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Abstract 

The quest for reliable vehicle navigation in urban environments has led the integration of Light Detection and Rang-
ing (LiDAR) Odometry (LO) with Global Navigation Satellite Systems (GNSS) and Inertial Measurement Units (IMU). 
However, the performance of the integrated system is limited by a lack of accurate LO error modeling. In this paper, 
we propose a weighted GNSS/IMU/LO integration-based navigation system with a novel LO error model. The Squared 
Exponential Gaussian Progress Regression (SE-GPR) based LO error model is developed by considering the vehicle 
velocity and number of point cloud features. Based on error prediction for GNSS positioning and LO, a weighting strat-
egy is designed for integration in an Extended Kalman Filter (EKF). Furthermore, error accumulation of the navigation 
state, especially in GNSS-challenging scenarios, is restrained by the LiDAR-Aided Lateral Constraint (LALC) and Non-
Holonomic Constraint (NHC). An experiment was conducted in a deep urban area to test the proposed algorithm. 
The results show that the proposed algorithm delivers horizontal and three-dimensional (3D) positioning Root Mean 
Square Errors (RMSEs) of 3.669 m and 5.216 m, respectively. The corresponding accuracy improvements are 35.9% 
and 50.0% compared to the basic EKF based GNSS/IMU/LO integration.
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Introduction
Accurate and reliable positioning information underpins 
Intelligent Transportation Systems (ITS) (Du et al., 2021; 
Feng & Law, 2002; Sun et al., 2020). As critical position-
ing sources, Global Navigation Satellite Systems (GNSS) 

are widely used with Inertial Measurement Units (IMU) 
in an integrated scheme to facilitate vehicle applica-
tions of ITS owing to their superior complementary fea-
tures (El-Sheimy & Youssef, 2020; Kuutti et al., 2018). In 
urban areas, however, the signals of GNSS satellites are 
easily blocked by buildings or contaminated by reflected 
signals, causing gross errors or even error divergence of 
GNSS/IMU integrated navigation (Chen et al., 2023; Niu 
et al., 2023; Sun et al., 2021).

As a perception sensor, Light Detection and Rang-
ing (LiDAR) transmits laser beams and receives the 
reflected ones to obtain relative positions of reflection 
points around it (Chiang et al., 2017). Tens of thousands 
of reflection points, composing a frame of point cloud 
data, can be collected with one circle of LiDAR scanning 
(Chang et  al., 2020). Besl and McKay (1992) proposed 
an Iterative Closest Point (ICP) based scan registration 
method which directly matches the closest points. This 
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method is the basis for LiDAR Odometry (LO). Zhang 
and Singh (2014) developed a LiDAR Odometry and 
Mapping (LOAM) framework, which estimates rela-
tive transformation by extracting features from point 
clouds and matching them. Thereafter, several variants 
of LOAM were proposed (Guo et al., 2023; Wang et al., 
2021). Among them, Lightweight and Ground-Opti-
mized LOAM (LeGO-LOAM) utilizes the existence of 
a land plane in point cloud segmentation and optimiza-
tion steps to optimize pose estimation of ground vehicles 
(Shan & Englot, 2018). Besides those point or feature 
based algorithms, the distribution-based Normal Dis-
tribution Transform (NDT) is also used for point cloud 
registration of LO (Chiang et al., 2023; Magnusson et al., 
2009; Zhou et al., 2017). Nevertheless, since LO is a dead 
reckoning navigation method, positioning error accumu-
lation cannot be avoided.

To deal with the inherent defects of single-sensor 
navigation, many GNSS/IMU/LO integrated naviga-
tion schemes have been proposed (Meng et  al., 2017; 
Wang et al., 2022). Shan et al. (2020) proposed a factor 
graph-based LiDAR Inertial Odometry via Smoothing 
and Mapping (LIO-SAM). Measurements from addi-
tional sensors, such as GNSS receivers, can be eas-
ily incorporated into the framework as new factors. 
Experiments conducted in various environments dem-
onstrated that LIO-SAM achieved positioning accuracy 
levels similar to or better than LOAM. Li et al. (2021a) 
developed a GNSS Precise Point Positioning (PPP) and 
LOAM loosely coupled navigation algorithm, namely 
PPP based LOAM (P3-LOAM). The LiDAR positioning 
covariance was derived using Singular Value Decompo-
sition (SVD) Jacobian model for ICP based LO. A Fac-
tor Graph Optimization-based Real-Time Kinematic 
(RTK) GNSS/Inertial Navigation System (INS)/LiDAR 
tightly coupled integration scheme (FGO-GIL) was also 
designed for navigation in urban areas (Li et al., 2023). 
Besides, there are also substantial filter based GNSS/
IMU/LO integration solutions. Chiang et al. (2020) pro-
posed an Extended Kalman Filter (EKF) based GNSS/
IMU/LO integration algorithm. LO-derived navigation 
information was utilized to validate the reliability of the 
GNSS based measurement update vector and facilitate 
the appropriate implementation of vehicle motion con-
straints. The LO positioning covariance, constructed by 
the residuals of the Gauss–Newton model-based scan 
matching, was used in the integration. Li et al. (2021b) 
developed a tightly coupled PPP/IMU/LO integration 
algorithm. A sliding window strategy was designed for 
point cloud data processing. However, scan matching 
between each frame in the sliding window and the new-
est frame incurs a heavy computational burden. Rose 
et  al. (2014) used the LiDAR-based lateral distance 

