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Abstract 

Obtaining high-precision, long-term sequences of vegetation water content (VWC) is of great significance for 
assessing surface vegetation growth, soil moisture, and fire risk. In recent years, the global navigation satellite 
system-interferometric reflection (GNSS-IR) has become a new type of remote sensing technology with low cost, 
all-weather capability, and a high temporal resolution. It has been widely used in the fields of snow depth, sea level, 
soil moisture content, and vegetation water content. The normalized microwave reflectance index (NMRI) based 
on GNSS-IR technology has been proven to be effective in monitoring changes in VWC. This paper considers the 
advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC. A point-
surface fusion method of GNSS-IR and MODIS data based on the GA–BP neural network is proposed to improve the 
accuracy of VWC estimation. The vegetation index products (NDVI, GPP, LAI) and the NMRI that unified the temporal 
and spatial resolution were used as the input and output data of the training model, and the GA–BP neural network 
was used for training and modeling. Finally, a spatially continuous NMRI product was generated. Taking a particular 
area of the United States as a research object, experiments show that (1) a neural network can realize the effective 
fusion of GNSS-IR and MODIS products. By comparing the GA–BP neural network, BP neural network, and multiple 
linear regression (MLR), the three models fusion effect. The results show that the GA–BP neural network has the best 
modeling effect, and the r and RMSE between the model estimation result and the reference value are 0.778 and 
0.0332, respectively; this network is followed by the BP neural network, in which the r and RMSE are 0.746 and 0.0465, 
respectively. MLR has the poorest effect, with r and RMSE values of 0.500 and 0.0516, respectively. (2) The spatiotem-
poral variation in the 16 days/500 m resolution NMRI product obtained by GA–BP neural network fusion is consistent 
with that in the experimental area. Through the testing of GNSS stations that did not participate in the modeling, the 
r between the estimated value of the NMRI and the reference value is greater than 0.87, and the RMSE is less than 
0.049. Therefore, the method proposed in this paper is optional and effective. The spatially continuous NMRI products 
obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.
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Introduction
Surface vegetation is one of the critical components of 
terrestrial ecosystems, and the water content in the veg-
etation canopy is approximately 40–80% (Elvidge 1990), 

playing an essential role in soil formation and environ-
mental changes. Vegetation water content (VWC) is one 
of the main factors controlling plant photosynthesis, 
respiration, primary productivity, and biomass. It plays 
an essential role in plant physiological status, vegetation 
function, drought, and fire risk assessment (Peñuelas 
et al. 1993). Because a plant is covered with soil, its water 
content will affect the monitoring of soil moisture, and 
the correct estimation of VWC can improve the accuracy 
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of soil moisture inversion (Jin et  al. 2017b). Therefore, 
obtaining high-precision, long-term sequences of VWC 
is of considerable significance to the study of surface veg-
etation and soil moisture.

In 1980, the European Space Agency (ESA) first pro-
posed that GPS L-band signals could be used as ocean 
scatterometers (Hall 1988). Subsequently, in 1993, ESA’s 
Martin-Neria first introduced the concept of PARIS and, 
for the first time, used GPS-reflected signals to achieve 
ocean height measurements (Martin-Neira 1993). Since 
then, foreign scholars have realized that GPS-reflected 
signals might serve as a new remote sensing method 
(Liu et al. 2007). Therefore, two new GNSS remote sens-
ing technologies have been proposed: Global Navigation 
Satellite System-Reflection (GNSS-R) remote sensing 
technology and Global Navigation Satellite System-Inter-
ferometric Reflection (GNSS-IR) remote sensing tech-
nology. However, GNSS-R technology needs to receive 
both direct and reflected signals from the satellite at the 
same time. Therefore, it requires an instrument with 
both a left-handed circularly polarized (LHCP) antenna 
and a right-handed circularly polarized (RHCP) antenna. 
Therefore, GNSS-R technology has higher requirements 
for hardware and a higher cost; thus, it has limited its 
development and promotion to a certain extent. GNSS-
IR technology requires only an ordinary geodetic receiver 
to perform experiments and has the characteristics of 
being low cost, useful in all weather, high accuracy, and 
high spatiotemporal resolution.

