximum wind speed was proposed based on 
a matched filter between actual and theoretical wave-
forms (Said et al., 2017). This method was also expanded 
to incorporate the full DDM (FDDM) (Al-Khaldi et  al., 
2019a) and exhibited dependency on the typhoon models 
employed (Al-Khaldi et al., 2021a).

Sea ice detection
Sea ice detection is an important task for climate stud-
ies, maritime navigation, and environmental monitoring 
(Yan & Huang, 2019c). However, traditional remote sens-
ing methods, including Synthetic Aperture Radar (SAR) 
(Chen et  al., 2023) and Passive Microwave Radiometry 
(PMR) (Petrou & Tian, 2019), have some limitations in 
terms of spatial resolution, temporal coverage, and sen-
sitivity to different types of sea ice. GNSS-R represents 
a groundbreaking approach, leveraging reflected signals 
from navigation satellites like GPS, GLONASS, and Gali-
leo, to infer information about the surface properties of 
the Earth. GNSS-R has several advantages over conven-
tional methods, such as low cost, high availability, wide 
coverage, and high sensitivity to sea ice (Jin & Komjathy, 
2010).  In recent years, many studies have explored the 
potential of GNSS-R for sea ice detection and charac-
terization (Alonso-Arroyo et al., 2017; Hu et al., 2017; Li 
et  al., 2017; Schiavulli et  al., 2017; Yan & Huang, 2016, 
2018a, 2019a, 2019b; Zhu et  al., 2017). Here, the  main 
achievements and challenges are presented in this field, 
encompassing sea ice detection methods, type classifica-
tion, concentration estimation, and thickness retrieval.

Sea ice detection methods are the first step to identi-
fying the presence or absence of sea ice in a given area. 

Fig. 8 a–d MERRA‑2 wind speed distributions and e–h subsequence features of tropical cyclones (a) and (e) “Champi” (b) and (f) “In‑Fa” (c) and (g) 
“Linda” and (d) and (h) “Mindulle” (Wang et al., 2023). In (a)–(d), the black five‑pointed star represents the tropical cyclone center, the yellow line 
corresponds to the trajectory of the CYGNSS specular point, and the red solid circles indicate the coarse estimations of the cyclone centers
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Several methods have been proposed based on differ-
ent features extracted from the GNSS-R signals, such as 
delay-Doppler map (DDM) observables (Alonso-Arroyo 
et al., 2017; Hu et al., 2017; W. Li et al., 2017; Schiavulli 
et al., 2017; Yan & Huang, 2016, 2018a, 2019a, 2019b; Zhu 
et al., 2017), polarimetric ratios (PRs) (Fabra et al., 2011; 
Gao et al., 2017; Yun et al., 2014), waveform analysis (Hu 
et  al., 2017; Li et  al., 2017), and scattering coefficients 
(σ0) (Schiavulli et al., 2017; Yan & Huang, 2018b). These 
features capture the variations in the scattering behavior 
between sea ice and open water, which are mainly influ-
enced by surface roughness, permittivity, and coherence. 
Some of the methods use supervised learning techniques, 
such as neural networks (NNs) (Yan et  al., 2017), sup-
port vector machines (SVMs) (Yan & Huang, 2019a), and 
convolutional neural networks (CNNs) (Yan & Huang, 
2018a), to classify the features into sea ice or open water 
classes. Other methods use unsupervised learning tech-
niques, such as isometric mapping (ISOMAP) (Hu et al., 
2024), to reduce the dimensionality of the features and 
cluster them into different groups. The performance of 
these methods depends on several factors, such as the 
quality of the GNSS-R data, the availability of ground 
truth or reference data, the choice of features and classi-
fiers, and the environmental conditions.

Sea ice concentration estimation is the next step to 
quantify the fraction of sea ice in a given area. This is 
useful for assessing the extent and variability of sea ice 
in different regions and seasons. Several methods have 
been proposed based on different models that relate the 
GNSS-R features to the sea ice concentration (Yan & 
Huang, 2019b; Yan et al., 2017). Some of the models are 
empirical, such as linear regression or polynomial regres-
sion, which use historical data to establish a statistical 
relationship between the features and the concentration. 
Other models are physical, such as radiative transfer 
models or coherent scattering models, which use physi-
cal principles to describe how the GNSS signals interact 
with sea ice and open water. The performance of these 
methods depends on several factors, such as the accuracy 
of the models, the availability of calibration or validation 
data, the spatial resolution and coverage of the GNSS-R 
data, and the heterogeneity and dynamics of sea ice.

Sea ice type classification is another step to distinguish 
between various forms of sea ice, such as first-year or 
multi-year ice. This is useful for understanding the age 
and evolution of sea ice in different regions and seasons. 
The Classification and regression tree (CART) (Breiman, 
2017) has been adopted to fulfill this task based on differ-
ent features extracted from the GNSS-R DDM observa-
bles (Rodriguez-Alvarez et  al., 2019a). These features 
capture the variations in the scattering behavior among 

different forms of sea ice, which are mainly influenced by 
the salinity, density, porosity, and microstructure.

Sea ice thickness retrieval is the final step to estimate 
the vertical dimension of sea ice in a given area. This is 
useful for evaluating the volume and mass balance of 
sea ice in different regions and seasons. Several methods 
have been proposed based on different models that relate 
the GNSS-R features to the sea ice thickness including 
altimetric models (Li et al., 2017) or two-layer scattering 
models (Yan & Huang, 2020), which use physical princi-
ples to describe how the GNSS-R signals reflect from or 
penetrate into sea ice.

Soil moisture retrieval
Soil moisture  (SM) is a crucial component in the water 
cycle, which directly affects the evaporation, infiltration, 
water loss, and hygroscopicity of plants. It is of great 
significance to agriculture, ecology, wildlife, and public 
health (Shi et  al., 2012). Accurate measurement of soil 
moisture can study the energy balance between the land 
and the atmosphere, helps to predict and deal with dis-
asters, such as floods and landslides, contributes to the 
development of fine agriculture, and is therefore related 
to the national economy and people’s livelihood. How-
ever, it is usually impractical to obtain soil moisture on 
a larger scale through field measurements. Microwave 
remote sensing has the characteristics of all-weather, all-
weather, and strong penetration ability, and is one of the 
most effective means to obtain soil moisture on large-
scale and long-term time series. Existing microwave 
remote sensing systems, such as scatterometer and radi-
ometer, can effectively penetrate the atmosphere and per-
form large-scale measurements under various weather 
conditions (Entekhabi et al., 2010; Zhu et al., 2022). How-
ever, due to the high cost of equipment, low spatio-tem-
poral resolution, data sharing, and other factors, there 
are still some problems in SM retrieval and  scientific 
research.

Compared with other measurement methods, GNSS-
R technology is distinguished by its low cost and low 
power consumption, and enjoys many free and uninter-
rupted GNSS signal sources. Its receiver itself can use 
direct signals to achieve positioning and timing, and the 
L-band where the signal is located has the advantages of 
strong penetration in the atmosphere, low attenuation, 
etc., making it highly sensitive to soil moisture informa-
tion, so that the GNSS-R  has been widely used in land 
surface  soil moisture estimation (Njoku & Entekhabi, 
1996). In addition, the GNSS-R can provide strong spa-
tial–temporal resolution and can receive multi-angle and 
multi-polarized reflected signals, which provides a vari-
ety of possibilities for the study of signal processing and 
calculation methods. At present, there are more than 130 
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navigation satellites around the world that can provide 
continuous and stable high-quality GNSS-R measure-
ments with providing unprecedented opportunities for 
intensive soil moisture measurement.

The different relative dielectric constant of the surface 
observation object will cause the reflected signal to show 
different waveforms, which in turn affects the amplitude, 
phase, frequency, and other information of the reflected 
signal. The water content of the soil is positively corre-
lated with the soil dielectric constant, that is, the water 
content of the soil is high, and its dielectric constant 
value is also higher (Njoku & Entekhabi, 1996). The vari-
ation in the dielectric constant results in an alteration of 
the reflectance of the received surface reflected signal. 
In addition, changes in vegetation cover and roughness 
on the surface will affect or complicate the forward pro-
cess of soil moisture (Wan et al., 2015; Wu et al., 2021a). 
Therefore, the simplest foundation experiments are often 
carried out on relatively flat and open bare ground.