measurements from the vehicle to the land markings 
as additional information fused with GNSS and IMU 
information in the filter to improve the robustness of 
vehicle navigation in difficult environments for GNSS, 
but a known waypoint-based map is needed.

In summary, current GNSS/IMU/LO integration 
solutions focus on sensor data processing or filter/
graph architecture. However, robust LO error modeling 
is lacking, which is critical for assigning an appropri-
ate weight to LiDAR information. Although LO error 
covariance matrices have been established, they are 
rough or suffer from high computational cost (Chang 
et al., 2020; Chiang et al., 2020; Ju et al., 2019; Li et al., 
2021a). A LO drift error model is proposed by estimat-
ing model parameters online using historical GNSS/
LiDAR/map fusion-based positioning solutions, but it 
is suitable only for short-term use in relatively stable 
environments (Liu et al., 2023). To deal with this issue, 
this paper proposes a Squared Exponential Gaussian 
Process Regression (SE-GPR) based LO error model for 
the weighted integration of GNSS/IMU/LO. A LiDAR 
based lateral constraint of vehicle motion without the 
requirement of a prior map is established. To further 
improve the positioning performance, especially in the 
vertical direction, Non-Holonomic Constraint (NHC) 
is also proposed, which is a widely used and effective 
motion constraint of vehicle navigation applications 
(Niu et al., 2007; Xiao et al., 2021). The main contribu-
tions of this paper are summarized as follows:

1.	 A SE-GPR based LO error model is established by 
considering the vehicle’s velocity and number of fea-
ture points. It is trained with historical datasets and 
used to predict real-time LO error.

2.	 A weighting strategy for LO and GNSS position-
ing is proposed based on the GNSS protection level 
and predicted LO error. The weighted positioning 
solution is then used to update the navigation state 
derived by the IMU mechanization.

3. 	The LiDAR-Aided Lateral Constraint (LALC) is con-
structed by extracting the lateral distances between 
the vehicle and curbs from point clouds, and used 
with NHC to control error accumulation in the final 
navigation state.

The structure of the remainder of this paper is as fol-
lows: section “Proposed algorithm design” describes 
the algorithm framework, defines the involved coordi-
nate frames, and illustrates the proposed algorithm in 
detail. Section “Results and discussion” discusses and 
analyzes the field test results. Finally, the conclusion is 
given.



Page 3 of 13Chen et al. Satellite Navigation            (2024) 5:30 	

Proposed algorithm design
The framework of the proposed GNSS/IMU/LO integra-
tion algorithm is shown in Fig. 1. Firstly, GNSS observa-
tions are collected by a GNSS receiver. Then, the GNSS 
pseudorange-based Single Point Positioning (SPP) 
solution and corresponding protection level, which is 
a statistical error bound of GNSS positioning, are cal-
culated with the Least Squares Residuals (LSR) method 
of Receiver Autonomous Integrity Monitoring (RAIM) 
(Brown & Chin, 1998). The point cloud data acquired 
with a three-dimensional (3D) LiDAR are processed 
using the LO method of LeGO-LOAM, which is specially 
designed for ground vehicle applications. The SE-GPR 
based LO error regression model, which is established by 
considering the vehicle’s velocity and number of features 
in the point clouds, is used to estimate the real-time LO 
error. Then, the weighted fusion of GNSS/LO is achieved 
by assigning weights according to the GNSS protection 
level and LO error. The fused result is used to update 
the navigation state derived by IMU mechanization with 
an EKF. To further restrain the system error, the motion 
constraint in the lateral direction of the road segment, 
LALC, is executed along with NHC, which assumes the 

velocity components orthogonal to the forward direc-
tion of the vehicle body frame are zero with noises (Dis-
sanayake et al., 2001). Finally the vehicle navigation state, 
including the position, velocity, and attitude, is generated 
as the output. When the predicted horizontal positioning 
error of LO exceeds the empirical threshold of 10 m, the 
previous state estimation of LO is replaced by the current 
output navigation state, more accurate at that moment, 
with the lever arm effect between the IMU and LiDAR 
being corrected.