GNSS-IR technology was first proposed by Professor 
Larson of the University of Colorado. Larson and others 
separated the direct and reflected components from the 
GPS signal-to-noise ratio (SNR) observations and studied 
the reflected components and the surrounding environ-
ment of the station. The results show that the ampli-
tude of the reflected components can reflect the overall 
change in the surrounding soil moisture (Larson et  al. 
2008a). Subsequent research found that the reflected 
signal could well reflect the evolution of soil moisture 
within 5 cm of the soil surface. There is a certain corre-
lation between the reflected signal phase, satellite height 
angle change, and soil moisture content; however, when 
the soil moisture content is less than 10%, the correlation 
weakens (Larson et  al. 2008b, 2010). Considering that 
GNSS-IR technology can realize the estimation of surface 
environmental parameters, Larson and others extended 
GNSS-IR technology to snow depth monitoring and pro-
vided a series of results for the development of GNSS-
IR technology (Larson et al. 2009; Larson and Nievinski 
2013; Larson 2016). Since then, GNSS-IR technology has 
been widely used to monitor changes in the surface envi-
ronment, such as soil moisture (Larson 2016; Liang et al. 
2019; Ren et  al. 2019), sea level (Larson et  al. 2013; Jin 

et al. 2017a), and snow depth (Zhang et al. 2017, 2018). In 
terms of vegetation detection, Small and others used the 
GPS noise statistic MP1 root mean square (RMS) for the 
first time to qualitatively estimate the growth of plants. 
They noted that the SNR data in the reflected signal 
could reflect the growth of vegetation (Small et al. 2010). 
Chew and others used a model for soil moisture inversion 
to quantitatively analyze VWC and SNR and the actual 
reflection surface height. The results show that when 
VWC does not exceed 1.5  kg/m2, the vegetation water 
content and SNR amplitude have a linear relationship 
(Chew et al. 2014). Chen and others proposed a method 
based on the amplitude and frequency analysis of the 
interference pattern of the SNR to eliminate the influence 
of VWC in soil moisture retrieval and achieved excel-
lent results (Chen et al. 2016). In terms of VWC, Larson 
and others defined a daily VWC metric based on the 
amplitude of the reflected signal based on the relation-
ship between the SNR amplitude and VWC, which is the 
normalized microwave reflection index (NMRI) (Larson 
and Small 2014). In 2004, verification was performed at 
four grassland sites in Montana, and the results showed 
that under the conditions of similar vegetation and cli-
mate, the NMRI and VWC have a strong correlation, and 
the VWC can be more accurately retrieved by the NMRI 
(Small et al. 2014). At present, the Plate Boundary Obser-
vatory (PBO) in the United States provides daily NMRI 
data. However, because the NMRI data are based on GPS 
stations, only VWC changes within 1000 m2 around the 
station are monitored. Additionally, the interval between 
GNSS stations of the PBO observation network is large, 
and spatial continuity cannot be achieved. Therefore, the 
application of the NMRI product is further limited.