The total reflected power ( Ps
r ) received by the GNSS-

R receiver is the composite of different proportions of 
coherent reflection ( Pcoh

RL  ) and incoherent scattering 
( Pincoh

RL  ), as shown in Eq.  23. This value depends on the 
dielectric constant of the signal reaching the scattered 
surface, the geometric characteristics, and the direction 
of incident and outgoing electromagnetic radiation (Yueh 
et al., 2020):

Among them, the calculation of the coherent compo-
nent of the received signal for the dual-base radar can be 
written as:

where � denotes the wavelength, Pt represents the peak 
power of the transmitted GNSS signal, Gt and Gr indicate 
the gain of the transmitting and the receiving antenna 
respectively, Rr and Rt are the distances from the specu-
lar reflection point to the GNSS-R receiver and the GNSS 
transmitter, and ŴRL(θ) is the reflectance of the specular 
reflection point.

Equation  (24) can be rewritten in the logarithmic for-
mat as:

Solving formula (25) can obtain the surface reflectance 
SR:

(23)Ps
r = Pcoh

RL + Pincoh
RL

(24)Pcoh
RL =

(
�

4π

)2 PtGtGr

(Rr + Rt)2
ŴRL(θ)

(25)
10 log Pcoh

rl = 10 log Pt
r + 10 logGt + 10 logGr

+ 20 log �+ 10 log ŴRL

− 20 log (Rts + Rtr)− 20 log(4π)

While the total reflected power comprises both coher-
ent and incoherent components, it is unrealistic to 
completely separate the two in practice. Therefore, it is 
difficult to calculate the median value of the solution in 
Eq. (26) separately. Therefore, alternative parameters and 
scalars are typically employed. For example, the SNR or 
peak of each DDM is used  instead of reflected power 
(Chew & Small, 2020; Yan et al., 2020a, 2020b). The peak 
of SNR or each DDM is not exactly equal. Therefore, the 
reflectance estimated according to Eq.  (26) is called the 
equivalent reflectance. In addition, Eq.  (26) shows that 
some potential and unknown factors affect the reflec-
tance estimate, which in turn reduces its accuracy (Ero-
glu et al., 2019).

Equation  (24) is usually used under relatively flat sur-
face reflection conditions dominated by coherent reflec-
tion. In some areas with large topographic changes and 
roughness, or dense vegetation, the incoherent compo-
nents contained in the reflected signal become stronger 
than the coherent components (Chew & Small, 2018; 
Clarizia et al., 2019; Ruf et al., 2018; Senyurek et al., 2020; 
Zavorotny et  al., 2014). The incoherent or diffuse scat-
tering components of the reflected signal are articulated 
by the subsequent equation (Zavorotny & Voronovich, 
2000):

The calculation of the incoherent components can be 
written as follows:

σRL is a bistatic radar cross-section in units of  m2, which 
is the Fresnel reflection coefficient. Among them:

where σ 0
RL is the NBRCS, which denotes the reflected sur-

face area (often referred to as the shining area).
At this time, assuming that the surface reflection screen 

is relatively flat and smooth, the signal received by the 
GNSS-R receiver can primarily be considered as a coher-
ent component, that is, Pcoh

RL = Pinc
RL  . Then the reflectance 

can be expressed as:

In addition, based on the Kirchhoff Approximation 
(KA) model, both coherent and incoherent components  
in proximity to the specular direction are expressed as a 

(26)
SR = 10 log ŴRL = 10 log Pcoh

rl − 10 log Pt
r

− 10 logGt − 10 logGr − 20 log �

+ 20 log (Rts + Rtr)+ 20 log 4π

(27)Pinc
RL =

�
2PtGtGrRPL

(4π)3(RrRt)2
σRL

(28)σRL = Asσ
0
RL

(29)ŴRL(θ) =
σRL(Rr + Rt)

2

4πR2
t R

2
r
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function of the Fresnel reflectance and the square of the 
Fresnel reflection coefficient ( R2

RL ) (Tsang et al., 1985).
The Fresnel coefficient can be solved by the specular 

reflectance of the reflection point:

where the parameter h can be obtained directly from 
the SMAP data, γ is the opacity coefficient of vegetation, 
γ = exp(−τec(θ)), and the optical thickness of vegetation is 
calculated by the water content of vegetation (VWC) and 
the empirical coefficient of the land cover type. VWC can 
be obtained from the empirical value of the normalized 
vegetation index (NDVI) through SMAP data, which is 
directly provided by SMAP data.

The Fresnel reflection coefficient correlates with the 
dielectric constant ( εr ). After obtaining the Fresnel coef-
ficient, the relationship between the reflectance and the 
Fresnel coefficient can be written as:

Further, the dielectric constant is related to the soil 
water content (Tabbagh et al., 2013):

where RVV (θ) is the vertical polarization component and 
RHH (θ) is the horizontal polarization component, and 
both are functions of the angle of incidence θ and the soil 
dielectric constant ε. The Fresnel reflection coefficients 
for different polarizations function are based on the angle 
of incidence and the dielectric constant.

Therefore, the ideal GNSS-R-based soil moisture for-
ward projection method relies on solving the dual-base 
radar equation when obtaining surface reflectance. After 
the acquired GNSS-R surface reflectance was corrected 
for the effects of vegetation cover and surface rough-
ness to obtain the Fresnel reflectance coefficient. Further, 
the dielectric constant can be calculated by the Fresnel 
reflectance equation model, and the soil water content 
can be further solved. The method to  estimate soil mois-
ture by the dual-base radar equation mainly adopts the 
model method of reflectance, dielectric constant, and soil 
moisture, which is a typical method of positive soil mois-
ture  (Yin et  al., 2023). Starting from this idea, the soil 
moisture forward observation model based on GNSS-R 
technology is roughly divided into the following three 
strategies:

(30)ŴRL(θ) = RRL(θ)
2γ 2 exp(−hcos2(θ))

(31)RRL(θ) =
1

2
(RVV (θ)− RHH (θ))

(32)RHH (θ) =
cosθ −

√
εr − sin2θ

cosθ +
√
εr − sin2θ

(33)RVV (θ) =
εrcosθ −

√
εr − sin2θ

εrcosθ +
√

εr − sin2θ

The first method is to use the multipath reflection effect 
of GNSS signals, also known as GNSS-Interferomet-
ric Reflectometry (GNSS-IR) technology. Representative 
results mainly come from a group from the University of 
Colorado, USA. This method uses a ground-based RHCP 
antenna pointing to the zenith to simultaneously receive 
direct signals from GPS and reflected signals from the 
surface  with causing multipath effects. The delay in the 
phase of the reflected signal relative to the direct sig-
nal causes the amplitude of the total received signal to 
change regularly with the sine of the satellite elevation 
angle θ (sin(θ)), and the soil moisture information will be 
reflected in the signal-to-noise ratio of the received signal 
(Geremia-Nievinski & Larson, 2013; Larson et al., 2010; 
Minsi et al., 2015; Wu et al., 2018; Yueji et al., 2020).

The second method is the "Interference Pattern Tech-
nique" (IPT), which was mainly developed by UPC Uni-
versity, Spain. This method usually uses a horizontally 
oriented Vertical Polarization (VP) antenna. The inter-
ference between the received direct and reflected signals 
will cause fluctuations in the total received power, and 
the point with the smallest amplitude fluctuation (notch) 
corresponds to the position of the Brewster angle, and 
the surface parameters are obtained by establishing a 
model (Rodriguez-Alvarez et al., 2009). Based on this IPT 
polarization interference theory, the UPC designed a new 
L-band reflectometer instrument (SMIGOL reflectom-
eter), which can use GNSS interference mode to obtain 
parameters, such as terrain, soil moisture, and vegetation 
height (Rodriguez-Alvarez et  al., 2011). In theory, IPT 
technology can be applied to both Vertical Polarization 
(VP) components and Horizontal Polarization (HP) com-
ponents. As a result, Alonso-Arroyo et  al. (2014) added 
an HP polarized antenna, proposed a measurement tech-
nique that involves tracing the phase difference between 
VP and HP interferogram, and updated the calculation 
model to enhance the precision of Brewster angle deter-
mination and further augment the SM measurement 
accuracy. Compared with the minimum notch detection 
algorithm, the change in calculation results is smoother, 
and the effectiveness of this method is verified. However, 
since IPT technology relies on the coherent scattering 
of the reflected signal, the reflected surface to be tested 
must meet the Rayleigh requirements of the smooth 
surface.

