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Abstract 

Spaceborne global navigation satellite system-reflectometry has become an effective technique for Soil Moisture 
(SM) retrieval. However, the accuracy of global SM retrieval using a single model is limited due to the complexity 
of land surface. Introducing redundant ancillary data may also result in over-reliance problems. Therefore, we propose 
a method for SM retrieval that considers geographical disparities using the data from Cyclone GNSS (CYGNSS) obser-
vations and Soil Moisture Active and Passive (SMAP) product. Based on the CYGNSS effective reflectivity and ancillary 
datasets of SMAP, we establish five models for each grid with different parameters to achieve global SM retrieval. 
Subsequently, an optimal model, determined by the performance indicator, is used for SM retrieval. The results show 
that the root mean square error SRMSE with the improved method is decreased by 9.1% using SMAP SM as reference 
with the SRMSE = 0.040  cm3/cm3 compared with using single reflectivity-temperature-vegetation method. Additionally, 
using the in-situ SM of International Soil Moisture Network as reference, the overall correlation coefficient R and SRMSE 
values with the improved method are 0.80 and 0.064  cm3/cm3, respectively. The average R of the chosen sites 
is increased by 22.7%, and the average SRMSE is decreased by 8.7%. The results indicate that the improved method can 
better retrieve SM in both global and local scales without redundant auxiliary data.

Keywords Soil moisture (SM), Global navigation satellite system-reflectometry (GNSS-R), Cyclone GNSS (CYGNSS), 
Geographical disparity

Introduction
Soil Moisture (SM) is a crucial parameter in the water 
cycle as it links the atmosphere with the land. Accu-
rate SM estimation is essential for advancing research 
on water cycle dynamics and crop growth (Holzman & 
Rivas, 2016; Schlüter et al., 2022). The traditional meth-
ods for estimating large-scale or global soil moisture 

primarily rely on microwave remote sensing. However, 
for SM retrievals with high spatial and temporal reso-
lution active and passive microwave remote sensing 
techniques poses a significant challenge (Kuenzer et  al., 
2013). Recently, Global Navigation Satellite Systems-
Reflectometry (GNSS-R), wherein GNSS signals reflected 
from the Earth’s surface are utilized in a forward bistatic 
radar configuration, has emerged as an effective remote 
sensing technique for estimating Earth surface geophysi-
cal parameters (Rodriguez-Alvarez et  al., 2011, 2019; 
Wigneron et al., 2008). GNSS-R operating L-band signals 
can effectively penetrate the atmosphere, vegetation, and 
rain (Alonso-Arroyo et  al., 2016; Balasubramaniam & 
Ruf, 2020; Camps et al., 2020). Moreover, with hundreds 
of GNSS satellites in orbit, GNSS-R benefits from many 
signal sources (Bu et al., 2020; Kim & Park, 2021), which 
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enables accurate SM estimation with high spatial and 
temporal resolution.

Remote sensing observations of the physical param-
eters on the Earth’s surface using GNSS-reflected sig-
nals can be traced back to the later 1980s (Jin et  al., 
2024; Pan et  al., 2020). Martin-Neira (1993) is the 
first to use GNSS-reflected signals to retrieve sea-
surface heights. Subsequently, GNSS-R have demon-
strated the capacity for surface geophysical parameter 
retrieval in ground-based and airborne platforms (Yu 
et  al., 2014), such as those associated with soil mois-
ture (Larson et  al., 2008; Wu et  al., 2021; Yan et  al., 
2022), sea level (Liu et  al., 2022; Rajabi et  al., 2021; 
Wang et  al., 2019), water-level monitoring (Ichikawa 
et al., 2019; Wang et al., 2021), sea surface wind speed 
(Dong & Jin, 2019; Li et  al., 2021), and snow depth 
(Jin et  al., 2016; Yu et  al., 2015; Zhou et  al., 2019). 
Jin et  al. (2024) summarized the progress of GNSS-R 
technology in various applications and discussed the 
current challenges and development prospects in mul-
tiple fields. The GNSS-R platform has expanded from 
ground-based and airborne to spaceborne (Zavoro-
tny et al., 2014). Owing to its ability to rapidly obtain 
the surface physical information of a large area, spa-
ceborne GNSS-R has broader application prospects, 
such as in forest biomass retrieval (Carreno-Luengo 
et  al., 2020; Chen et  al., 2021) and flood monitoring 
(Chew & Small, 2020; Zhang et al., 2021).