In recent years, with the rapid development of remote 
sensing technology and imaging spectroscopy tech-
nology, it is relatively easy to obtain large-scale and 
long-term VWC data using remote sensing technology. 
Due to the different sensors, the current remote sens-
ing technology can be divided into optical remote sens-
ing and microwave remote sensing. Among them, the 
normalized difference vegetation index (NDVI), leaf 
area index (LAI), gross primary productivity (GPP) and 
other vegetation indexes provided by MODIS satellites 
belonging to optical remote sensing are widely used in 
VWC research (Tucker et al. 2005). Although these veg-
etation indexes have a high spatial resolution, due to the 
defects of optical sensors, the vegetation index images 
are easily affected by clouds and smog, resulting in the 
loss of information. Additionally, the NDVI is primarily 
regarded as an indicator of vegetation greenness. These 
indexes are used to infer the biomass and LAI and other 
vegetation indexes (Gutman and Ignatov 1998; Paruelo 
et  al. 1997; Wylie et  al. 2002). Because environmental 
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factors such as plant type and hydrometeorology have 
different effects on VWC and “greenness,” the NDVI can-
not be used to accurately estimate the VWC. At present, 
microwave remote sensing has also been used to success-
fully estimate VWC (Brakke et al. 1981; Owe et al. 2001). 
Although microwave remote sensing is not affected by 
clouds and fog, its spatial resolution is low. Some scholars 
have proposed a method of fusing the effects of optical 
remote sensing images and microwave remote sensing 
(Dasgupta and Qu 2006). However, due to the significant 
difference in the spatial resolution between the two, the 
accuracy and spatial resolution of the fusion results are 
weak in practical applications. Therefore, using remote 
sensing technology to estimate VWC has certain flaws.

At present, how to make full use of multisource data 
to achieve the fusion of multisource data has become a 
research hotspot. Multisource data fusion has a complex 
nonlinear relationship, and machine learning technology 
can better solve nonlinear problems. Therefore, many 
scholars have conducted multisource data fusion and 
research using machine learning technology and have 
achieved good results (Li et al. 2017; Xu et al. 2018; Yuan 
et  al. 2020). In summary, the NMRI products based on 
GNSS-IR can better reflect the changes in VWC. The 
vegetation index products based on remote sensing tech-
nology have the characteristics of being large-scale and 
having a long-term series. In this paper, a fusion inver-
sion method of GNSS-IR and remote sensing data based 
on the GA–BP neural network is proposed. The spatial 
resolution of optical remote sensing is better than that of 
microwave remote sensing. Therefore, this article selects 
MODIS vegetation index products for experiments. The 
GA–BP neural network is used to achieve effective fusion 
of the two and fully exploit their advantages. Finally, a 
spatially continuous NMRI product map is established. 
To compensate for the limitations of the original NMRI 
product space, this product is used to better estimate 
VWC.

Model principle and methodology
GNSS‑IR and NMRI principles
The core observational measurement of GNSS-IR is SNR 
data. SNR is a composite signal of direct component Ad 
and reflected component Ar. The commonly used receiv-
ers are currently designed to be right-handed circularly 
polarized, resulting in Ad ≫ Ar. Because Ad is much larger 
than Ar, the direct signal Ad is a trend term. It deter-
mines the overall change in SNR. The reflected signal 
Ad appears as a local periodic fluctuation. Because Ad 
and Ar differ significantly, they can be separated by using 
low-order polynomials. There is a fixed frequency sine 
(cosine) function relationship between the separated 

reflection components Ar and sin(θ) (Chew et al. 2013). 
The reflection component can be expressed as follows:

In the formula, θ, λ, and h represent the satellite height 
angle, carrier wavelength, and vertical distance from the 
antenna phase center to the reflection point, respec-
tively, and A and φ represent the amplitude and phase of 
the reflection component, respectively. If t = sin(θ) and 
f = 2 h/λ, then Equation (1) can be expressed as follows:

The NMRI is a comprehensive index used to evaluate 
the amplitude change of the reflected signal. The core 
is to calculate the RMS of the pseudo-range multipath 
index MP1 on the L1 carrier. MP1 is defined as (Estey and 
Meertens 1999):

In the equation, P1 is the pseudo-range observation 
on the L1 carrier; f1 and f2 are the carrier frequencies of 
L1 and L2, f1 = 1575.42  MHz, f2 = 1227.6  MHz; λ1 and 
λ2 are the carrier wavelengths of L1 and L2, λ1 = 0.19 m, 
and λ2 = 0.24 m; φ1 and φ2 are the L1 and L2 carrier phase 
observations. The calculation of the NMRI is based on 
the RMS value of MP1, and its calculation method is as 
follows:

In the equation, RMSMP1 is the RMS value of MP1 on 
a single day, and max

(

RMSMP1

)

 is the average value of 
RMSMP1 in the top 5% after the RMSMP1 values are ranked 
from large to small.