The third dual-base radar method (bi-static radar) is 
also the most commonly used. This method is commonly 
used in aircraft, satellites, and other platforms to realize 
mobile remote sensing of the surface. Since reflectance 
is a function of soil dielectric constant, elevation angle, 
and surface roughness, the dielectric constant can be cal-
culated by correctly selecting a specific surface scatter-
ing model (Ulaby et al., 1986). Since then, the calculation 
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of soil moisture based on the dielectric constant of the 
microwaves (notably the L-band) has undergone exten-
sive study, leading to the establishment of several recog-
nized theoretical and empirical models (Dobson et  al., 
1985; Hallikainen et al., 1985; Mironov et al., 2009; Wang 
& Schmugge, 1980). However, most of the input variables 
to such models need to provide soil texture information, 
such as the percentage content of clay and sand. After 
obtaining the dielectric constant of the target observation 
point, combined with the soil texture information, the 
soil water content can be calculated.

In recent years, due to the demand for large-scale 
space and continuous observation, the method of using 
satellite constellations equipped with GNSS-R receivers 
to receive data and then retrieve soil moisture estimates 
by referring to soil moisture modeling has been widely 
recognized. Initially, space-borne GNSS-R missions 
were designed to monitor and observe the ocean, but 
the scattered signals received from land attracted more 
interests in land surface applications, like soil moisture 
estimation (Ruf et al., 2018), particularly from the CYG-
NSS mission.

The CYGNSS constellation mission with eight micro-
satellites was originally designed to monitor tropical 
cyclones and covered all regions from 38°N to 38°S lati-
tude (Jin et  al., 2017b; Li et  al., 2014a). Each satellite of 
this mission can receive up to four signals at the same 
time, working as a multi-receiving bistatic radar. In this 
way, the data of eight satellites can be obtained at a single 
point in time to observe 32 different points on the earth’s 
surface, and then obtain metadata such as DDM and 
BRCS. From this point, the CYGNSS constellation mis-
sion is designed to have a high temporal resolution (an 
average of 7.2 h in the ocean and 1–2 days on land) (Ruf 
et  al., 2016). For specular reflection (Fresnel zone) and 
diffuse reflection (shining zone), the spatial resolution 
of the constellation theoretically ranges from 0.5  km to 
25 km, respectively (Eroglu et al., 2019). Since 2019, the 
incoherent time of CYGNSS has been adjusted from 1 to 
0.5 s, with the commonly utilized minimal spatial resolu-
tion by 3.5 × 0.5 km (Chew & Small, 2020).

In retrieving soil moisture from CYGNSS data, most 
of the soil moisture released by the SMAP constellation 
mission is used as a reference and modeling basis. In 
terms of modeling methods, Chew and Small (2018) dis-
covered and explained the correlation between CYGNSS 
reflectance and SMAP soil moisture changes through 
linear regression methods, with an unbiased Root Mean 
Square Error (ubRMSE) of 0.045  cm3/cm3. In 2019, Zribi 
et  al. (2019) used ASCAT (C-band microwave scatter-
ometer) to measure soil moisture on-site and evaluated 
the soil moisture retrieval algorithm proposed by it, 

confirming the effectiveness of the retrieval algorithm. 
Chew and Small (2018) proposed a daily soil mois-
ture product (UCAR CU) based on CYGNSS data with 
a spatial resolution of 36  km. It was verified by SMAP 
soil moisture, and the ubRMSE obtained was 0.049  cm3/
cm3 with a correlation coefficient of 0.4. Al-Khaldi et al 
(2019b) utilized the maximal and minimal SMAP soil 
moisture references to constrain the limits of CYGNSS 
SM  retrieval results  and achieved an overall RMS error 
(RMSE) of 0.04  cm3/cm3. Kim and Lakshmi (2018) pro-
posed to use the relative Signal-to-Noise Ratio (rSNR) 
from CYGNSS to retrieve soil moisture and derived the 
daily soil moisture estimator by amalgamating the rSNR 
of CYGNSS with the SMAP soil moisture.

Machine Learning (ML) and Deep Learning (DL) 
techniques are effective to study and model the linear 
or nonlinear relationships between input and output 
characteristics. For example, widely recognized super-
vised regression ML (such as Support Vector Machine 
(SVM), Decision Tree (DT), and Random Forest (RF)), 
along with neural networks have been used to enhance 
the accuracy of GNSS-R soil moisture retrieval (Yang 
et al., 2016), and Extreme Gradient Boosting (XGBoost) 
method were used to perform correlation analysis of the 
relationship between some input variables and soil mois-
ture in the single-base radar method (Jia et  al., 2019). 
Eroglu et  al. (2019) proposed a soil moisture retrieval 
method based on Artificial Neural Networks (ANN). 
The input characteristics of ANN include CYGNSS 
reflectance and several other auxiliary data. The num-
ber of auxiliary data is large, and the retrieval effect is 
better. Yang et al. (2020) used a Back-Propagation Arti-
ficial Neural Network (BP-ANN) to construct a model 
to retrieve monthly soil moisture estimates at the target 
location, and at the same time evaluated the soil mois-
ture retrieval performance of the CYGNSS and TDS 
satellite constellations. Furthermore, Santi et al. (2020a) 
used a multi-layer perceptron artificial neural network 
(MLP-ANN) algorithm to determine soil moisture and 
vegetation optical thickness (VOD). The estimated val-
ues of VOD and soil moisture (SM) obtained using the 
ANN algorithm were well consistent with the reference 
values provided by SMAP (RVOD = 0.924; RSM = 0.85), 
proving the potential of the algorithm in determin-
ing VOD and soil moisture parameters. Senyurk et  al. 
(2020) used a variety of ML methods, such as ANN, 
SVM, and RF, to conduct comparative experiments. 
Comparing with the experimental results, the use of the 
RF algorithm to estimate SM has the best results, with 
an average ubRMSE of 0.047  cm3/cm3. Other methods 
are greatly affected by the quality of data. Yan et  al., 
(2020a, 2020b) proposed the BRT (bagged regression 
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trees) method to retrieve SM, using CYGNSS data prod-
ucts, geographic location data, and related climate type 
information as input parameters, and the RMSE of the 
retrieval result was 0.05  cm3/cm3.

In terms of large-scale spatial study on a global scale, 
Jia et  al. (2021) combined ML methods with pre-classi-
fication strategies to retrieve soil moisture and construct 
estimation sub-models based on different types of global 
surfaces. The results showed that under the pre-classi-
fication strategy, the accuracy of different ML retrieval 
algorithms has been significantly improved, and the pre-
classification strategy has a positive effect on soil mois-
ture retrieval. After that, Jia et  al. (2022) used surface 
classification as an input parameter and used the strat-
egy of digitizing surface parameters combined with the 
XGBoost algorithm to estimate global soil moisture. The 
model requires fewer input variables and better predic-
tion accuracy. The average ubRMSE for Retrieve global 
soil moisture is 0.041  cm3/cm3. Similarly, Lei et al. (2022) 
used auxiliary data sets such as reflectance provided 
by CYGNSS data, and the soil moisture from SMAP 
as a reference value, and the RF method was used to 
achieve a global soil moisture estimate at a spatial resolu-
tion of 9  km. The retrieval result showed that ubRMSE 
reached 0.0543  cm3/cm3. The results indicated that the 
ML method based on the classification regression tree 
is more suitable for the retrieval of soil moisture from 
CYGNSS. In addition, some scholars have tried to eluci-
date the impact of interfering factors through the appli-
cation of semi-empirical methods or the development of 
new model algorithms (Calabia et al., 2020; Tang & Yan, 
2022). Meanwhile, ML and DL methods were employed 
to investigate and delineate the potential nonlinear rela-
tionship among interfering factors (such as vegetation 
and surface roughness), GNSS-R observations, and soil 
moisture, and more significant results were achieved.

