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Conditioning and PPP processing 
of smartphone GNSS measurements in realistic 
environments
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Abstract 

Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code 
measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. This 
internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (hand-
held, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS 
chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use 
Precise Point Positioning (PPP) to improve positioning without any additional equipment. This research analyses GNSS 
measurement quality parameters from a Xiaomi MI 8 dual-frequency smartphone in varied, realistic environments. 
In such environments, the system suffers from frequent phase loss-of-lock leading to data gaps. The smartphone 
measurements have low and irregular carrier-to-noise (C/N0) density ratio and high multipath, which leads to poor or 
no positioning solution. These problems are addressed by implementing a prediction technique for data gaps and a 
C/N0-based stochastic model for assigning realistic a priori weights to the observables in the PPP processing engine. 
Using these conditioning techniques, there is a 64% decrease in the horizontal positioning Root Mean Square (RMS) 
error and 100% positioning solution availability in sub-urban environments tested. The horizontal and 3D RMS were 
20 cm and 30 cm respectively in a static open-sky environment and the horizontal RMS for the realistic kinematic sce-
nario was 7 m with the phone on the dashboard of the car, using the SwiftNav Piksi Real-Time Kinematic (RTK) solu-
tion as reference. The PPP solution, computed using the YorkU PPP engine, also had a 5–10% percentage point more 
availability than the RTK solution, computed using RTKLIB software, since missing measurements in the logged file 
cause epoch rejection and a non-continuous solution, a problem which is solved by prediction for the PPP solution. 
The internal unaided positioning solution of the phone obtained from the logged NMEA (The National Marine Elec-
tronics Association) file was computed using point positioning with the aid of measurements from internal sensors. 
The PPP solution was 80% more accurate than the internal solution which had periodic drifts due to non-continuous 
computation of solution.

Keywords:  PPP, Smartphone, Realistic environment, Prediction, C/N0-based stochastic modeling, Internal phone 
solution, Positioning solution comparison
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Introduction
Global Navigation Satellite System (GNSS) based posi-
tioning in smartphones has been used for personal and 

vehicle navigation and is now being expanded to aug-
mented reality-based gaming, tourism applications, 
contact tracing, bicycle rentals, etc. Most cellphones 
and smartphones generally had extremely low-cost 
Global Positioning System (GPS) single-frequency 
chips tracking GPS L1 C/A-code measurements with 
low-cost antennas. Smartphone GNSS chipsets output 
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position-velocity–time and limited satellite informa-
tion, such as the elevation and azimuth (Guo et al. 2020). 
The positioning solution offered by the phone typi-
cally reached 2–3  m and degraded to tens or hundreds 
of meters in high noise and multipath environments. In 
2016, Google introduced the availability of raw GNSS 
measurements for smartphones with Android N and sub-
sequent versions and permitted duty cycling (a power-
saving mechanism) to be turned off, ensuring continuous 
tracking of raw GNSS measurements. In 2018, the world’s 
first dual-frequency GNSS-enabled smartphone, the 
Xiaomi MI 8, equipped with a Broadcom BCM47755 
chipset was launched. It is capable of tracking L1/E1 and 
L5/E5 code and carrier-phase signals from GPS, Galileo 
Navigation Satellite System (Galileo) and Quasi-Zenith 
Satellite System (QZSS) and single-frequency measure-
ments from GLObal NAvigation Satellite System (GLO-
NASS) L1 code and BeiDou Navigation Satellite System 
(BDS) B1 code (EGSA 2018).

Precise Point Positioning (PPP) is a viable option for 
improving positioning availability and accuracy for 
smartphones, as it is a stand-alone technique that uses 
precise satellite orbit, clock, and other corrections to 
produce cm to dm-level positioning (Bisnath and Gao 
2008). Most early PPP positioning experiments were lim-
ited to single-frequency and code-only testing. Gim and 
Kwon-dong (2017) conducted a single-frequency pseu-
dorange positioning test using a Nexus 9 tablet, yield-
ing 2D and 3D Root Mean Square (RMS) positioning 
errors of 3.05 and 3.82 m, respectively. Gill et al. (2017) 
used single-frequency PPP processing to achieve RMS of 
37 cm and 51 cm in horizontal and vertical components, 
respectively, with a Nexus 9 tablet. Sikirica et  al. (2017) 
performed a pseudorange point positioning test under 
a good observation environment with a Huawei P10 