Coordinate frame definition
Since the spatial reference systems of GNSS, IMU, and 
LO are different, the following coordinate frames are 
defined. The navigation frame (n-frame), inertial frame 
(i-frame), and body frame (b-frame) are common coordi-
nate frames used in IMU mechanization. GNSS position-
ing is implemented in the earth-centered and earth-fixed 
coordinate frame (e-frame). The point cloud data are 
collected in the LiDAR frame (l-frame), where its origin 
corresponds to the optical center of the LiDAR sensor 
and its three axes point towards the right, front, and up 
directions, respectively. Additionally, the right-handed 

Fig. 1  Framework of the proposed GNSS/IMU/LO integrated navigation algorithm. In this framework, the GNSS/LO weighted position based 
on the error modeling is loosely integrated with IMU in the EKF. The motion constraints including LALC and NHC are implemented to further 
suppress positioning error accumulating
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road segment frame (r-frame) is defined. The origin is 
the optical center of the LiDAR sensor, and the three axes 
point towards the lateral, longitudinal, and up directions 
corresponding to the road surface, respectively.

SE‑GPR based LO error model
Gaussian Process Regression (GPR) is a popular inter-
pretable Bayesian model which demonstrates high pre-
dictive accuracy across various scenarios (Liu et al., 2020; 
Schulz et al., 2018). In this section, the proposed SE-GPR 
based LO error model is designed. Specifically, the LO 
error model is used to predict the error of LO-based vehi-
cle displacement between two adjacent frames of point 
clouds to avoid the effect of previous state estimation of 
LO. Originally, the LO-based displacement of the vehicle 
is calculated in the l-frame. With the estimated attitude, 
the displacement can be transformed to the one in the 
n-frame. In theory, the vehicle velocity determines the rel-
ative spatial position of adjacent two-frame point clouds, 
and the number of features of a frame point cloud reflects 
whether the structural information of the environment is 
abundant for scan matching. Therefore, the vehicle veloc-
ity and number of features, which are related to the accu-
racy of scan matching, are selected into the input vector:

where vN , vE and vD are the north (N), east (E), and down 
(D) velocity components of the vehicle, respectively; FE 
and FP are the numbers of edge features and planar fea-
tures, respectively.

The output variable y is the LO-based displacement 
error in one direction among north, east, and down. 
Labelling the error with the reference trajectory, the 
training dataset D can be obtained:

where the subscript i indicates the i_th frame point 
cloud; n is the total count of the samples.

It is supposed that the output variable y is the function 
of x:

where ε is the noise and ε ∼ N (0, σ 2
0 ).

In SE-GPR theory (Schulz et  al., 2018), it is assumed 
that there is a prior probability distribution for y 
( y =

(

y1 y2 . . . yn
)T):

where X =
(

x1 x2 . . . xn
)T ; 0n×1 and In×n are a 

zero vector of dimension n× 1 and identity matrix of 

(1)x =
(

vN vE vD FE FP
)T

(2)D =
{

(xi, yi)|i = 1, 2, . . . , n
}

(3)y = f (x)+ ε

(4)y ∼ N
(

0n×1,T (X ,X)+ σ 2
0 In×n

)

dimension n× n , respectively; T (X ,X) is the positive def-
inite covariance matrix of X and

where t
(

x, x′
)

 is the radial basis function kernel, which is 
defined as:

where σ 2
f  and � are the signal variance and length scale, 

respectively. Based on the training dataset, the hyper 
parameters � , σ 2

f  , and σ 2
0  are obtained with the maximum 

likelihood method.
Let f∗ be the function value corresponding to the input 

vector x∗ . The joint prior distribution of y and f∗ is:

Then the mean and variance of f∗ are obtained as:

According to (3), the mean of y∗ , which is the optimal 
estimation of the output variable, is equal to the mean of 
f∗:

Following the steps above, the rule of predicting the 
error of LO-based displacement y∗ are obtained.

The weighting strategy based GNSS/IMU/LO integration
For robust GNSS/IMU/LO integration, a weighting strat-
egy between GNSS and LO is specified. The error estima-
tion results of GNSS positioning and LO are the core of 
the weighting strategy. Since protection level is a variable 
that envelopes and approximates the error of GNSS posi-
tioning, the Vertical Protection Level (VPL) and Hori-
zontal Protection Level (HPL) are calculated with LSR 
RAIM as the estimation of errors of GNSS positioning 
(Brown & Chin, 1998). The HPL is decomposed into the 
North Protection Level (NPL) and East Protection Level 
(EPL):

(5)

T (X ,X) =







t(x1, x1)
...

t(xn, x1)

t(x1, x2)
...

t(xn, x2)

· · ·

. . .