GA–BP neural network
Considering the time and space complexity of GNSS-
IR and MODIS data, it is difficult to achieve effective 
fusion using only linear methods. Therefore, this article 
attempts to use the artificial neural network (ANN) of the 
typical BP neural network model for experimental analy-
sis. The BP neural network was proposed by McClelland 
and Rumelhart (Rummelhart et al. 1986; Mcclland et al. 
1986). It is a multilayer feedforward neural network that 
can better handle nonlinear problems. Its main structure 
is composed of an input layer, a hidden layer, and an out-
put layer. Each layer is formed by several neurons, and 
the output value of each neuron is determined by the 
input value, action function, and threshold. The learning 
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process of the BP neural network includes two processes: 
forward information propagation and error backward 
propagation. In the forward propagation process, the 
input information is transmitted from the input layer 
through the hidden layer to the output layer, and the out-
put value and the expected value are compared. If there is 
an error, the error is propagated back along the original 
connection path, and the weights of the neurons in each 
layer are modified layer by layer to reduce the error. This 
cycle is repeated until the output results meet the accu-
racy requirements (Alpaydin 2004). The BP neural net-
work topology is shown in Fig. 1.

In Fig. 1, x1, x2, …, xn is the input value of the BP neural 
network; ym is the output value of the neural network; wij 
is the connection weight of input layer neurons and hid-
den layer neurons; wjk is the connection weight of hidden 
layer neurons and output layer neurons.

Although the BP neural network can better address 
nonlinear problems, it still has flaws (Srinivas and Deb 
1994). The first is related to the BP neural network mod-
eling process. To reduce network errors and improve 
accuracy, the number of hidden layer neurons must be 
appropriately selected. However, there is no specific cal-
culation method for the optimal number of hidden layer 
neurons. Second, the initial weights and thresholds of 
the BP neural network are randomly generated. Each 
node and weight of the BP neural network will affect the 
output. Therefore, the adaptation process and the global 
approximation process are time-consuming, resulting in 
a slow convergence of the network. Finally, the BP neural 
network uses a gradient descent method, which has local 
optimization problems.

To solve the shortcomings of the above BP neural 
network, this paper uses the genetic algorithm (GA) to 
optimize the BP neural network. The GA is a parallel 
random search optimization method formed by simu-
lating genetic mechanisms and biological evolution in 

nature (Holland 1975). This method is based on the sam-
ple fitness function and selects, intersects, and mutates 
the initial population to guide learning and determine 
the search direction. Because it uses the population to 
search, it can use random methods to find the optimal 
solution in multiple regions of the global solution space, 
making it particularly suitable for large-scale parallel pro-
cessing (Goldberg 1989). Considering the defects of the 
BP neural network and the advantages of the GA, the two 
are combined to construct the GA–BP neural network 
algorithm. First, the GA is used to optimize the weights 
and thresholds of the BP network to reduce the range 
of weights and thresholds. Subsequently, the optimized 
weights and thresholds are inputted to the BP neural net-
work and solved accurately to improve the training accu-
racy and speed of the BP neural network. The GA–BP 
model algorithm flow is shown in Fig. 2.

Methodology
The methodologies of GNSS-IR and MODIS fusion 
inversion based on the GA–BP neural network are as 
follows:

1.	 Study area setting. Select an area where the GNSS 
stations are evenly distributed, the terrain is diverse, 
and the climate change is significant;

2.	 Data collection. Among them, the NMRI data came 
from PBO H2O (https​://gnss-h2o.Jpl.nasa.gov/index​
.php), and the three MODIS vegetation index prod-
ucts came from the Google Earth Engine (GEE) 
(https​://devel​opers​.googl​e.com/earth​-engin​e/datas​
ets/). Detailed information on each product is shown 
in Table 1.