Flood mapping
Flooding is usually a surge of water caused by heavy rain-
fall or snowmelt over a short period of time, etc. Each 
year, human casualties and property damage due to 
flooding rank among the highest of all types of disasters 
(Mishra et al., 2022). When a flood occurs, high tempo-
ral and spatial resolution flood monitoring can not only 
provide a reference for the government’s rescue decision-
making, but also help in post-disaster reconstruction 
planning. At the same time, flood monitoring enhances 
our understanding of the spatial and temporal dynamics 
of floods, offering crucial support for future flood fore-
casting and early warning systems (Hirabayashi et  al., 
2013; Jonkman, 2005; Klemas, 2015).

The traditional flood monitoring approaches such as 
hydrological station monitoring, although highly accu-
rate, are small in scope, time-consuming, and labor-
intensive, falling short of the demands for large-scale 
monitoring. The advent and advances of satellite remote 
sensing technology have revolutionized inland water 
monitoring, switching from the conventional single-
point scale to a wider spatial scale and providing tech-
nical support for long-time sequence and large-scale 
inland water monitoring (Bates, 2004). However, optical 
remote sensing missions (such as Sentinel-2, Moderate 
Resolution Imaging Spectroradiometer (MODIS), Land-
sat, GF-2, GF-6, and ZY-3) are susceptible to cloud cover 
and vegetation obscuration (Asner, 2001). Comparatively, 
microwave remote sensing is favored for soil moisture 
monitoring and inland water monitoring, benefits from 
its resilience to clouds and vegetation and its sensitivity 
to surface dielectric constants. Microwave remote sens-
ing is categorized into active and passive types based 
on whether or not the signal is actively emitted. Com-
mon active microwave remote sensing satellites include 
Sentinel-1 SAR, ALOS-2, TerraSAR-X, GF-3, and oth-
ers. Although they can provide high spatial resolution 
(10 m–10 km), the time resolution of active microwaves 
is low (7d–15d). Common passive microwave remote 
sensing satellites include SMAP, SMOS, AMSR-E, FY-3, 
and so on. Although they can provide high temporal 
resolution (1–3d), the spatial resolution of passive micro-
waves is low (> 25 km).

Spaceborne GNSS-R is an emerging remote sens-
ing technology that has emerged in recent years. Using 
a constellation of near-Earth micro-satellites to receive 
and process the surface-reflected L-band signals emit-
ted by the GNSS, spaceborne GNSS-R is now widely 
employed for the inversion of various oceanic and land 
surface parameters (Rodriguez-Alvarez et al., 2010).  As 
compared to active microwave remote sensing, GNSS-
R leverages pre-existing GNSS L-band signals, resulting 
in reduced costs and lower power consumption (Hein, 
2020). Compared to passive microwave remote sensing, 
GNSS-R measurements of forward-scattered signals are 
less susceptible to the influence of surface roughness. In 
conjunction with the many GNSS signals that already 
exist and are available in large quantities free of charge, 
spaceborne GNSS-R technology has received increas-
ing attention. Numerous spaceborne GNSS-R missions 
have been developed, such as UK-DMC and TDS-1 in the 
United Kingdom, the CYGNSS in the United States, and 
BF-1 and FY-3 in China. Among them, CYGNSS is cur-
rently the only mission that operates in orbit and opens 
the download of observations to the public free of charge. 
Here, some major achievements are presented in the field 
of CYGNSS flood detection.
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In 2018, Chew et al. (2018) conducted flood detection 
in parts of the United States and the Caribbean dur-
ing the 2017 Atlantic typhoon season using CYGNSS 
data, and obtained surface inundation maps before and 
after flooding, respectively, using the reflectivity thresh-
old method. A comparison of the inversion results with 
SMAP surface bright temperature data and Landsat opti-
cal imagery demonstrates that spaceborne GNSS-R can 
provide higher-resolution surface inundation informa-
tion (Chew et al., 2018). This marked the inaugural dem-
onstration of the feasibility of CYGNSS data for flood 
detection. Wan et al. (2019) used the CYGNSS reflectiv-
ity threshold method to delineate the extent of flooding 
caused by heavy rainfall during the 2017 typhoon season 
in China, revealing a significant correlation between the 
CYGNSS surface reflectivity and Global Precipitation 
Measurement (GPM) data. The flood extent mapped 
from CYGNSS data closely aligns with the surface bright-
ness temperature data from SMAP and SMOS. Rodri-
guez-Alvarez et al. (2019b) utilized a ML method based 
on the RF algorithm with multiple decision tree random 
structure (MDTR), using CYGNSS peak SNR, leading 
edge slope, trailing edge slope as well as topographic 
data and vegetation information as inputs. It was shown 
that seasonal floods within the Pacaya-Samiria Nature 
Reserve, situated in the Peruvian Amazon’s tropical wet-
lands, were categorizable into three types, namely, Open 
Water (OW), Flooded Vegetation (FV) and Non-Flooded 
vegetation (NF). The findings indicated classification 
accuracies for OW, FV, and NF at 65.4%, 60.26%, and 
94.75%, respectively (Rodriguez-Alvarez et  al., 2019b). 
Unnithan et al. (2020) combined CYGNSS data with ter-
rain data and generated flood inundation maps using 
parameters such as the height of the nearest drainage sys-
tem (HAND) and the slope of the nearest drainage sys-
tem (SND). Meanwhile, Sentinel-1A’s Synthetic Aperture 
Radar (SAR) data were employed to simulate the floods 
occurring in Kerala in August 2018 and northern India in 
August 2017. The findings revealed that CYGNSS’s flood 
detection accuracy ranged from 60 to 80% (Unnithan 
et al., 2020). Rajabi et al. (2020) investigated the feasibil-
ity of monitoring the spatial and temporal evolution of 
floods using CYGNSS data during the 2020 heavy rains 
in Sistan and Baluchistan, Pakistan. The study concluded 
that CYGNSS SNR was effective for detecting and map-
ping flood distribution, with retrieval results aligning 
well with flood data from MODIS optical imagery (Rajabi 
et al., 2020). Liu et al. (2021) investigated the spatial and 
temporal variations of seasonal floods in South Asia 
using the coherent signal detection approach, utilizing 
CYGNSS raw count DDM proposed by Al-Khaldi et  al 
(2021b). The results showed that, during the dry season, 
the monitoring extents of the two methodologies were 

largely comparable to the flood detection results from 
SMAP. However, in the rainy season, the detection scope 
for surface reflectivity exceeded that of power ratio. The 
spatial distribution of CYGNSS coherent signals in South 
Asia in May and August 2020, as well as the spatial distri-
bution of floods in South Asia obtained using CYGNSS 
surface reflectivity and SMAP satellites are given in Fig. 9 
(Liu et al., 2021).

Zhang et  al. (2021) inverted the surface inundation 
during extreme precipitation in Henan, China in 2021 
using the surface reflectivity threshold (SR) method. The 
SR threshold was established through a comparison of SR 
values across various land covers and land uses in Henan, 
China. The comparison revealed that the retrieval results 
closely mirrored the inundation extent from SMAP, with 
the former boasting superior spatial and temporal reso-
lution. Figure  10 shows the differences in the CYGNSS 
basic observation DDM for an area before and after the 
occurrence of the 7.20 rainstorm in Henan, China (Zhang 
et  al., 2021). The specific statistics are given in Table  3 
(Zhang et al., 2021). Figure 11 gives the changes in sur-
face reflectivity, soil moisture, and daily rainfall before 
and after the flooding in a region of Henan, China (Zhang 
et al., 2021).