· · ·

t(x1, xn)
...

t(xn, xn)







(6)t
(

x, x′
)

= σ 2
f exp

(

−
x − x′

2

2�2

)

(7)

(

y
f∗

)

∼ N

(

0,

(

T (X ,X)+ σ 2
0 In×n T (X , x∗)

T (x∗,X) t(x∗, x∗)

))

(8)f∗ = T (x∗,X)

[

T (X ,X)+ σ 2
0 In×n

]

y−1

(9)
D
(

f∗
)

= t(x∗, x∗)− T (x∗,X)

[

T (X ,X)+ σ 2
0 In×n

]−1

T (X , x∗)

(10)y∗ = f∗
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where VNPL , VEPL , and VHPL represent the values of the 
NPL, EPL, and HPL, respectively; I denotes the index of 
the satellite with the largest SLOPE, which is the coeffi-
cient projecting the pseudorange error onto the domain 
of positioning error; H+ represents the pseudo inverse of 
the satellite observation matrix; H+

1,I is the element of H+ 
in the 1st row and I_th column; H+

2,I is the element of H+ 
in the 2nd row and I_th column.

With the SE-GPR based LO error model, the error of 
LO-based location can be obtained as:

where p and q denote the epoch index corresponding 
to the last LO error feedback and current epoch index, 

(11)VNPL =

√

√

√

√

(

H+
1,I

)2

(

H+
1,I

)2
+

(

H+
2,I

)2
· VHPL

(12)VEPL =

√

√

√

√

(

H+
2,I

)2

(

H+
1,I

)2
+

(

H+
2,I

)2
· VHPL

(13)
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∣

∣

∣

∣

∣

∣

q
∑

m=p

yN ,m

∣

∣

∣

∣

∣

∣
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∣

∣
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∣

∣

∣

q
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∣

∣

∣

∣

∣

∣

, δPLO,D =

∣

∣

∣

∣

∣

∣

q
∑

m=p

yD,m

∣

∣

∣

∣

∣

∣

respectively; yN ,m , yE,m , and yD,m are the predicted LO 
displacement errors in north, east, and down directions 
at the m_th epoch, respectively.

Then the positioning solution of GNSS/LO weighted 
fusion is obtained as:

where PGNSS and PLO are the GNSS based and LO 
based positions in the n-frame, respectively; PLO has 
been transformed with the lever arm between the GNSS 
antenna and the LiDAR sensor; supposing the weighting 
coefficients of GNSS positioning and LO are inversely 
proportional to corresponding predicted errors, the 
weight matrices for PGNSS and PLO , namely WGNSS and 
W LO , are obtained:

where wN
GNSS , w

E
GNSS , and wD

GNSS are the weighting coeffi-
cients of north, east, and down GNSS positioning results, 
respectively; wN

LO , wE
LO , and wD

LO are the weighting coef-
ficients of north, east, and down LO positioning results, 
respectively.

The measurement vector of the EKF for GNSS/IMU/
LO integration is:

where VGNSS is the velocity solution based on GNSS 
Doppler shifts; V IMU is the velocity reckoned by IMU 
mechanization.

The state vector of the EKF is set as:

(14)PGNSS/LO = WGNSSPGNSS +W LOPLO

(15)

WGNSS =





wN
GNSS

0 0

0 wE
GNSS

0

0 0 wD
GNSS





=









|δPLO,N |

VNPL+|δPLO,N |

0 0

0
|δPLO,E |

VEPL+|δPLO,E |
0

0 0
|δPLO,D|

VVPL+|δPLO,D|









(16)

W LO =





wN
LO

0 0

0 wE
LO

0

0 0 wD
LO





=





1− wN
GNSS

0 0

0 1− wE
GNSS

0

0 0 1− wD
GNSS





= I3×3 −WGNSS

(17)Zk =

(

PGNSS/LO − PIMU

VGNSS − V IMU

)

(18)
Xk =

(

(

δre,IMU

)T (

δve,IMU

)T (

δϕe,IMU

)T (

bg

)T (

sg

)T
(ba)

T (sa)
T
)T

Y

XO

Fig. 2  The projection of Si,k on the XY-plane of the l-frame. Figure 
shows the projection of reflection points of a laser scanning for one 
cirlce. The red and green squares represent the reflection points 
on road surface and curbs, respectively. And the blue squares denote 
special reflection points on the intersection lines of road surface 
and curbs
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where δre,IMU , δve,IMU , and δϕe,IMU are the error vectors 
of IMU mechanization based position, velocity, and atti-
tude in the e-frame, respectively; bg and sg are the vec-
tors of three-axis biases and scale factors of gyroscopes, 
respectively; ba and sa are the vectors of three-axis biases 
and scale factors of accelerometers, respectively. After 
measurement update with Zk , the EKF based navigation 
state is obtained.

LiDAR‑aided lateral constraint
To control error accumulation of the EKF based navi-
gation state in GNSS challenging environments, the 
LiDAR-Aided Lateral Constraint (LALC) is established 
by extracting the lateral distance between the vehicle and 
curbs from point clouds. Let Si,k denote the set of reflec-
tion points corresponding to the i_th laser at scan k and 
θi denote the vertical angle of the i_th laser. Since only the 
laser below the XY-plane of the l-frame is possible to scan 
curbs, only negative θi needs to be considered. Firstly, to 
avoid interference of noisy points in Si,k , the points that 
do not satisfy the following condition are excluded:

where HLiDAR is the height of LiDAR from the road sur-
face; l is an allowable value considering the road slope 
and curb height; the suggested value of l is 1.5  m; L is 
the measured distance from the reflection point to the 
LiDAR sensor.