3.	 Data preprocessing and data set construction. First, 
we discuss the effect of GNSS-IR and MODIS fusion 
in the short term. First, we extract the correspond-
ing vegetation index values from the three vegeta-
tion images based on the latitude, longitude, and date 
of the 37 GNSS stations and establish a raw data-
set consisting of the NMRI, NDVI, GPP, LAI, Lat, 
and Lon. Subsequently, the correlation between the 
NMRI and three vegetation indexes was analyzed to 
verify whether all three indexes could be included in 
modeling. Finally, the time resolution of NMRI, GPP, 
and LAI was unified to 16  days through averaging, 
and a modeling dataset with 16  days/500  m resolu-
tion was finally established. In the modeling dataset, 
the NDVI, GPP, LAI, LAT, and LON are the input of 
modeling and the output of NMRI modeling.

4.	 Establish a training model. In the modeling dataset, 
the data of 34 stations are selected as the model input 
sequence and use the corresponding NMRI as the 
model output sequence. Follow the steps in Fig. 2 of Fig. 1  BP neural network topology

https://gnss-h2o.Jpl.nasa.gov/index.php
https://gnss-h2o.Jpl.nasa.gov/index.php
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
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“GA–BP neural network” section to train the GA–BP 
model.

5.	 Model testing and accuracy inspection. Extract the 
NDVI, GPP, LAI, latitude and longitude of each pixel 
in the vegetation index image of the predicted date. 
These data are input into the trained model, and 
finally, a spatially continuous 16  days/500 m resolu-
tion NMRI product is generated. Finally, the accuracy 
test and evaluation are carried out through GNSS 
stations that are not involved in modeling.

The inversion process is shown in Fig. 3.

Study area
PBO is currently the only observing network based on 
the GNSS-IR principle. This network is based on GNSS-
IR technology, and the daily estimates of vegetation mois-
ture content, soil moisture, and snow depth are widely 
used in GNSS-IR technology research. Figure 4 is a sche-
matic diagram of GNSS stations deployed by PBO in the 
western United States (30°  N–50° N, 95° W–125°  W). 
GNSS-IR and MODIS products have significant differ-
ences in temporal and spatial resolution. Therefore, it is 
considered that if the distance between GNSS stations 
is large and the distribution of the stations is sparse, it 
may result in poor local modeling results. The terrain 
around the station, regional climate change, and other 
factors may affect the effectiveness of the model. There-
fore, this paper considers the above three factors com-
prehensively and selects the blue area (39°  N–44.5°  N, 
111°  W–114°  W) as the experimental area. The GNSS 
station distribution in this area is relatively uniform, the 
terrain is diverse, and climate change is significant, which 
can better train the model. The DEM map and Landsat 
image of this area are shown in Fig. 5.

Fig. 2  GA–BP model algorithm flow

Table 1  Product details

Index Resolution Product Time

NMRI Daily/station PBO H2O 2010.7.78–2010.10.16

NDVI 16 days/500 m MOD13A1 2010.7.28–2010.10.16

GPP 8 days/500 m MOD17A2H 2010.7.78–2010.10.16

LAI 4 days/500 m MCD15A3H 2010.7.78–2010.10.16
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Figure  5b shows that there are 37 stations in this 
area, with different distribution locations and densities. 
Among them, 34 circles represent the stations involved 
in modeling. Three triangles (P112, P354, P359) repre-
sent the stations that were not included in the mode-
ling, as they were used as later verification data. With 
reference to Figs. 4 and 5 and analysis of existing data, 
the upper half of the study area is southeast Idaho, and 
the lower half is northern Utah; Idaho and Utah both 
have a temperate continental climate. Because it is far 
from the ocean and blocked by the terrain, the humid 
air mass is difficult to reach, so it is dry and less rainy. 
It has the characteristics of hot and humid summers 
and cold and dry winters. Among them, the blue box 

in Fig.  5b is the famous Great Salt Lake Desert in the 
United States, and the red box is the Great Salt Lake. 
The area contains more minerals, so the vegetation is 
thinner. Therefore, the VWC of the region selected in 
this paper will have significant differences in time and 
space to verify the accuracy of the inversion results 
later.