Yang et  al. (2021b) undertook a parallel study  with 
employing the surface reflectivity thresholding method 
to map the flood distribution across Henan Province, 
China in July 2021. Unlike previous studies, Yang et  al. 
(2021b) linearly interpolated the daily CYGNSS SR, 
which in turn yielded daily flood monitoring results. 
MODIS and SMAP data were served as validation data,  
and results revealed a strong correlation among the three 
datasets. Zeiger et al. (2022) analyzed the surface reflec-
tivity of CYGNSS in depth and assessed its potential for 
dynamic mapping of global floods. An optimal balance 
between high spatial and temporal resolution was identi-
fied with a spatial resolution of 0.1° and a sampling inter-
val of every 7 days. In addition, the results showed that 
even along the Amazon and Congo rivers, where surface 
biomass (AGB) was as high as 300 Mg/ha, and CYGNSS 
data can still identify major floodplains and open waters. 
Zhang et al. (2023a) explored the potential of employing 
CYGNSS data for near-real-time flood monitoring. Daily, 
3  km flood monitoring results were obtained by inter-
polating CYGNSS SR through a newly proposed spatial 
interpolation method based on previous observations 
(POBI) (Chew, 2021).

Wei et  al. (2023) combined Sentinel-2 data to classify 
the surface into high soil moisture areas and low vegeta-
tion cover areas and proposed a dual-threshold method 
based on the classification results, which was success-
fully applied to the detection of flooding in Guangdong 
Province, China in the summer of 2022. Downs et  al. 
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(a) Distribution of coherent regions in May

(coherent blue, incoherent gray, the same below)

(b) Distribution

of coherent regions in August

(c) May Flood Distribution Obtained by

 Reflectivity (Flood Blue,Same Below)

 (d) August Flood

Distribution Obtained by Reflectivity

(e) May Flood Distribution Detected by SMAP (f) August Flood Distribution Detected by

SMAP

Fig. 9 Spatial Distribution of CYGNSS coherent signals and flood using CYGNSS Surface Reflectivity and SMAP in May and August 2020 (Liu et al., 
2021)
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Fig. 10 Delay‑Doppler map (DDM) changes before and after floods in the same area. a 5 June (before the flood); b 23 July (flooding); and c 13 
August (after the flood) (Zhang et al., 2021)

Table 3 Changes in delay‑Doppler map (DDM) parameters before and after floods in the same area. Effective isolated radiated power 
(EIRP), surface reflectivity (SR), and SNR (Zhang et al., 2021)

Date Satellite number SP position Track number EIRP (watt) SNR (dB) SR (dB)

June 5 Cy02 114° 19′ E 34° 42′ N 251 528.57 8.03 − 17.96

July 23 Cy03 114° 15′ E 34° 48′ N 466 724.74 16.93 − 6.15

August 13 Cy02 114° 16′ E 34° 42′ N 969 595.33 7.67 − 18.25

Fig. 11 Changes in precipitation, soil moisture, and reflectivity near (34°N, 114°E) from June 1 to August 31, 2021. Black bars represent 
the precipitation, red scatter plots represent soil moisture, and blue dot plots represent surface reflectivity. r = 0.7 (Zhang et al., 2021)
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(2023) conducted an in-depth study of the performance 
of spaceborne GNSS-R in detecting inland water bodies 
in the case of South Sudan, and quantitatively compared 
the water distributions obtained by CYGNSS with those 
obtained by MODIS, the Visible Infrared Imaging Radi-
ometer (VIIRS), and the Sentinel-1 SAR in the C-band, 
respectively. The results showed that CYGNSS detected 
35.4% more surface water when compared to Sentinel-1, 
whereas the VIIRS- and MODIS-based products under-
estimated these amounts by 4.8% and 83.7%, respectively. 
Yang et al. (2023a, 2023b) introduced a novel flood inun-
dation retrieval index utilizing the CYGNSS data, the 
inter-annual threshold flood inundation index (ATFII), 
and flood inundation levels were quantified. The results 
were validated using VIIRS flood products and GPM pre-
cipitation data. Comparisons showed that the ATFII was 
capable of quickly mapping areas where flooding occurs 
and can reflect changes in inundation levels.

Snow and cryosphere sensing
GNSS-IR has been developed and used in  estimating 
snow depths (Larson et al., 2009; Pinat et al., 2021; Yang 
et al., 2023a, 2023b; Zhang et al., 2023a, 2023b, 2023c) 
(Fig.  12), e.g., sensing snow depth variation using the 
GNSS  SNR measurements (Larson & Nievinski, 2013) 
and phase-based multipath (Qian & Jin, 2016). Com-
pared to other methods such as sonic rangers (footprint 

around 1  m2), the GNSS-IR is well suited to remote 
regions since the estimate of daily snow depth can have 
a footprint between 1000–10,000  m2 (Larson & Niev-
inski, 2013; Larson et al., 2020). Snow water equivalent 
(SWE) retrieval is possible by analyzing the phase dif-
ference between reflected and direct signals (Bai & Tan, 
2020).

The GNSS reflected signals from each layer of snow 
allow us to estimate the snow and ice thickness. This 
measurement is possible by observing the delay of the 
reflected signal, with depth modeled based on the angle 
of incidence or the relative amplitude among the vari-
ous polarizations (Fabra et al., 2011). Ice thickness, sur-
face roughness, and permittivity measurement have 
been estimated (Cardellach et al., 2012; Komjathy et al., 
2000). Rivas (2007), Rivas et al. (2009), and Wang et al. 
(2022) studied the temperature of the reflecting sur-
face to distinct frozen areas from non-frozen areas. 
Furthermore, surface roughness and permittivity were 
retrieved through analyzing polarimetric reflectivity 
(Rivas et al., 2009).

Vegetation remote sensing
Vegetation water content and forest biomass content 
have been studied using GNSS multipath effects (Motte 
et  al., 2016). The Leaf Area Index (LAI), and the Veg-
etation Height (VH) have been measured using GLORI 

Fig. 12 GNSS‑IR for snow height measurement (Pinat et al., 2021)
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airborne observations by (Zribi et al., 2018). For ground-
based GNSS-R vegetation parameters  estimation, the 
SNR method and IPT are the most widely used. The mul-
tipath information from the SNR was used to retrieve the 
vegetation water content and NMRI (Normalized Micro-
wave Reflection Index) (Chew et  al., 2016; Haase et  al., 
2008; Loria et  al., 2019). The IPT employs an enhanced 
GPS receiver with improved vertical and horizontal 
polarization to acquire the surface properties (Rodri-
guez-Alvarez et  al., 2010, 2012). The vegetation height 
information can be obtained by  the notch position and 
number information of the interference waveform.

For airborne platform, Egido (2013) demonstrated a 
correlation between the bistatic reflectivity and the bio-
mass for levels as high as 300 tons/ha. The LEiMON 
(Land Monitoring with Navigation Signals) experiment 
in the Florence agricultural area, Italy, showed a good 
correlation between the  reflected signals and vegeta-
tion moisture content (Egido et al., 2012). ESA’s GRASS 
experiment carried out in Tuscany, Italy revealed that a 
level of AGB (Average Ground Biomass) was achieved, 
which was not possible with other remote sensing sys-
tems (Egido et al., 2014).

Camps et  al. (2016) demonstrated the feasibility of 
monitoring  vegetation through spaceborne GNSS-R. 
Carreno-Luengo et al. (2020) used the CYGNSS simula-
tor to explore the relationship between GNSS-R observa-
tions and forest biomass, and some results were obtained 

(Fig. 13). Santi et al. (2020b) studied and estimated forest 
biomass by using TDS-1 and CYGNSS data.

Target detection
In 2014, the University of Birmingham and Beihang Uni-
versity collaborated to investigate the potential of using 
Galileo navigation satellites as opportunistic transmit-
ters for passive bistatic SAR systems, considering both 
signal processing and experimental protocols. Images 
captured through either the Galileo satellite’s E5a or E5b 
channel were obtained and analyzed. The channel com-
bination scheme was  proposed to merge  E5a and E5b 
signals from the E5 band of the Galileo navigation sat-
ellite, which provided the possibility of high-resolution 
imaging in passive SAR technology. Utilizing the full 
E5 band for imaging was shown to potentially increase 
range resolution by a factor of five (Ma et al., 2015). Some 
experiments and results were shown in Figs. 14 and 15, 
respectively. Pieralice et al. (2017) conducted an experi-
ment using a fishing boat as a small target over the sea. 
The experiment utilized the GLONASS satellite as the 
opportunity illuminator and recorded the boat’s position 
using a GPS receiver onboard. With the known speed of 
the boat’s movement, the real position of the target could 
be determined on the RD (Range-Doppler) map (Fig. 16). 
By accumulating non-coherently target echoes, distinct 
peaks were observed in the resulting map, enabling effec-
tive target detection. Furthermore, the target’s position 

Fig. 13 Above‑Ground Biomass (AGB) and canopy height (CH) for Congo and Amazon (Carreno‑Luengo et al., 2020)
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on the RD map was matched the position recorded by the 
GPS receiver (Pieralice et al., 2017).