Spaceborne GNSS-R has a great capacity for SM 
retrieval (Al-Khaldi and Johnson, 2021a; Nan et  al., 
2022). Chew et al. (2016) found that there was a high 
correlation between SM and the observable derived 
from TechDemoSat-1. Camps et  al. (2018a) also 
revealed the high correlation between SM and the 
peak power of the Delay Doppler Map (DDM). Based 
on the above works, Chew and Small (2018) estab-
lished a linear relationship between Cyclone GNSS 
(CYGNSS) effective reflectivity and the SM derived 
from Soil Moisture Active and Passive (SMAP). How-
ever, due to the complex surface environment, the 
CYGNSS effective reflectivity is influenced not only 
by SM but also vegetation, surface roughness, soil 
surface temperature, and other factors (Dong et  al., 
2023; Izadgoshasb et al., 2024; Pierdicca et al., 2014). 
Clarizia et  al. (2019) proposed a Reflectivity-Vege-
tation-Roughness (R-V-R) ternary linear regression 
algorithm to comprehensively consider the influences 
of vegetation and roughness on the CYGNSS effec-
tive reflectivity. Eroglu et  al. (2019) established a SM 
retrieval method using an artificial neural network 
to learn this complex relationship. Additionally, the 
soil surface temperature also influences the effective 

reflectivity (Wigneron et  al., 2008). Thus, Zhu et  al. 
(2022) proposed a Reflectivity-Temperature-Vegeta-
tion (R-T-V) method to estimate SM by analyzing the 
impact of surface temperature on the CYGNSS effec-
tive reflectivity. Yan et  al. (2020) proposed CYGNSS 
observables that can resolve the contributions of SM 
and surface roughness. Camps et  al. (2018b) found 
that the relationship between the spaceborne GNSS-R 
effective reflectivity and other factors was affected by 
the geographical disparities. Moreover, Jia et al. (2024) 
proposed an advanced SM retrieval method based on 
Geographically Weighted Regression (GWR) which 
encompasses various spatial weights. It can preserve 
local spatial relationships and patterns while provid-
ing fine-resolution SM estimates. Therefore, it is nec-
essary to consider geographical disparities for global 
SM retrieval. Additionally, introducing redundant 
parameters may also result in over-reliance problems 
with heavy-loaded ancillary data (Yan et  al., 2020; 
Yang et al., 2024).

Following the studies and the associated limitations 
identified, we developed a SM retrieval method with 
spaceborne GNSS-R that considers the geographical 
disparities. This work aims to mitigate the impact of 
geographical disparities on SM estimates and avoid 
using redundant ancillary data. In this work, the 
CYGNSS effective reflectivity accounts for the effects 
of SM, surface roughness, vegetation, and soil surface 
temperature. Additionally, the relationship between 
the auxiliary parameters included in the model and 
geographical disparities is investigated. This work 
can help separate the effects of SM, vegetation, and 
other factors on the CYGNSS effective reflectivity. 
Compared with previous studies, this paper proposes 
a simple and effective method for SM retrieval. The 
remainder of this paper is organized as follows. The 
collocations of CYGNSS, SMAP, and International 
Soil Moisture Network (ISMN) data are described in 
Section “Datasets”; The development of the improved 
method is presented in Section “Methodology”; The 
results are presented in Section “Results and discus-
sion”; The concluding remarks are given in Section 
“Conclusion”.

Datasets
The data utilized in this study are derived from CYG-
NSS, SMAP, and ISMN. The observations of CYGNSS 
and SMAP from January 2019 to December 2019 are 
collocated in an Equal-Area Scalable Earth (EASE) 2.0 
36 km × 36 km grid. Note that the original data from 
Day of the Year (DOY) 171 to DOY 203 has not been 
provided in the SMAP product. The SM data of SMAP 
and ISMN are used for validation.
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CYGNSS
CYGNSS, a constellation of eight miniature satel-
lites launched by National Aeronautics and Space 
Administration (NASA) in 2016, is designed to moni-
tor the global surface within a latitude range of ± 38° 
(Wu et  al., 2020; Zavorotny & Voronovich, 2000). 
Each CYGNSS satellite simultaneously records four 
GNSS signals, with mean and median revisit times of 
7 and 3 h, respectively (Jia et al., 2021). In this study, 
the observations derived from CYGNSS version 3.0 
(L1) data are the latitude and longitude of a specular 
reflection point, the distance from the specular point 
to the CYGNSS spacecraft and the Global Position-
ing System (GPS) satellite, effective isotropic radia-
tion power of GPS, antenna gain, DDM, and incident 
angle.

SMAP
SMAP, an Earth observation satellite launched by 
NASA in 2015, is initially designed to provide global 
SM levels and freeze–thaw classification using radar 
technology (Chew & Small, 2018). Although the active 
radar malfunctioned in July 2015, the microwave radi-
ometer is still operational and provides important 
data for SM research and applications. By evaluat-
ing SMAP products, Colliander et  al., (2019a, 2019b) 
demonstrated that L-band microwave radiometer data 
provided the expected accuracy for satellite design. In 
this study, the SM dataset derived from the SMAP L3 
Radiometer Global Daily 36-km EASE-Grid (version 
8) product is used as the reference dataset. This SM 
PSM dataset is the descending orbit data. Addition-
ally, the other auxiliary datasets utilized in this study, 
as shown in Fig.  1, are Surface Roughness (SR) PSR , 
Vegetation Optical Depth (VOD) PVOD , Soil surface 
Temperature (ST) PST , and Vegetation Water Content 
(VWC) PVWC.