Results and analysis
In this paper, the correlation coefficients (r) of the NMRI, 
NDVI, GPP, and LAI vegetation indexes from 37 stations 
in the experimental area from July 28, 2010, to October 
16, 2010, are calculated using the linear regression princi-
ple, and the results are shown in Fig. 6.

Fig. 3  Experimental flowchart
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It can be seen from Fig.  6 that there are 30 stations 
whose correlation coefficient between the NMRI and 
NDVI exceeded 0.6, accounting for 81% of the total sta-
tions. There are 29 stations whose correlation coefficient 
between the NMRI and GPP exceeded 0.6, accounting for 
78% of the total stations. There are 25 stations with a cor-
relation coefficient between the NMRI and LAI greater 
than 0.6, accounting for 68% of the total stations. The 
NMRI, NDVI, GPP, and LAI all have strong correlations, 
and the selected NDVI, GPP, and LAI can participate in 
modeling.

To better verify the modeling effect of the GA–BP 
model, this paper compares the GA–BP neural network, 
BP neural network, and multivariable linear regression 
model (MLR). First, determine the number of hidden 
neurons in the model according to the empirical formula 
m =

√
n+ l + a . In the formula, m is the number of 

hidden layer nodes; n and l are the input layer and out-
put layer nodes, respectively; and a is a positive integer 
between 1 and 10. Because the number of neurons in the 
input layer is five (i.e., the NDVI, GPP, LAI, Lon, and Lat) 
and the number of neurons in the output layer is one (i.e., 
the NMRI), the value range of the neurons in the hid-
den layer is m = [3, 14]. Subsequently, this paper uses a 
cross-validation method that is randomly run 500 times 
to select the best number of hidden layers. The results are 
shown in Table 2.

Table  2 shows that the nine hidden layer neurons 
appear most often. The average root mean square error 
(RMSE) value of the test at this time is relatively small. 
Subsequently, this paper randomly shuffles the dataset 
established in step 3 and divides it into training and test 
sets and inputs three models at the same time, running 
50 times in a loop. Compare the modeling effects of the 
three models by testing whether the r and RMSE of the 
set are less than the threshold. The results are shown in 
Table 3.

From the table above, we can see that, after using the 
three models of BP, GA–BP, and MLR, the number of 
r values of the test set that are greater than 0.6 is 22, 
23, and 13, respectively; the number of RMSEs in the 
test set that are less than the threshold is 35, 35, and 34, 
respectively. Based on the analysis of the numbers of r 
and RMSE that are less than the threshold, we can see 
that both the BP neural network and the GA–BP neural 
network are better than the MRL result, and the GA–
BP neural network is slightly better than the BP neural 
network. To further compare the modeling effects of 
the three models, this paper uses K-fold cross-valida-
tion to further analyze the models. First, a part of the 
data is separated from the dataset established in step 3 
as a test set, and the remaining data are divided into ten 
parts as a training set. Subsequently, the training model 
was repeated ten times, nine training datasets were 

Fig. 4  PBO site distribution
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selected for training each time, and the remaining data-
set was used for validation. The test data were used to 
test the model effect. Finally, the test results obtained 
by running the three models ten times were averaged. 
The results are shown in Fig. 7.

We can see from Fig. 7 that, among the three models, 
the GA–BP neural network has the best modeling effect, 
and the r and RMSE values of the estimated results are 
77.8% and 0.0332, respectively. Following the BP neural 
network, the estimated r and RMSE values are 74.6% 
and 0.0465, respectively. The MLR model has the worst 
modeling effect, with r and RMSE estimated at 50% and 
0.0516, respectively. This result is consistent with the 
results shown in Table 3. Based on the above results, both 
the BP neural network and the GA–BP neural network 
are relatively stable and better than the MLR results. 
However, GA–BP neural network modeling works bet-
ter. Therefore, the GA–BP neural network adopted in 
this paper is used for modeling. In this paper, the estab-
lished dataset is randomly divided into 70%, 15%, and 

15%, which are used as the training, confirmation, and 
test sets, respectively. According to the algorithm flow of 
Fig. 2, the GA–BP model is trained, and the model with 
the best training effect is selected after multiple pieces 
of training. Figure 8 shows the change in the reciprocal 
of sum-squared errors of the genetic algorithm and the 
change in the fitness function. The model training accu-
racy is shown in Fig. 9.