Ma et  al. (2017) conducted experiments to validate 
the feasibility of GNSS-based passive radar for mari-
time target detection (Fig.  17). A ferry sailing along a 
prescribed route was chosen as the target on the sea 
surface. Two Galileo satellites, GSA-SAT0201 and 
GSA-SAT0203, were selected as the illuminators of 
opportunity. Their transmitted E5a-Q signals were 
received by the receiving system. In the experiment, the 
total observation duration of the target by the receiv-
ing system was 145  s. The experiment validated the 
effectiveness of using target echo signals and perform-
ing azimuthal Fourier transform to achieve large-scale 
maritime target detection (Ma et al., 2017). Zhou et al. 
(2019) and Wu et  al. (2021b) from Beihang University 
carried out a GNSS bistatic SAR imaging, while  the 
receiving station was placed on the chairman’s plat-
form of a 3  m high football stadium, and the building 
in the university was used as the imaging area. Finally, 
azimuth phase compensation and geometric correc-
tion were carried out (Fig. 18). By observing the areas 
of strong scattering points, it can be seen that the edge 
of the swimming pool, gymnasium, gymnasium’s spire, 
and teaching building (identified as 1–6 in the figure) 
aligned with those in the optical image, and the calcula-
tion efficiency was improved by nearly 10 times (Zhou 
et al., 2019).

In addition, He et  al. (2020) from Hong Kong Poly-
technic University conducted a study on the use of 

GNSS-based passive Radar for moving target detection. 
They proposed a novel hybrid coherent and incoher-
ent integration scheme termed the trapezoidal trans-
form and Lv distribution. This method compensated 
for both the RCM and the DFM, while also offered 
integration gains, both coherent and noncoherent, to 
enhance the SNR (He et  al., 2020). Santi et  al. (2020c) 
proposed a detection strategy that reduced the sensi-
tivity of prolonged integration methods to the chosen 
motion model. This approach offered computational 
complexity savings and made it attractive for real-time 
implementation.

Furthermore, Zhou et  al. (2022) from Beihang Uni-
versity introduced a Moving Target Indication (MTI) 
algorithm based on High Frame Rate Image Sequences 
(HFRIS) into GNSS-based Passive Bistatic Radar (PBR). 
This algorithm avoids the need for iterative multidi-
mensional parameter search, resulting in higher com-
putational efficiency when compared to methods based 
on Range-Doppler Frequency-Time (RDFT) (Fig.  19). 
Li et  al. (2021) from University of Electronic Science 
and Technology of China introduced a Maritime Mov-
ing Target (MMT) detection technique based on BDS 
Passive Multi-static Radar (PMR), which obtained the 
moving target through Space–Time Hybrid Integra-
tion (STHI) processing and the final integration result 
(Fig. 20).

In addition, Zhang et  al. (2023b) from Wuhan Uni-
versity proposed a bistatic structure for Beidou syn-
chronized Geostationary Earth Orbit (GEO) satellite 

Fig. 14 Experimental hardware (Ma et al., 2015)
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Fig. 15 Experimental results. a PSF of the single E5b‑Q band, with an inset featuring the coherently combined E5a‑Q and E5b‑Q band, maintaining 
uniform dimensions for the X‑ and Y‑axes and utilizing a consistent color bar. c PSF of the combined E5‑Q band employing the proposed method. 
e PSF resulting from the application of a Kaiser window to the range‑compressed data. The range direction is delineated by the black dotted lines 
in all PSFs. b, d, f represent the range cross‑sections of PSFs in (a), (c), and (e), respectively (Ma et al., 2015)
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opportunity signal reception, suitable for short-term 
coherent integration of echo signals and introduced cor-
responding signal processing methods. Therefore, GNSS-
R technology provides promising opportunities for target 
detection in various domains. Whether in maritime, 
urban, or environmental applications, GNSS-R signals 
offer valuable information about target characteristics.

Opportunities and prospects
Future developments
For ground-based GNSS-R observations, the evalua-
tion of the BRCS across diverse vegetation types from 
very low altitude platforms (< 20  m) to assess their 
effectiveness for commercial drones may be included 

in the  future research. New signals with a higher 
bandwidth, such as GPS L5 or Galileo E5a are cur-
rently explored with airborne studies.  The feasibility 
of combining RHCP and LHCP antennas with coher-
ent receivers is being explored using airborne observa-
tions to detect the polarimetry signature of the surface. 
The effectiveness of the utilization of two polarization 
antennas to directly estimate soil moisture, bypassing 
the need for surface roughness correction or vegetation 
attenuation, is currently  being explored. The electron-
ics miniaturization, help providing more data by inte-
grating GNSS-R receivers, is a great achievement. The 
DDM generation in orbit with current approaches is 
an advance since it provides relaxed requirements with 

Fig. 16 GNSS satellite‑based target detection conducted at the University of Rome with the target detection results from a single frame (a), 
the target detection results from multiple frames without TMC (b), and the target detection results from multiple frames with TMC (c) (Pieralice et al., 
2017)

Fig. 17 Experimental results from satellite 2–20 consecutive RD maps with integrated (a) and without (b) target motion compensation, with a total 
data acquisition time of 50 s (Ma et al., 2017)
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a  decreased data budget for the mission. For future 
missions, it may be imperative to integrate multi-chan-
nel correlators for various polarizations and cross-cor-
relation channels to accurately generate the full Stokes 
parameters of the reflected wave. For better retrieval 
of geophysical parameters, all types of multi-GNSS 
constellations with higher bandwidth signals and pola-
rimetric schemes must be integrated. Furthermore, 
developments in GNSS-R receivers, algorithms, and 
satellite missions will expand the scope and effective-
ness of target detection using GNSS-R signals in the 
future.

Emerging applications
GNSS-R, beyond its traditional applications, starts to 
explore other areas of research or phenomena. Mes-
oscale ocean eddies, targets above the Earth’s surface, 
ionospheric plasma loss, river flow, ocean phytoplankton 

Fig. 18 Comparison of the optical and the radar image results. a Represents the optical image, while b denotes the radar image (Zhou et al., 2019)

Fig. 19 RD image of the target return generated by 1‑s integration 
using the GRFT algorithm. The zero Doppler regions were isolated 
through frequency domain filtering to suppress the background 
clutters (Zhou et al., 2022)
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blooms, ocean microplastics detection, and desert stud-
ies are some new areas being explored by GNSS-R (Rod-
riguez-Alvarez et al., 2023).

Mesoscale ocean eddies
Mesoscale ocean eddies can influence near-surface wind, 
cloud properties, and rainfall. GNSS-R (e.g. CYGNSS) 
offers a possibility to study ocean eddies. The utilization 
of CYGNSS data to detect mesoscale ocean eddies feasi-
bility was the first time reported by Hoseini et al. (2020). 
The NBRCS responses were clearly observed at the center 
or edges of the eddies, and the analysis showed a strong 
inverse correlation between the sensible heat flux and 
the normalized bistatic radar cross section (Rodriguez-
Alvarez et  al., 2023). In addition, the so-called “Eddies 
Experiment” onboard the German High Altitude LOng 
Range (HALO) Research Aircraft showed the capability 
of the GNSS-R technique for ocean eddie observations 
(Fig. 21).