Then, the remaining points of Si,k are projected onto 
the XY-plane of the l-frame. The projection is simplified 
as shown in Fig.  2. Since those points are obtained by 
laser spinning and scanning for one circle, the reflection 
points on road surface form two arcs as the red points 
show, and these reflection points on the curbs form short 
straight lines as the green points show.

Based on above geometric features, the special reflec-
tion points on the intersection lines of road surface and 
curbs are detected. The detection factor for each reflec-
tion point is calculated as:

where the subscript j indicates the j_th point of Si,k ; kF,j 
and kB,j are the slopes of least-squares lines of adjacent 
n points before and after the j_th point, respectively; the 
suggested value of n is 20 based on the experience.

The points corresponding to the peak detection fac-
tors are regarded as the special reflection points. After 
searching all the reflection point sets at scan k, a set of 
the special reflection points, Ik , is obtained. Line1 and 
Line2 are the least-squares lines fitted by the points of Ik 

(19)
HLiDAR

sinθi
− l < L <

HLiDAR

sinθi
+ l

(20)�θj = arctan
(

kF,j
)

− arctan
(

kB,j
)

on the left and right sides of the vehicle, respectively. The 
partial curbs scanned by the LiDAR are straight if:

where kL and rL denote the slope and mean absolute 
residual of Line1, respectively; kR and rR denote the slope 
and mean absolute residual of Line2, respectively; T1 and 
T2 are thresholds taking experimental values of 1◦ and 
0.1 m, respectively.

If the above conditions are satisfied, by calculating 
the distances from the origin O of the l-frame to Line1 
and Line2, the lateral Euclidian distances from the 
LiDAR to the left and right curbs at epoch k , DL

k  and 

(21)
∣

∣arctan (kL)− arctan (kR)
∣

∣ < T1

(22)rL < T2

(23)rR < T2

Antenna 2

Antenna 1

Velodyne VLP-16

STIM300

N580

BDStar  Navigation receiver

Fig. 3  The vehicle and equipment for the field test. The raw GNSS 
and inertial data were collected with the BDStar Navigation receiver 
and STIM300 IMU, respectively. One high-grade navigator, N580, 
was employed to provide the reference trajectory. The antenna 1 
and 2 were connected with BDStar Navigation receiver and N580, 
respectively
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DR
k  , are obtained. In the same way, DL

k+1 and DR
k+1 can 

be obtained. Then the lateral displacement of the vehicle 
between epoch k and epoch k + 1 is obtained as:

The current r-frame is determined by considering 
Line1 and Line2 as two longitudinal lines on the surface 
of the road segment. The EKF navigation state-based 
vehicle displacement between epoch k and epoch k + 1 is 
transformed from the n-frame to the r-frame by:

where Cr
n is the direction cosine matrix converting a vec-

tor from the n-frame to the r-frame; 
(

dAk dLk dVk
)T is the 

EKF navigation state based vehicle displacement in the 
r-frame; the superscripts A, L, and V denote the lateral, 

(24)dA
′

k =

(

DL
k+1 − DL

k

)

−
(

DR
k+1 − DR

k

)

2

(25)





dAk
dLk
dVk



 = Cr
n





dNk
dEk
dDk





longitudinal, and up axes of the r-frame; 
(

dNk dEk dDk
)T 

is the EKF navigation state based vehicle displacement 
in the n-frame; the superscripts N, E and D indicate the 
north, east, and down axes of the n-frame.

Then the lateral displacement constrained by the LALC 
is obtained as:

where T3 and T4 are two thresholds taking empirical val-
ues of 1.2 m and 0.8 m, respectively.

Then the vehicle displacement between epoch k and 
epoch k + 1 in the n-frame is updated with:

where dN ′

k  , dE′

k  , and dD′

k  are the vehicle displacements con-
strained by the LALC in the north, east, and down direc-
tions. Then the vehicle position estimation is updated.

The proposed LALC is a motion constraint in the lat-
eral direction, and has less auxiliary effect in the vertical 
direction. Therefore, NHC is also implemented with an 
additional Kalman filter to constrain the EKF based navi-
gation state. As a widely used constraint, the procedure 
of NHC is omitted for brevity. With the aid of the LALC 
and NHC, the final estimated position, velocity, and atti-
tude of the vehicle are output.