ISMN
The ISMN was established in 2009 to maintain a global 
in-situ SM database. It is a centralized data-hosting facil-
ity that supports the calibration and validation of global 
satellite products (Dorigo et  al., 2011). With numer-
ous operational and experimental SM networks world-
wide, the global in-situ SM database serves as a valuable 
resource for validating SM retrieval. In this study, the in-
situ SM data of ISMN is aggregated daily for field valida-
tion. The data at a depth of 5 cm for ISMN is used due to 
the limited penetration of L-band.

Methodology
In this section, the improved SM retrieval method for 
CYGNSS is investigated. The method consists of five lin-
ear models, similar to the R-V-R method proposed by 
Clarizia et al. (2019).

CYGNSS effective reflectivity
Previous studies found a strong relationship between 
CYGNSS effective reflectivity and SM (Senyurek et  al., 
2020a, 2020b). Loria et  al. (2023) demonstrated that 
land-surface Delay Doppler Maps (DDMs) showcase the 
scattering behaviors from pure coherent reflection to 
pure incoherent scattering, as well as a combination of 
both. In the regions with dense vegetation or large topo-
graphic variation and roughness, the coherent compo-
nent contained in the reflected signal is weaker than the 
incoherent component (Jin et  al., 2024; Ruf et  al., 2018; 
Zavorotny et al., 2014). Al-Khaldi et al. (2019) found that 
CYGNSS land observations were primarily coherent-
component-dominated with the incoherent component 
having minimal impact on soil moisture retrieval. Like 
previous literature, this study also assumes coherent 
reflectivity as the dominant factor across the land sur-
face. Thus, the CYGNSS effective reflectivity ( Γ coh

CYGNSS
 ) 

Fig. 1 The spatial maps of SMAP yearly mean PSR , PVOD , PST , and PVWC , respectively
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can be calculated using the following formula (Al-Khaldi 
et al., 2021b) 

,where Γ coh
CYGNSS

 is the CYGNSS effective reflectivity; Pt is 
the transmitting power of the GPS satellite; Pr is the peak 
value of the simulated scattering power DDM; Gt and Gr 
are the gains of the reflecting and receiving antennae, 
respectively; PtGt can be expressed by the Equivalent 
Isotope Radiation Power (EIRP) of the GPS transmit-
ter at the specular reflection point; Rts and Rrs represent 
the distance between the GPS signal transmitter and 
the CYGNSS receiver to the specular reflection point, 
respectively; � is the wavelength of the GPS L1 signal.

Data quality control
The data quality control in this study is as follows. The 
CYGNSS data with incident angles exceeding 65° are 
excluded to reduce DDM noise. The observations with 
Signal-to-Noise Ratio (SNR) less than 2  dB, as well as 
those with SNR equal to or greater than the receiver 
antenna gain plus 14 dB, are also excluded. The sampling 
points with poor accuracy are also eliminated according 
to the variable quality mark of the data extraction. The 
SMAP data with SM values lower than 0.01  cm3/cm3 and 
VWC values higher than 18 kg/m2 are removed to reduce 
the error caused by low SM value and the effect of dense 
vegetation (Camps et al., 2020).

Development of the improved method
Due to the complex surface environment, the influences 
of vegetation, water, SM, and other factors on spaceborne 

(1)Γ coh
CYGNSS =

Pr · (4π)
2
· (Rts+Rrs)

2

Pt · Gt · Gr · �
2

GNSS-R SM retrieval are difficult to define precisely 
(Camps et  al., 2018b). Thus, analyzing the geographical 
disparities in different regions is necessary for improving 
SM retrieval. With SMAP product assimilated the global 
land surface types of the International Geosphere-Bio-
sphere Programme (IGBP), the grids can be marked with 
land cover categories to consider geographical dispari-
ties. Figure 2 shows the 16 land cover categories globally. 
From the distribution of land cover categories, the global 
geographical disparity is obvious.

Here, the auxiliary parameters ( PSR , PVOD , PST , and 
PVWC ) are used to compensate for the CYGNSS effective 
reflectivity in spaceborne GNSS-R SM retrieval. Note 
that the PVOD is the same as ‘tau’ parameter normalized 
by the cosine of the incidence angle in the ‘tau-omega’ 
model, with the incidence angle set to a fixed value (40°). 
Considering the impacts of vegetation in different inci-
dent angles, we recalculate the PVOD parameter with the 
incident angle at the specular reflection point. Besides, 
the PVWC parameter without incident angle is addition-
ally introduced to compensate for reflectivity. The results 
of the significance difference demonstrate that PVOD and 
PVWC are different at the significance level of 5%.