Above earth’s surface target detection
Target detection above earth’s surface  using GNSS-R 
was first studied by Simone et  al. (2017) and then fol-
lowed by Hu et al. (2019) during an investigation. They 
concluded in their work that the bright reflected signals 
that occur at a  shorter delay than specular reflections 
are reflected from objects located above the Earth’s 
surface. Simulations of GNSS-R have demonstrated 
their capability to detect maritime ship targets (Fig. 22) 
(Lan et al., 2021) and aerial vehicles with experimental 
results (Suberviola et al., 2012). Furthermore, regarding 
the techniques, several methods have been proposed 
including backscattering configuration, sea clutter 

compensation, sea target detection from GNSS-R DDM 
by using the spatial filter, and the constant false alarm 
rate (CFAR) method (Simone et al., 2017).

Ionospheric plasma depletions
The ionosphere impacts the GNSS-R signal, and its fluc-
tuations in the electron content density can affect con-
siderably the signal delay, intensity and phase, direction 

Fig. 20 Detection experiment moving target (a), top view of the receiving geometry (b) and the final integration result at the X–Y –V domain (c) (Li 
et al., 2021)

Fig. 21 A CYGNSS track overpassed an eddy on 4 July 2017, 12:24. 
The top‑left panel displays sea surface temperature, surface wind 
(indicated by white arrows), and current (represented by blue cones). 
The top‑right panel visualizes instantaneous surface Sensible Heat 
Flux (SHF) and surface stress (illustrated with blue arrows). The 
bottom panel profiles CYGNSS σ0 along with the wind and current 
velocity, instantaneous SHF, and surface stress magnitudes (Hoseini 
et al., 2020)
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of arrival, polarization change, etc. Molina and Camps 
(2020) used CYGNSS data to study ionospheric plasma 
depletions. Electromagnetic waves experience signal 
delay, polarization change, direction of arrival, and fluc-
tuations in signal intensity and phase were used to detect 
ionospheric bubbles in ocean regions. Furthermore, 
the measurement of the dimensions, duration, and the 
increased intensity scintillation (S4) of the ionospheric 
bubbles was demonstrated (Molina & Camps, 2020).

River flow
River flow velocity is fundamental in hydrologic studies, 
and its detection is valuable for the reason that it links 
variables such as hydrologic detection, flood control 
engineering design, hydrologic prediction, ecological 
environment assessment, and hydrodynamic research 
(Eric et al., 2021). The potential of the GNSS-R applica-
tion in river flow measurement was studied using the 
Chinese BDS constellation (Zhang et  al., 2022a, 2022b). 
A river flow velocity retrieval model, based on carrier 
phase observations, was developed to include both open-
loop tracing and the carrier phase streamflow retrieval 
method.

Phytoplankton and green algae
Ocean surface roughness is decreased by the change in 
ocean surface tension with the areas covered by phyto-
plankton, and GNSS-R can be utilized to capture this 
change. The detection and monitoring of phytoplank-
ton levels on the ocean surface using CYGNSS data 
were studied for the first time by (Rodriguez-Alvarez 
& Oudrhiri, 2021). The results illustrated the potential 

of GNSS-R as an efficient tool for mapping phytoplank-
ton inundation areas. The detection of the density of 
red tide was investigated by utilizing TDS-1 data (Ban 
et  al., 2022a), where the used  methods consisted of 
simulating the dielectric constant of red tide and sea 
mixture, the sea surface roughness with red tide, and 
simulating a model between red tide and DDM peak 
SNR. Furthermore, green algae were detected from 
geostationary earth orbit-reflectometry (GEO-R) (Ban 
et  al., 2022b) by using various reflection coefficients 
and roughness, and the effect of green algae on the 
GEO-R signal power was analyzed (Fig. 23). In turn, the 
GEO-R power was used to retrieve the green algae den-
sity through an empirical model.

Microplastics
GNSS-R’s capability in detecting and imaging ocean 
microplastics utilizing CYGNSS data was demon-
strated by Evans and Ruf (2021). Ocean microplastics’ 
spatial distribution and temporal variability can be 
measured and mapped based on the  GNSS-R micro-
plastic retrieval method (e.g. Figure  24) (Evans & Ruf, 
2021). In addition, the  experimental study used statis-
tical analysis of the reflectivity (phase and amplitude) 
with a very short integration time and was conducted to 
detect  the accumulation of marine plastic litter (Gonga 
et al., 2023), while the analysis of the change observed 
in the reflected power did not show significant results.

Desert studies
The feasibility of leveraging CYGNSS data for retriev-
ing information on desert roughness was demon-
strated (Stilla et  al., 2020). Their study on the Sahara 

Fig. 22 DDM detection results of 3 ship targets under the detection of satellite 3 without clutter and noise influence (a) and with clutter 
background (b) (Lan et al., 2021)
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Fig. 23 Observations of the GEO‑R waveform peak power and green algae density values (Ban et al., 2022b)

Fig. 24 Estimated microplastic outflows into the East China Sea. A Annual average microplastics number density concentration (#/km2,  log10 
scale) serves as a reference. One week averages over B June 22, 2017‑June 28, 2017, C October 27, 2017‑November 2, 2017, and D December 2, 
2017‑December 8, 2017 reveal short‑lived bursts of high microplastic concentration emerging from the Qiantang (b) and Yangtze (c) and (d) River 
mouths and dispersing into the East China Sea in the region highlighted by red circles (Evans & Ruf, 2021)
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Desert identified reflectivity changes over time asso-
ciated with various land surfaces (reliefs and dunes) 
(Fig. 25), indicating that the long-term average reflec-
tivity could characterize surface properties. Their 
analysis revealed a robust correlation between CYG-
NSS data and SAR ALOS-2/PALSAR measurements. 
Furthermore, the analysis of the relationship between 
the CYGNSS and geometric or aerodynamic roughness 
was carried out. A strong correlation emerged between 
the surface parameters and the reflectivity. Finally, 
the four classes of aerodynamic roughness were shown 
for the Sahara, ranging from very smooth surfaces to 
mountainous surfaces (Stilla et al., 2020).

Problems and challenges
Although GNSS-R has been developed and widely used 
in ocean and land remote sensing, some problems still 
need to  be improved or solved. For instance, a large 
number of works were performed to detect and measure 

typhoons, however, some problems are still existed. The 
primary challenge involves enhancing the accuracy of 
high wind speed measurements during typhoons. At 
present, some artificial intelligence (AI) algorithms have 
been used in spaceborne GNSS-R retrieving wind speed 
and obtained better performances than the geophysical 
model functions (GMFs). It has been demonstrated that 
the GNSS signals have different responses to the high 
wind speed of typhoons from that of typhoon-free con-
ditions, and therefore, developing a specialized AI model 
for high typhoon wind speed has the potential to enhance 
the retrieval precision of high typhoon wind speeds. The 
second problem is to improve the monitoring perfor-
mance of typhoons. Due to the low signal power level, 
data quality control significantly decreases the temporal 
resolution of the CYGNSS. This decrease is adverse to the 
detection and measurement of typhoons. As known, 
above 130 GNSS satellites are in orbit, however, the 
CYGNSS only uses 31 GPS satellites. It is believed that 

Fig. 25 Aerodynamic roughness level maps over the Sahara desert: (a) derived from a CYGNSS reflectivity, (b) derived from the European 
Remote‑Sensing Satellite (ERS) scatterometer (Prigent et al., 2005; Stilla et al., 2020)
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multi-system GNSS-R can significantly increase the tem-
poral resolution to more accurately monitor typhoons 
or tropical storms. This work was investigated by Alaw-
wad & Elshafiey (2019). Another method to improve the 
performance of monitoring typhoons is to fuse the differ-
ent data sources, such as spaceborne GNSS-R, altimeter, 
scatterometer, and radiometer. The third problem is that 
many works are based on the simulations, rather than the 
actually acquired data. Future works will continue dem-
onstrations and assessments of those works using the 
actual acquired data from the CYGNSS and more future 
spaceborne missions.

GNSS-R is a promising technique for sea ice detection 
and characterization. However, there are still some chal-
lenges and open issues that need to be addressed in the 
future study. Some of these challenges are: improving the 
quality and availability of GNSS-R data, especially from 
spaceborne platforms, such as TechDemoSat-1 (retired) 
or FY-3, which can provide global and frequent obser-
vations of sea ice. More robust and accurate methods 
should be developed for sea ice detection and characteri-
zation, especially for complex and dynamic sea ice sce-
narios, such as marginal ice zones or leads and cracks. 
Integrating GNSS-R with other remote sensing tech-
niques, such as SAR or PMR, can provide complemen-
tary information about sea ice properties, such as surface 
roughness or emissivity. Furthermore, GNSS-R methods 
should be validated and calibrated with ground truth or 
reference data, such as in situ measurements or numeri-
cal models, which can provide reliable estimations of sea 
ice properties, such as concentration or thickness.