Results and discussion
To assess the performance of the proposed algorithm, a 
field test was carried out in the deep urban areas of Nan-
jing city, China. The experimental vehicle and related 
navigation sensors are shown in Fig.  3. A Micro Elec-
tromechanical System IMU, STIM300, whose gyroscope 
bias instability is 0.5 (°)/h, was employed to collect raw 
inertial measurement data at 125  Hz. A BDStar Navi-
gation C520-AT receiver taking a NovAtel OEM7500 
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Fig. 4  The vehicle trajectory of the training dataset. Figure shows 
the driving route of the experimental vehicle corresponding 
to the training dataset. The start and end points of this trajectory are 
marked in this figure

Table 1  Performance analysis of the regression models over the training dataset

Model RMSEs of residuals in different directions (m) R-squared in different directions

North direction East direction Down direction North direction East direction Down direction

Coarse tree 0.037 1 0.038 4 0.018 3 0.63 0.69 0.74

Fine Gaussian SVM 0.038 1 0.041 2 0.016 4 0.61 0.65 0.79

Ensemble boosted 
regression tree

0.037 1 0.038 6 0.020 0 0.63 0.69 0.68

SE-GPR 0.035 1 0.037 3 0.014 4 0.67 0.71 0.84
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multiple frequency GNSS receiver module was used to 
collect raw GNSS data at 10  Hz. And a Velodyne VLP-
16 LiDAR sensor was used to collect raw point cloud 
data. The reference trajectories were determined by 

the RTK/INS tightly coupled post processing mode of 
NovAtel Inertial Explorer software with the raw data of 
a high-grade GNSS/IMU integrated navigator, Honey-
well HGuide N580, with gyroscope bias instability of 0.25 
(°)/h. In addition, the antenna 1 and 2 were connected 
with the BDStar Navigation receiver and the N580, 
respectively.

The vehicle was driven in an area near the Nanjing 
South Railway Station on September 27, 2023, to collect 
the training dataset. The driving route corresponding to 
the training dataset is shown in Fig.  4. To evaluate the 
superiority of the proposed LO error model, the fitting 

Fig. 5  The vehicle trajectory of the testing dataset. Figure shows 
the vehicle trajectory of the testing dataset, which was collected 
in the downtown area of Nanjing city, about 8 km away 
from the location of the collected training dataset, on April 29, 2024

Fig. 6  Fitting performance of the SE-GPR based LO error 
model over the testing dataset. Figure shows the performance 
of the proposed SE-GPR based LO error model. The green lines 
represent the labelled LO errors obtained by the reference trajectory. 
And the red lines denote the predicted LO errors

Fig. 7  Number of GNSS satellites. Figure shows the number of visible 
satellites at each epoch, with the blue points in the upper and lower 
panels representing number of GPS and BDS satellites, respectively

Fig. 8  PDOP value. Figure shows the values of PDOP at each epoch
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results of SE-GPR and other regression models over the 
training dataset are compared in Table 1. The candidate 
fitting models include coarse tree, fine Gaussian Support 
Vector Machine (SVM), and ensemble boosted regres-
sion tree. It is clear that the Root Mean Square Error 
(RMSE) of SE-GPR is the smallest among these candidate 
fitting models. R-squared is another important evalua-
tion parameter with a value range between 0 and 1, and 
higher value indicates better fitting performance. It can 
be seen that the SE-GPR model provides the highest 
R-squared in fitting north, east, and down LO errors.

The testing dataset was collected in the downtown 
area of Nanjing city, about 8 km away from the location 
of the collected training dataset, on April 29, 2024. The 
vehicle trajectory of the testing dataset is shown in Fig. 5. 
The vehicle was driven between dense and tall buildings 
for the whole trajectory. In several sections of the tra-
jectory, there are thick trees, which cause severe signal 
attenuation and occlusion to local GNSS positioning. The 
trained SE-GPR based LO error model was tested with 
the testing dataset. As Fig.  6 shows, the real LO errors 
are predicted accurately at most epochs. The north, east, 
and down RMSEs of the predicted results are 0.0473 m, 
0.0510 m, and 0.0330 m, respectively. It can be seen that 
some jump errors of LO were not predicted well in small 
part of epochs. This is because the complex effect of envi-
ronmental structures such as structure degeneracy, and 
surrounding moving objects such as other vehicles. The 
LO error model will be improved in our future research 
by finding the inputs more directly reflecting dynamic 
objects and environmental structures. The visible satellite 
number is depicted in Fig. 7, and the corresponding Posi-
tion Dilution of Precision (PDOP) value is in Fig. 8. It can 
be seen that visible satellites are less than 5 and PDOP 
values are larger than 3 at around 400 s.