The specific SM retrieval method is illustrated in Fig. 3. 
As mentioned previously, introducing redundant aux-
iliary parameters may result in over-reliance problems. 
Yan et  al. (2024) implemented a variable importance 
analysis by sequentially excluding input data and measur-
ing the decrease in the accuracy of the results retrieved 
by each model. Thus, the removal of input variables 
can be an optional solution for sensitivity analysis and 
addressing the coupling problem. The similar approach 
is used to pair auxiliary parameters and combine them 

Fig. 2 Global land cover categories of IGBP from SMAP product (40°S-40°N)
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with the CYGNSS effective reflectivity after quality con-
trol. The number of auxiliary parameters in each model 
is two. Then, five models consisting of five groups of tri-
adic linear models are established as shown in Table  1. 
In addition to the two models (R-S-V and R-T-V), three 
models are established (R-S-T, R-S-W, and R-T-W). 
Additionally, to obtain a more stable model, the data is 
divided randomly into training set and verification set. 
The training set comprises 70% of the data, while the vali-
dation set account for 30%. The regression coefficients in 

each linear model are calculated in the process of model 
training. Five ternary linear models are simultaneously 
fitted within the grid, with each model having its regres-
sion coefficients. To maintain the generalization ability 
of models, the training and validation sets are the same 
for each model. Additionally, only the results with close 
accuracy verification between the training set and the 
validation set are recorded.

The root-mean-square error IRMSE , correlation coef-
ficient IR , and coefficient of determination ID of grid 

Fig. 3 Diagram of data processing and flowchart of the improved method

Table 1 Five models with corresponding equations in the improved method

The R and i  represent the CYGNSS effective reflectivity ( Γ coh

CYGNSS
 ) and model number, respectively. The Fi

SM
 is the CYGNSS retrieved SM. The PSR , PST , PVOD , and PVWC 

represent the auxiliary parameters of SR, ST, VOD, and VWC, respectively. The coefficients of each model from ai to di are determined via a training process

Model number Model name Equation expression

Model 1 R-T-V F
(1)

SM
= a1 · Ŵ

coh
CYGNSS

+b1 · PST+c1 · PVOD+d1

Model 2 R-S-V F
(2)

SM
= a2 · Ŵ

coh
CYGNSS

+b2 · PSR+c2 · PVOD+d2

Model 3 R-S-T F
(3)

SM
= a3 · Ŵ

coh
CYGNSS

+b3 · PSR+c3 · PST+d3

Model 4 R-T-W F
(4)

SM
= a4 · Ŵ

coh
CYGNSS

+b4 · PST+c4 · PVWC+d4

Model 5 R-S-W F
(5)

SM
= a5 · Ŵ

coh
CYGNSS

+b5 · PSR+c5 · PVWC+d5
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fitting are used to assess the performance of the proposed 
models. These indexes are obtained using the validation 
set for each linear model. Due to the different values of 
IRMSE , IR , and ID for different models, it is difficult to 
judge the optimal model in each grid. Therefore, we pro-
pose a performance indicator, which is defined as:

where I is the performance indicator; The model with 
minimum I is selected as the optimal model for the grid. 
Meanwhile, the auxiliary parameters used by the opti-
mal model are considered the optimal parameters for the 
grid.

Results and discussion
In this section, the relationship of the optimal model in 
different grids with characteristic regions is investigated. 
Subsequently, the SM retrieval performance of the pro-
posed method is evaluated using SM from SMAP and 
ISMN.

(2)I = ((IRMSE)+ (1− IR)+ (1− ID))

Analysis of geographical disparities using the optimal 
model in a grid
Here, the optimal model, as well as the relationship 
between the CYGNSS effective reflectivity and the auxil-
iary parameters in different land cover categories and the 
characteristic regions are presented. The average correla-
tion coefficient is used to assess the sensitivities between 
CYGNSS effectivity reflectivity and influenced factors. 
Due to the positive and negative relationship between the 
reflectivity and other impact factors, the absolute value of 
correlation coefficient in each grid is used. Figure 4 illus-
trates these sensitivities in different land cover categories. 
In addition to the PSR , the other auxiliary parameters 
exhibit a higher correlation with reflectivity compared to 
other influencing factors. As previously mentioned, the 
sensitivities of PVWC and PVOD to the CYGNSS effective 
reflectivity are different.