It can be seen from Fig. 8 that when the number of iter-
ations is less than 10, the sum-squared errors and fitness 
functions tend to be stable. The GA finds the gene chain 
with the smallest error energy as much as possible at the 
global level, reducing the possibility that the simple BP 
neural network is easy to oscillate and does not converge 
(or locally converge). It can be seen from Fig. 9 that the r 
values of the training and testing parts have reached 0.86 
and 0.64, respectively, and the overall modeling accuracy 
has reached 0.79. The test part RMSE was calculated as 
0.031. Therefore, the trained model is feasible and effec-
tive. Thus, using the model trained above to perform 

Fig. 5  DEM map and satellite map of the study area: a DEM map; b Landsat map
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inversion, six spatially continuous 16 days/500 m resolu-
tion NMRI product maps were obtained. Figure 10 shows 
six spatially continuous NMRI product maps. Figure  11 
shows the NDVI, GPP, and LAI images on July 28 and 
October 16.

By comparing the NDVI, GPP, and LAI images at the 
same time, it was found that the spatial distribution of 
the NMRI in the test area was relatively consistent with 
the NDVI, GPP, and LAI. From the spatial distribution of 
the NMRI in Fig. 10, it can be seen that the NMRI values 
in the eastern and northwestern mountains of the experi-
mental area are high, and the NMRI values in the Great 
Salt Lake and Great Salt Lake Desert areas in the south-
west are low. This result is consistent with the geographi-
cal characteristics of the experimental area described in 
“Study area” section. From the time distribution, com-
paring Figs.  10 and  11, we found that as the weather 
became colder, the vegetation growth in most areas of 
the experimental area decreased significantly, and the 
water content of the vegetation decreased significantly. 
This change agreed with the climate characteristics of 
cold and dry winters in the experimental area. Through 

Fig. 6  Correlation analysis between NMRI, NDVI, GPP, and LAI

Table 2  Hidden layer number selection

Number of hidden 
layers

Frequency RMSE average Number of hidden 
layers

Frequency RMSE average

3 33 0.0394 9 56 0.0400

4 27 0.0392 10 55 0.0404

5 28 0.0415 11 51 0.0397

6 38 0.0400 12 47 0.0412

7 39 0.0405 13 45 0.0400

8 43 0.0413 14 38 0.0390

Table 3  Comparison of running results of three models

Model r RMSE threshold (0.005)

< 0.6 > 0.6 Less than Greater than Less 
than a threshold 
percentage (%)

BP 28 22 35 15 70

GA–BP 27 23 35 15 70

MLR 37 13 34 16 68
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the consistency of the NMRI spatial distribution with 
the NDVI, GPP, and LAI in Figs. 10 and 11, the feasibil-
ity of point-surface fusion was preliminarily verified. To 
further verify the accuracy of spatially continuous NMRI 
products, the NMRI values of three non-participating 
stations in the six spatially continuous NMRI images 
obtained by modeling were extracted and compared with 
the reference values of the NMRI provided by PBO H2O. 
This paper uses the three indicators of r, RMSE, and 
maximum inversion error (Max) for accuracy analysis. 
The results are shown in Fig. 12.

It can be seen from Fig. 12 that the r between the inver-
sion value and the actual value of the three stations is 
higher than 0.87, which shows that there is a strong cor-
relation between the inversion results and the actual 
value; for the RMSE, P359 is the largest among the three 
stations, reaching 0.049. The other two stations are less 
than 0.03; for MAX, P359 is the largest among the three 
stations, reaching 0.082, and the other two stations are 
less than 0.046. It can be seen that the errors obtained 
at the three stations are small, and there are no gross 

errors; thus, the inversion results obtained are valid and 
accurate.