In addition, monitoring floods by spaceborne GNSS-R, 
especially CYGNSS data still has some challenges in the 
current inversion process, which mainly include the fol-
lowing aspects: (1) Quasi-random distribution of data 
samples. Different from the traditional remote sensing 
satellite strip observation, CYGNSS observations are 
distributed "quasi-randomly" on the surface (due to the 
bistatic configuration of CYGNSS), although the cover-
age of observations is wider when compared with the for-
mer, the daily observations of CYGNSS may have obvious 
spatial "gaps" in a specific study area, i.e., not 100% cov-
erage of the observed area. Therefore, for further com-
parisons and analyses, CYGNSS data must be integrated 
spatially and temporally. Currently, the vast majority 
of studies in CYGNSS terrestrial applications choose to 
grid the data to ensure a consistent spatial reference for 
time-domain analyses. However, achieving finer spatial 
grids consequently results in coarser temporal resolution 
(Al-Khaldi et al., 2020) (in order to ensure that a certain 
number of observations fall into each grid). Choosing 
the appropriate time window and grid size in conjunc-
tion with surface information is an important issue in 

monitoring flooding using spaceborne GNSS-R data. (2) 
Surface Roughness, Vegetation Calibration. GNSS-R data 
are affected by surface roughness and vegetation in addi-
tion to the surface dielectric constant. Specifically, calm 
water bodies and moist soil increase the reflectivity, while 
surface roughness (microtopography) and microtopogra-
phy decrease the reflectivity, while vegetation also atten-
uates the reflected signal strength. Therefore, eliminating 
the effects of roughness and vegetation should be the first 
consideration when using spaceborne GNSS-R data for 
water body detection. Current studies mostly used the 
surface roughness and vegetation parameters provided 
by SMAP or SMOS to calibrate the effects of both in 
the spaceborne GNSS-R data. However, 99.9% of SMAP 
roughness values at the 9  km scale are below 1.75  cm 
globally. The roughness parameters provided by SMAP 
may be underestimated when compared to the true sur-
face roughness (Hornbuckle et al., 2017). Therefore, there 
is a need to explore more accurate surface roughness 
datasets that can be updated in real-time, or to explore 
new methods that can characterize roughness changes 
based on the spaceborne GNSS-R data itself. Similarly, 
the study of vegetation parameters that more accurately 
represent the attenuation effects of spaceborne GNSS-
R signals is also an issue that must be addressed  in the 
future.

Furthermore, the number of GNSS satellites will con-
tinue growing in the next decades. Today there are GNSS 
satellites in Medium Earth Orbit (MEO) as well as Geo-
stationary Orbit (GEO). Future GNSS satellites may 
expand further into the lower MEO altitudes or even the 
Low Earth Orbit (LEO) region. The number of reflected 
signals from all these satellites will amount to several 
tens, as observed from LEO altitude. If it is taken into 
account that current space missions, flying or in devel-
opment, can handle only up to the order of four reflec-
tion points in dual frequency and dual polarization (or 
an equivalent capability, like 16 reflection points in single 
frequency and single polarization) it becomes very clear 
GNSS-R has plenty of room for improvement ahead.

The key to increasing GNSS-R instrument capability 
to handle so many more simultaneous reflection points 
is on the one hand in the antenna design, and on the 
other hand, is the power of the digital Delay Doppler Map 
back-end. The use of dual-frequency dual-polarization 
multi-element antennas combined with digital beam-
forming seems to be a way  in order to generate multi-
ple high-gain beams, tracking each reflection point. High 
sampling rate digital circuits, implemented in FPGA 
or ASIC technology, together with high sampling rate 
Analog-to-Digital converters (of 3 bits as a minimum), 
are the technologies required in the fast-digital back-
ends to produce the corresponding number of DDMs 
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on board. Alternatively, LEO-GEO optical links could be 
used to down-link to ground the raw measurements of 
each  antenna element, eliminating the need for the digi-
tal beamforming and the digital back-end altogether.

There are also trade-offs to be made such as constel-
lations of small satellites with performing GNSS-R as a 
function of the complexity offor each spacecraft. For 
retrievals for which there are alternative solutions (like 
the microwave radiometers SMOS, Aquarius, and SMAP 
for soil moisture, scatterometers like those aboard ESA’s 
METOP-SG, for wind over ocean, polarimetric Synthetic 
Aperture Radars like those on ESA Copernicus missions 
for wind in hurricanes, and interferometric radar altim-
eters like SWOT for mesoscale ocean altimetry, etc., …) 
it is worthwhile to think about complementary aspects, 
that is, how these systems can benefit from each other. 
Some examples follow. Soil moisture retrieval using 
GNSS-R has been rather successful only because SMOS 
and SMAP soil moisture observations were available 
to first train and then validate the GNSS-R retrievals. 
Therefore, GNSS-R might always require a second inde-
pendent microwave radiometer mission, to ensure the 
training and validity of its observations. Another example 
about the scatterometers and SWOT: how many GNSS-
R satellites and how complex they should be to provide 
comparable wind and sea surface precision and cover-
age to those missions. Or, from another perspective, the 
question would turn into: how GNSS-R could enhance 
the revisit time of scatterometers (a few days) and SWOT 
(10 days), and what should be the number and complex-
ity of such GNSS-R satellites?

A further well-deserved consideration is about the tele-
communication mega-constellations. Those satellites are 
potential sources of opportunity. However, smarter tech-
niques might be needed than those known today in the 
world of GNSS-R to convert them into useful sources of 
opportunity to retrieve meaningful remote sensing data 
from them.

Concluding remarks
GNSS-R  is an emerging means of remotly sensing 
oceans, land or glaciers ,  and snow fields using the 
reflected signals of the GNSS. As a long-term stable 
and free source of L-band signals, GNSS satellites fully 
leverage the advantages of the GNSS system, including 
all-weather, all-time, broad coverage, and high tempo-
ral and spatial resolution, etc. In particular, GNSS-R can 
be used to determine sea surface wind field, estimate sea-
water salinity and sea surface oil spill  in oceans,   moni-
tor soil moisture and plant growth in land  and measure 
sea ice thickness, snow thickness, density, roughness, etc. 
In this paper, the current status and cutting-edge appli-
cations of GNSS-R  are presented and discovered across 

diverse fields such as oceanography, land monitoring, cry-
osphere, and atmospheric sciences. The latest advances 
in GNSS-R technology are reviewed and  highlighted, 
including enhanced theoretical models, innovative 
instruments, and advanced signal processing techniques. 
Key application results and progresses are presented in 
details, such as wind speed, sea surface height, soil mois-
ture and ice thickness. Furthermore, ongoing challenges 
and future prospects are addressed and discussed  on 
GNSS-R technology and its emerging applications, 
potentially revolutionizing environmental monitoring 
and Earth observation. With the further development of 
GNSS-R  technology, it may be possible to monitor natu-
ral disasters such as volcanoes, earthquake deformation, 
and landslides in the future. With the expansion of multi-
frequency multi-GNSS  constellations and space-based 
augmentation systems and the implementation of space-
borne GNSS reflection measurement missions (such as 
the upcoming HydroGNSS  mission), one will get larger 
coverage and spatial-resolution surface feature informa-
tion. In addition, more advanced GNSS-R receivers are 
in development: improved algorithms to meet different 
application requirements, and near real-time data pro-
cessing ability to meet the needs of future space-based 
high-performance tasks (such as multi-mode GNSS 
reflection and Refraction Technology’s next-generation 
Tri-GNSS receiver). In the next few years, it will be pos-
sible for the public to use low-cost satellites developed by 
some universities and other institutions, and the applica-
tion of GNSS refected signals in the field of remote sens-
ing will also expand to a global scale.
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