Due to the large number of grids in the world, the grids 
in the characteristic regions (i.e., Southeast China hills, 
Sahara Desert, Great Artesian Basin, Himalayas, Congo 
Basin, and Deccan Plateau.) are additionally used for 
further analysis. As shown in Table  2, the results dem-
onstrate that the average correlation coefficients for PST , 
PVOD , and PVWC are higher than those for PSR across 
all land cover categories. A higher correlation between 
PVWC and CYGNSS effective reflectivity is observed in 
the Himalayas and Deccan Plateau. Furthermore, the 
averaged correlation coefficient of PVWC is higher than 
that in the Sahara Desert region. Additionally, there are 
differences in the sensitivities of parameter PVWC and 
PVOD . In the Sahara Desert, the average correlation coef-
ficient of PVOD reaches 0.101, while that of PVWC is 0.018. 
The specific distributions of the models in these regions 
are shown in Figs. 5, 6, and 7. Although model 1 (R-T-V 
model) is widely distributed in Sahara Desert, other 
models are also identified as the optimal choice in cer-
tain grid areas. From these findings and those in Table 2, 
one can conclude that auxiliary parameters with a high 
correlation value cannot accurately compensate for 

Fig. 4 Correlations between the influencing factors and CYGNSS 
effective reflectivity in different land cover categories. The PSM , 
PSR , PST , PVOD , and PVWC represent the SM, SR, ST, VOD, and VWC, 
respectively

Table 2 Number of matching grids and the averaged correlation coefficient between CYGNSS effective reflectivity and the 
influencing factors in the characteristic regions

Characteristic regions Lat Lon PSM(cm3/cm3) PSR PST

(K)
PVOD PVWC(kg/m2) Matching 

grids

Southeast China hills 23.5°N–30°N 106°E–120°E 0.359 0.057 0.136 0.306 0.143 157

Sahara Desert 18°N–37°N 0–30°E 0.177 0.046 0.155 0.101 0.018 3 613

Great Artesian Basin 23.5°S–30S° 132°E–145°E 0.453 0.045 0.185 0.151 0.169 1062

Himalayas 26.5°N–30°N 85°E–93°E 0.186 0.046 0.110 0.202 0.514 24

Congo Basin 6°S–3°N 15°E–28°E 0.219 0.057 0.147 0.220 0.186 139

Deccan Plateau 10°N–20°N 74°E–84°E 0.617 0.079 0.465 0.234 0.514 501
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CYGNSS effective reflectivity. For instance, PVWC exhib-
its a higher correlation with CYGNSS effective reflec-
tivity than PVOD , but the model 1 (R-T-V model) is still 
determined as the optimal model in the grids of Deccan 
Plateau. These results demonstrate that it is insufficient 
to rely solely on the correlation value between the aux-
iliary parameters and CYGNSS effective reflectivity to 
determine the most suitable auxiliary parameter for SM 
retrieval.

Figure  8 illustrates that model 4 (R-T-W model) 
is the most accepted globally. The model 1 (R-T-V 
model) is predominantly for arid regions, such as 
the Arabian Peninsula and Sahara Desert, which 
are characterized by small surface fluctuations and 
sparse vegetation. According to Table  3, the number 
of models with PSR is one order of magnitude lower 
than that without PSR . This result reflects the limita-
tions in using the static variable PSR to compensate for 
CYGNSS effective reflectivity in global SM retrieval 
method in most regions. Therefore, the optimal model 
in each grid and the compensation parameters can be 

determined by a comprehensive comparison of multi-
ple linear models. Moreover, this approach can avoid 
introducing heavy-loaded auxiliary parameters.

Global SM retrieval results
The global distribution of the Root Mean Square Error 
(RMSE) SRMSE and correlation coefficient R for the 
improved method is shown in Figs.  9 and 10. From the 
figures, notable global distinctions are observed in differ-
ent regions. The R values in most land regions are greater 
than 0.6. The R values in the regions with small surface 
fluctuations and sparse vegetation are greater than 0.8. 
Furthermore, the SRMSE is generally less than 0.06  cm3/
cm3 with lower values observed in most regions, such 
as Africa. One should also note that the R values of the 
Indian Peninsula is greater than 0.8, but the SRMSE is 
poorer compared with the regions with lower R values. 
Similarly, the performance of the SM retrievals in central 
Australia is better than that in the eastern regions sur-
rounded by water and vegetation, which exhibit lower 

Fig. 5 Distribution and models in the characteristic regions of Southeast China hills and Himalayas
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correlation values. Therefore, the coupling effect of water 
and vegetation can decrease the accuracy of SM retrieval.

From Fig.  11, the scattered points of the retrievals 
are mostly distributed along the diagonal line, with 
R = 0.923 and SRMSE = 0.040  cm3/cm3. Moreover, the 
fitting performance is better in the areas where the 
SM values are lower than 0.15  cm3/cm3. The results 
indicate that CYGNSS tends to underestimate the 
SMAP SM, especially in the regions with high SM 
values.