It can be seen from Figs. 10 and 11 that there are still 
some inconsistencies in the generated spatially continu-
ous NMRI map. For example, in the southwestern part 
of the map, this region has a low resolution of vegetation 
moisture content, and the NMRI value is relatively close, 
which cannot accurately reflect the changes in vegetation 
moisture content in this region. In the images in Fig. 10e, 
f, it is obvious that there is an overestimation of the veg-
etation water content in this area. Combining Fig. 5b, we 
see there is no PBO H2O station in this area. Therefore, 
this may be because no GNSS stations from this area are 
included in modeling. Ultimately, the effect and accuracy 
of local modeling were affected, resulting in an abnor-
mal NMRI value in this area. Therefore, there may be a 
large relationship between the fusion effect and the dis-
tribution of GNSS stations. For regions with GNSS dis-
tribution, it is feasible and effective to use GA–BP neural 
network to establish a point-plane fusion model to finally 
obtain a spatially continuous NMRI product.

Fig. 7  Comparison of K-fold cross-validation of three models: a BP; b GA–BP; c MLR

Fig. 8  Genetic algorithm optimization results: a reciprocal of sum-squared errors; b fitness function
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Conclusion and future research
The accurate and long-term monitoring of VWC is of great 
significance to environmental scientific research. Given 
the current limitations of using GNSS-IR technology and 
remote sensing technology to monitor VWC changes. 
Based on the idea of multisource data fusion, this paper 
proposes a method of point-surface fusion using neural 
networks to integrate MODIS three vegetation indexes: 
the NDVI, GPP, LAI, and NMRI products based on GNSS-
IR. Theoretical analysis and experimental results show that 
(1) the NDVI, GPP, and LAI all have strong correlations 
with the NMRI. (2) We compared the effect of point-sur-
face fusion of three models: the GA–BP neural network, 
BP neural network, and MLR. The results show that the 
GA–BP neural network has the best modeling effect, and 

the r and RMSE values between the model estimation 
result and the reference value are 0.778 and 0.0332, respec-
tively; it was followed by the BP neural network, with r and 
RMSE values of 0.746 and 0.0465, respectively; MLR had 
the poorest effect, with r and RMSE values of 0.500 and 
0.0516, respectively. Therefore, the GA–BP neural net-
work can be used to achieve a productive fusion of GNSS-
IR and MODIS data. (3) The spatiotemporal variation in 
the 16 days/500 m resolution NMRI product obtained by 
point-surface fusion is consistent with that in the experi-
mental area. The estimated results of the six spatially con-
tinuous NMRI products were extracted and compared 
with the reference values. The r values of both were higher 
than 0.87. The RMSE values were less than 0.049, and the 
MAX values were less than 0.082.

Fig. 9  Model training accuracy
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Fig. 10  Inversion results: a 2010-07-28 NMRI; b 2010-08-13 NMRI; c 2010-08-29 NMRI; d 2010-09-14 NMRI; e 2010-09-30 NMRI; f 2010-10-16 NMRI
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Fig. 11  Vegetation index products: a 2010-07-28 GPP; b 2010-07-28 LAI.; c 2010-07-28 NDVI; d 2010-10-16 GPP; e 2010-10-16 LAI; f 2010-10-16 
NDVI
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In summary, this paper proposes that the GNSS-IR 
and MODIS point-surface fusion model based on the 
GA–BP neural network is feasible and effective, and the 
resulting spatially continuous NMRI products can be 
used to better, and more intuitively, represent the VWC 
changes in the region. It was found through experi-
ments that the distribution distance between GNSS 
stations in the experimental area had a great impact on 
the modeling results. If the number of GNSS stations in 
the study area is small or the distance between the sta-
tions is considerable, it will affect the modeling effect of 
the local area. Therefore, to further verify the method 
of this paper, the impact of modeling after encrypting 
GNSS stations by the technique of spatial interpola-
tion will be discussed in depth later. In addition, more 
VWC-related remote sensing products will be incorpo-
rated for modeling.
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