The errors of GNSS-only positioning and LO-only 
positioning are shown in Fig.  9. It should be noted that 
the LO error feedback strategy of the proposed algorithm 
has been implemented by the LO-only case. Besides, the 
lever arm between the GNSS antenna and LiDAR sensor 
was corrected. It can be seen that there are jump errors of 
several tens of meters at many epochs for the GNSS posi-
tioning over the testing dataset. And the LO position-
ing has obvious error accumulation. As the results of the 
proposed weighting strategy, the weighting coefficients 
of GNSS positioning and LO positioning in the north, 
east, and down directions are shown in Fig. 10. It can be 
seen that the weighting coefficient of GNSS positioning 
is larger than the one of LO when GNSS positioning is 
more accurate, such as in the period from 620 to 660 s, 
and smaller when LO is more accurate, such as in the 

Fig. 9  Error comparison of GNSS positioning and LO positioning. The 
GNSS positioning error and LO positioning error are shown in Figure, 
with green and red lines denoting GNSS-only and LO-only cases, 
respectively. Since the scale of vertical axes is too large for LO error, 
the part in the blue dashed rectangle is zoomed in, as seen in these 
panels pointed by the blue arrows

Fig. 10  Results of the proposed weighting strategy. Figure shows 
the results of the proposed weighting strategy, with green and red 
lines representing the weighting coefficients of GNSS and LO 
positions, respectively
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period from 410 to 440 s. Generally, the weighting coef-
ficients vary correctly with the difference of GNSS posi-
tioning and LO errors.

Table 2  Description of the tested algorithms

Candidate algorithm Description

Basic GNSS/IMU/LO integration GNSS/IMU/LO are loosely integrated with an EKF. The measurement vector is constructed with GNSS 
based position, doppler shifts based velocity and LO based position of the vehicle

Weighted GNSS/IMU/LO integration GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector 
is constructed with the GNSS/LO weighting strategy based position and doppler shifts based velocity 
of the vehicle

Weighted GNSS/IMU/LO integration with LALC GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the proposed LALC is implemented

Weighted GNSS/IMU/LO integration with NHC GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the NHC is implemented

Proposed algorithm
(Weighted GNSS/IMU/LO integration 
with the LALC and NHC)

GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the proposed LALC and NHC are implemented

Fig. 11  Positioning error comparison in the n-frame. Figure shows 
positioning errors of the candidate algorithms in the n-frame, 
with green lines representing the “basic GNSS/IMU/LO integration” 
algorithm, purplish red lines representing the “weighted GNSS/IMU/
LO integration” algorithm, light blue lines representing the “weighted 
GNSS/IMU/LO integration with LALC” algorithm, dark blue lines 
representing the “weighted GNSS/IMU/LO integration with NHC” 
algorithm, and red lines representing the proposed algorithm, 
respectively

Fig. 12  Horizontal positioning results in a real map. Figure shows 
horizontal positioning results of these candidate algorithms in a real 
map, with yellow points representing the reference trajectory, green 
points representing the “basic GNSS/IMU/LO integration” algorithm, 
purplish red points representing the “weighted GNSS/IMU/LO 
integration” algorithm, light blue points representing the “weighted 
GNSS/IMU/LO integration with LALC” algorithm, dark blue points 
representing the “weighted GNSS/IMU/LO integration with NHC” 
algorithm, and red points representing the proposed algorithm, 
respectively
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To validate the performance improvement of the pro-
posed GNSS/IMU/LO integrated navigation algorithm, 
four candidate algorithms were also evaluated with the 
testing dataset. These algorithms are described in Table 2.

Figure  11 compares the positioning errors of these 
algorithms in the n-frame. Figure  12 shows their hori-
zontal positioning results in a real map. It is clear that 
the accuracy of horizontal positioning is improved sig-
nificantly with the weighted GNSS/IMU/LO integra-
tion, especially from 80 to 130 s and from 240 to 310 s. 
By comparing the “weighted GNSS/IMU/LO integra-
tion” and the “weighted GNSS/IMU/LO integration with 
LALC”, it is clear that the LALC improves horizontal 
positioning accuracy in some periods, such as 630–660 s. 
The peak horizontal positioning error remains almost 
unchanged at 310 s despite the implementation of LALC, 
possibly due to the occlusion from surrounding vehicles 
obstructing LiDAR scanning curbs. The vertical position-
ing accuracy is improved significantly for the proposed 

algorithm due to NHC with maximum vertical position 
error being reduced to 10 m from 26 m.

For further analysis, positional RMSEs of these algo-
rithms were calculated as shown in Table  3. The posi-
tional RMSEs in north and east directions for the basic 
GNSS/IMU/LO integration are 3.890  m and 4.201  m, 
respectively. For the weighted GNSS/IMU/LO integra-
tion, the corresponding RMSEs are 3.088 m and 3.500 m, 
improved by 20.6% and 16.7%. The improvements are due 
to the error prediction based GNSS/LO weighting strat-
egy. The improvement in the down direction is much 
smaller (9.6%) because of low vertical resolution of point 
clouds causing worse accuracy of LO in vertical direc-
tion. When the LALC is added to the weighted GNSS/
IMU/LO integration, the north and east accuracy is 
improved by 32.5% and 27.7%, respectively. However, the 
improvement in down direction is smaller (13.9%). This 
is because the LALC is a constraint of vehicle motion on 
road surface which is approximately horizontal in this 