The R-T-V model, which exhibits the best SM 
retrieval effect among the five linear models (see 
Table  4), is used as the reference. The improved 
method demonstrates a decrease in SRMSE and the 
Mean Absolute Error (MAE) SMAE of 9.1 and 7.1%, 
respectively, and an increase in R and the coeffi-
cient of determination R2 of 1.6 and 3.2%, respec-
tively. As shown in Fig.  12, the improvement varies 
widely across the regions. From Fig. 8 and Fig. 12, the 
improvements in some regions are insignificant, such 

as northern Africa and the Arabian Peninsula. How-
ever, significant improvements are observed in some 
regions for the R-T-W model, such as in the Niger 
River Basin, where the SRMSE is increased by 30%. 
Except for the grids in arid regions, R-T-W model is 
the optimal for most grids. These results demonstrate 
that the compensation effect of introducing PST and 
PVWC in these regions is better than that of other aux-
iliary parameters.

Comparison between the retrievals in different land cover 
categories
To analyze the specific impacts of SM retrievals in dif-
ferent land cover categories, the average values of R 
and SRMSE are used as shown in Fig. 13. Note that there 
is no effective data in land cover categories 3 and 15. 
From Fig.  13, the R and SRMSE are different in different 
land cover categories. Moreover, the performance of 
the improved method is better than the R-T-V model, 
with the lowest SRMSE = 0.024  cm3/cm3 observed in land 

Fig. 6 Distribution and models in the characteristic regions of Sahara Desert and Congo Basin
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cover 16 (the Barren or sparsely vegetated region). The 
improvement of SRMSE for SM retrievals is obvious in the 
land cover categories 4, 5, 8, 9, and 14. The SRMSE in veg-
etated areas are higher than those in the bare soil areas. 

Fig. 7 Distribution and models in the characteristic regions of Great Artesian Basin and Deccan Plateau

Fig. 8 Specific distribution of the models used in global SM retrieval

Table 3 Number of the global grids for each model used

Model number Model 1 Model 2 Model 3 Model 4 Model 5

Number of grids 19 360 776 532 18 865 488
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However, introduction of vegetation parameters in the 
models for compensation has a little improvement in the 
SM retrieval performances for land cover categories 1, 2, 

and 6. The results show that the R-T-V model performs 
better in dense vegetation regions.

These results demonstrate that the proposed method 
not only maintains a good SM retrieval performance in 
the regions with small surface fluctuations or sparse veg-
etation, but also enhances retrieval performance in the 
regions with large surface fluctuations or dense vegeta-
tion. One can conclude that the proposed method can 
reduce the errors caused by geographical disparities.

Fig. 9 Distribution of R for the improved method in global SM retrieval

Fig. 10 Distribution of SRMSE for the improved method in global SM retrieval

Fig. 11 Density scatterplot, R , and SRMSE of the soil moisture retrieval 
results using the improved method

Table 4 Errors statistics of the five models and the improved 
method

Model name SRMSE

(cm3/cm3)
R R

2 SMAE

(cm3/cm3)

R-T-V 0.044 0.908 0.825 0.028

R-S-V 0.048 0.893 0.797 0.031

R-S-T 0.046 0.902 0.814 0.031

R-T-W 0.045 0.907 0.822 0.030

R-S-W 0.048 0.896 0.803 0.033

Improved method 0.040 0.923 0.852 0.026
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Field validation with ISMN
In this section, 19 sites derived from five networks (ARM, 
OZNET, SCAN, TxSON, and USCRN) within ISMN are 
used for field verification. The estimated SMs from the 
nearest grid to the site are used for analysis. The perfor-
mance of the improved method and R-T-V model in 19 
ISMN sites are listed in Table 5. The main land cover cat-
egories provided by SMAP at the sites are 7, 8, 10, 12, 13, 
14, and 16. Some sites in certain land cover categories are 
not analyzed due to the relatively scattered global distri-
bution of ISMN stations and the removal of some data. 
From Table 5, the performance of the improved method 
at all sites is better than that of the R-T-V model with the 
R increased by 21.0%, the SRMSE decreased by 6.9%, and 
the unbiased Root Mean Square Error (ubRMSE) SubRMSE 
decreased 11.1%. Furthermore, there are numerous sites 
with the same precision indexes in both models, such 
as the Eulo, Kemole_Gulch, and Bodega_6_WSW sites 

listed in Table 5. The reason can be the optimal model in 
these sites is model 1 (R-T-V model). Therefore, the com-
parisons of these sites are not listed here.

The data for each site are divided into different cate-
gories according to the surface classification provided 
by SMAP. As presented in Fig. 14f, the field data and 
global SM retrieval results show good consistency, 
with R = 0.80 and SRMSE = 0.064  cm3/cm3, respectively. 
From the scatter distribution of each land cover cat-
egory, the dispersion of the improved method is closer 
to the 1:1 line. The improvements in each site are 
illustrated in Figs. 15 and 16. Compared to the R-T-V 
model, the SM retrieval performance of the improved 
method is better, with the R being increased from 
2.9% to 92.0%, the SRMSE being decreased from 1.0% 
to 25.0%, and the SubRMSE being decreased from 1.1% 
to 25.0%.

Fig. 12 The improvement percentages of SRMSE for the SM retrieval results compared with the R-T-V model

Fig. 13 Performance of R and SRMSE in each land cover category. The I-M and R-T-V are the improved method and the R-T-V model, respectively
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From Fig.  17, there are different improvements in 
the vegetation regions. The average R is increased by 
22.7%, and the average SRMSE is decreased by 8.7%. 
Moreover, the R values of some sites, such as the Yan-
kee_Reservoir, Asheville_8_SSW, and Asheville_13_S, 
exhibit larger increases. Combining the CYGNSS 
observation area and its surrounding environment 
sites exhibiting low correlation reveals that these 
sites are close to water bodies or vegetation. The 
Pawhuska, Lovell_Summit, and Asheville_8_SSW sites 
are in densely vegetated areas, whereas the Kemole_
Gulch and Batesville_8_WNW sites are on islands 
and cropland, respectively. Notably, as the CYGNSS 
observation areas of these sites fall within the EASE 
36  km × 36  km grid, their surrounding areas include 
vegetation, water bodies, and other environmental 
features close to the sites. Therefore, the CYGNSS 
effective reflectivity of these sites is influenced by 
surrounding environments. Furthermore, the sud-
den precipitation or paddy irrigation near the site 
can also result in low correlation. The SRMSE of the 
five sites (Watkinsville_#1, WTARS, Asheville_8_
SSW, Asheville_13_S, and Batesville_8_WNW) are 
decreased by more than 8.7%, with the largest value 

of 25% for Watkinsville_#1 site. Compared with R-T-V 
method in global SM retrieval, the improved method 
can better retrieve SM in the regions with complex 
surface conditions.

Discussion
In this paper, a gridded SM retrieval method consider-
ing geographical differences is proposed. This method 
compensates for the attenuation of the CYGNSS 
effective reflectivity using the auxiliary parameters 
provided by SMAP. However, the possible uncertainty 
of this method is related to several factors. The first is 
the uncertainties and internal errors in the used aux-
iliary data. As the current SM estimation, which relies 
entirely on CYGNSS data, has not been implemented, 
the utilization of auxiliary data can only be minimized 
to maintain accuracy. Introducing more auxiliary 
data will decrease the robustness and stability of the 
model. Furthermore, the comparison results of the 
combined models indicate that the same type of data 
has different compensation effects on the reflectivity.

The second is the influence of seasonal variation 
in SM, vegetation, and other factors. Seasonal varia-
tions can impact the surface reflectivity derived from 

Table 5 Performance of the improved method and R-T-V model in 19 ISMN sites

The I-M represents the improved method. Each column below the R-T-V and I-M presents the corresponding the accuracy indicator in the selected sites

Site number Site name Network Lat Lon Land cover Results of R-T-V Results of I-M

SubRMSE

(cm3/cm3)
R SRMSE

(cm3/cm3)
SubRMSE

(cm3/cm3)
R SRMSE

(cm3/cm3)