Table 3  Positioning accuracy comparison in the whole trajectory

Algorithm Positioning RMSEs in different directions

North direction East direction Down direction Horizontal 
direction

3D

Basic GNSS/IMU/LO integration (m) 3.890 4.201 8.718 5.725 10.430

Weighted GNSS/IMU/LO integration (m) 3.088 3.500 7.879 4.667 9.158

Improvement (%) 20.6 16.7 9.6 18.5 12.2

Weighted GNSS/IMU/LO integration with LALC (m) 2.626 3.036 7.511 4.014 8.516

Improvement (%) 32.5 27.7 13.9 29.9 18.4

Weighted GNSS/IMU/LO integration with NHC (m) 2.945 2.948 3.651 4.167 5.540

Improvement (%) 24.3 29.8 58.1 27.2 46.9

Proposed algorithm (m) 2.555 2.632 3.708 3.669 5.216

Improvement (%) 34.3 37.3 57.5 35.9 50.0

Table 4  Comparison of velocity and attitude RMSEs

Algorithm Velocity component RMSEs Attitude angle RMSEs

North direction East direction Down direction Roll direction Pitch direction Heading 
direction

Basic GNSS/IMU/LO integration 0.225 m/s 0.208 m/s 0.359 m/s 0.443° 0.095° 3.044°

Weighted GNSS/IMU/LO integration 0.185 m/s 0.157 m/s 0.258 m/s 0.446° 0.082° 2.395°

Improvement (%) 17.7 24.9 28.1 − 0.5 13.4 21.3

Weighted GNSS/IMU/LO integration with LALC 0.188 m/s 0.152 m/s 0.264 m/s 0.445° 0.081° 2.011°

Improvement (%) 16.4 27.0 26.5 − 0.4 14.6 33.9

Weighted GNSS/IMU/LO integration with NHC 0.184 m/s 0.156 m/s 0.053 m/s 0.446° 0.081° 2.137°

Improvement (%) 18.2 24.9 85.3 − 0.6 14.0 29.8

Proposed algorithm 0.184 m/s 0.150 m/s 0.052 m/s 0.445° 0.079° 1.929°

Improvement (%) 18.2 28.3 85.4 − 0.5 16.6 36.6



Page 12 of 13Chen et al. Satellite Navigation            (2024) 5:30 

field test. To further improve positioning accuracy, NHC 
is utilized in the proposed algorithm for noise reduc-
tion of the vertical velocity, resulting in improvement 
of 35.9% and 50.0% in horizontal and vertical accuracy, 
respectively. Comparing the “weighted GNSS/IMU/LO 
integration with LALC” and the “weighted GNSS/IMU/
LO integration with NHC” in horizontal positioning 
improvements (29.9% and 27.2%), the proposed LALC 
provides greater auxiliary effect on the horizontal posi-
tioning accuracy than that of NHC. When the LALC and 
NHC are implemented together, the horizontal position-
ing accuracy improvement (35.9%) is much higher than 
the ones (29.9% and 27.2%) when only one constraint is 
used. Comparing the weighted GNSS/IMU/LO integra-
tion with NHC, the slight decrease (0.057  m) of posi-
tioning accuracy in down direction with the proposed 
algorithm is attributed to the noise of the NHC and 
LALC projected onto the vertical direction. It is accept-
able at this scale because the proposed algorithm aims at 
land vehicle applications, for which the horizontal posi-
tioning accuracy is more important.

Table  4 shows velocity and attitude RMSEs of these 
algorithms. For the proposed algorithm, the velocity 
accuracies in north and east directions are improved 
by 18.2% and 28.3%, respectively. The down velocity 
accuracy is improved by 85.4% mainly due to the imple-
mentation of NHC. The heading angle, which is the 
most important attitude angle for vehicle navigation, is 
improved by 36.6%.

Conclusion
A GNSS/IMU/LO weighted integration framework with 
motion constraints of the LALC and NHC for robust 
vehicle navigation is proposed by modeling the LO and 
GNSS positioning errors. In particular, a SE-GPR based 
LO error model is established by considering the vehicle 
velocity and the number of point cloud features. A field 
test was carried out in deep urban areas to evaluate the 
performance improvement. The proposed algorithm 
delivers a horizontal positioning RMSE of 3.669  m and 
3D positioning RMSE of 5.216 m, while the ones for the 
basic EKF-based GNSS/IMU/LO integration are 5.725 m 
and 10.430  m, respectively. The proposed algorithm 
achieves improvements of 35.9% and 50.0% in horizon-
tal and 3D positioning accuracy, respectively. Further 
research is ongoing on algorithm performance improve-
ment by using RTK GNSS with LiDAR aiding ambiguity 
resolution in deep urban environments.
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