1 Pawhuska ARM 36.84°N 96.43°W 10 0.051 0.310 0.057 0.050 0.348 0.056

2 Bundure OZNET 35.11°S 145.94°E 10 0.067 0.590 0.067 0.064 0.624 0.064

3 Eulo OZNET 34.72°S 146.02°E 12 0.042 0.690 0.043 0.042 0.690 0.043

4 Broad_Acres SCAN 32.28°N 86.05°W 8 0.040 0.733 0.101 0.037 0.757 0.093

5 Eastview_Farm SCAN 38.15°N 112.25°W 14 0.039 0.759 0.051 0.034 0.803 0.048

6 Kemole_Gulch SCAN 19.92°N 155.58°W 16 0.027 0.041 0.065 0.027 0.041 0.065

7 Livingston_UWA SCAN 32.60°N 88.20°W 8 0.021 0.308 0.026 0.016 0.644 0.025

8 Lovell_Summit SCAN 36.17°N 115.62°W 7 0.091 0.441 0.104 0.090 0.468 0.103

9 Silver_City SCAN 33.08°N 90.52°W 12 0.040 0.767 0.081 0.038 0.806 0.080

10 Watkinsville_#1 SCAN 33.88°N 83.43°W 8 0.044 0.884 0.044 0.033 0.928 0.033

11 WTARS SCAN 34.90°N 86.53°W 14 0.036 0.837 0.038 0.028 0.910 0.030

12 CR200_3 TxSON 30.43°N 98.81°W 10 0.034 0.794 0.071 0.032 0.827 0.068

13 CR200_21 TxSON 30.42°N 98.78°W 10 0.035 0.796 0.058 0.033 0.820 0.055

14 LCRA_5 TxSON 30.33°N 98.61°W 10 0.073 0.706 0.074 0.070 0.734 0.071

15 LCRA_7 TxSON 30.16°N 98.95°W 10 0.036 0.719 0.038 0.033 0.769 0.035

16 Asheville_8_SSW USCRN 35.49°N 82.61°W 8 0.017 − 0.098 0.017 0.014 0.318 0.014

17 Asheville_13_S USCRN 35.42°N 82.56°W 8 0.046 − 0.088 0.056 0.036 0.577 0.048

18 Batesville_8_WNW USCRN 35.82°N 91.78°W 14 0.044 − 0.027 0.045 0.039 0.340 0.039

19 Bodega_6_WSW USCRN 38.32°N 123.07°W 13 0.041 0.856 0.126 0.041 0.856 0.126

Total – – – – – 0.045 0.527 0.058 0.040 0.667 0.054
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spaceborne GNSS-R, which limits the accuracy of SM 
retrieval. According to the results of Fig.  18, in addi-
tion to the regions with low SM values (such as the 
Sahara Desert), there are obvious differences in CYG-
NSS SM in different seasons, especially in vegetated 
regions. The performance of SM retrieval is closely 

related to the SM variation, as depicted by the red 
boxes in Figs. 18 and 19. The performance of the SM 
retrieval method decreased gradually when the value 
of SM increases due to seasonal variation. Further-
more, the seasonal variations in the environmental 
factors such as vegetation and soil temperature may 

Fig. 14 Scatter distribution in different land cover categories (7, 8, 10, 12, and 14) for the improved method and the R-T-V model. The I-M represents 
the improved method

Fig. 15 The R of the improved method and the R-T-V model at 16 sites. The I-M represents the improved method
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also have an impact on the SM retrieval (Colliander 
et al., 2019a, 2019b; Jin et al., 2024).

In addition, the bias in SM retrieval can originate 
from spatial scale differences among the various 
data sources. The inconsistency between the depth 

measured by the SM at in-situ sites and the penetra-
tion depth of the microwaves can also lead to biases.

Conclusion
To address the limitations of land surface complex-
ity and over-reliance problems, a method for global SM 
retrieval that considers geographical disparities is devel-
oped. The CYGNSS data and auxiliary parameters of PSR , 
PVOD , PST , and PVWC provided by the SMAP are used to 
develop an improved method. The SMAP and ISMN SM 
are used as references. Additionally, the sensitivities of 
the introduced auxiliary parameters to CYGNSS effective 
reflectivity in different land cover categories and charac-
teristic regions are presented.

The improved method consists of five linear models to 
consider the influence of geographical disparity on the 
CYGNSS effective reflectivity and avoid redundant aux-
iliary data. Based on the performance indicator, the opti-
mal model in each grid is determined. After determining 
the optimal model in each grid, the SM retrieval is inves-
tigated. The results show that the improved method can 
provide a good retrieval effect in both global and local 
scales. The global SM retrieval results demonstrate that 
the performance of the improved method is better than 

Fig. 16 The SRMSE of the improved method and the R-T-V model at 16 sites. The I-M represents the improved method

Fig. 17 Improvements of R and SRMSE for the improved method 
compared with the R-T-V model

Fig. 18 The spatial maps of mean CYGNSS soil moisture in four seasons (spring, summer, autumn, and winter)



Page 15 of 17Huang et al. Satellite Navigation            (2024) 5:29  

the R-T-V method, with the correlation coefficient R 
being increased from 0.908 to 0.923 and the SRMSE being 
decreased from 0.044 to 0.040  cm3/cm3, respectively. The 
performance of the improved method in local regions is 
also better than the R-T-V method, with the lowest SRMSE 
of 0.024  cm3/cm3 in the Barren or sparsely vegetated 
region. Furthermore, the results in different land cover 
categories reveal that the performance can be maintained 
in the area with small surface fluctuation and sparse veg-
etation, and the performance can be improved in the 
area with large surface fluctuation and dense vegeta-
tion, among which the Niger River Basin has the largest 
increase of SRMSE , reaching 30%. In the field validation of 
ISMN, the overall R and SRMSE are 0.80 and 0.064  cm3/
cm3, respectively. The average SRMSE of chosen sites is 
decreased by 8.7%.

The SM retrieval results indicate that the improved 
method can obtain better SM retrieval results in both 
global and local scales without redundant auxiliary data. 
Moreover, the findings of this paper can contribute to a 
novel way that considers the impact of geographical dis-
parity for global and local SM retrieval. Additionally, the 
coupling physical mechanism of multiple factors needs 
to be further analyzed in future studies.
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