smartphone, and the RMS positioning errors were ~ 10 m 
in the north (N) and east (E) directions and ~ 20 m in the 
vertical. Wu et al. (2019) processed GNSS measurements 
from a Xiaomi MI 8 smartphone in the dual-frequency 
PPP mode and obtained RMS positioning errors in the E, 
N, and up (U) directions of 21.8, 4.1, and 11.0 cm, respec-
tively. However, it took 102  min for the three-dimen-
sional positioning error to converge to 1 m. Aggrey et al. 
(2020) obtained an average horizontal error of 40  cm 
for dual-frequency PPP processing using the Xiaomi MI 
8, with a convergence time of 38  min in ideal open sky 
environments.

Most GNSS smartphone positioning tests typically 
have been carried out in static, open-sky, ideal condi-
tions with the phone placed flat on rooftops. These data 
collection methods and environments are far from those 
of actual phone usage, which is mostly in the kinematic 
mode in sub-urban and urban environments with signal 
blockages due to holding the phone in hand and reflec-
tions and blockages from buildings, vehicles and pedes-
trians. For example, Fig.  1 displays the Single Point 
Positioning (SPP) solution for a running pedestrian data-
set collected with the phone in hand, in central Toronto, 
Canada, in an area characterised by tall buildings and sig-
nal blockage.

Positioning results show biases of a few meters to tens 
of meters, irregularity and large jumps due to multipath 
affecting the pseudorange measurements and the carrier-
phase measurements suffering from periodic cycle slips 
with data gaps spanning several hundreds of seconds.

In ideal environments, accurate positioning is difficult, 
as smartphones possess low-cost, inverted-F linearly 
polarized antennas that lead to poor multipath suppres-
sion, multiple and frequent data gaps, and low, irregu-
lar signal strength. These measurement-induced errors 

Fig. 1  GPS L1 code-only SPP solution for a kinematic dataset collected in a high multipath, urban environment
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multiply substantially in realistic environments. Secondly, 
smartphone measurement logging applications occasion-
ally incorrectly compute or format measurements. There-
fore, to advance positioning accuracy and availability, it is 
crucial to undertake a detailed analysis of measurement 
quality, including signal strength, multipath, measure-
ment gaps and cycle slips in these environments and to 
suitably condition the measurements.

The novelty of the presented research lies in its focus 
on analyzing and addressing problems with smartphone 
GNSS measurements in realistic environments. The two 
major outcomes of this paper are:

1.	 Analyzing the quality of GNSS measurements in dif-
ferent multipath environments and addressing non-
continuity and large errors in the PPP positioning 
solution due to high multipath noise and missing 
GNSS measurements. The use of a carrier-to-noise 
(C/N0) based stochastic model and an extrapolation-
based prediction strategy is shown to reduce posi-
tioning errors and increase positioning availability.

2.	 Comparing the positioning accuracy and avail-
ability obtained by dual-frequency PPP processing 
with other techniques such as Real-Time Kinematic 
(RTK), SPP and the internal positioning solution for 
smartphones.

The paper begins with a brief description of the receiv-
ers and loggers used and various data collection scenar-
ios. C/N0, multipath and data gaps are investigated. A C/

N0-based stochastic model and a measurement predic-
tion technique are developed and applied to the datasets. 
The final section of the paper compares PPP static and 
kinematic positioning results with SPP, RTK and smart-
phone internal positioning solutions.

Raw GNSS measurement collection and analysis
A Xiaomi MI 8 phone with a BCM47755 GNSS chip was 
used for data collection. It tracks code and carrier-phase 
measurements from GPS (L1/L5), Galileo (E1/E5) and 
QZSS (L1/L5) and single-frequency signals from GLO-
NASS (L1) and BDS. The SwiftNav Piksi which is a low-
cost receiver was used to obtain cm-dm level reference 
solutions, tracking L1/L2 comparable frequency meas-
urements for GPS, Galileo, GLONASS and BDS. The 
smartphone chip costs in the 10 US dollar range, while 
the SwiftNav Piksi chip costs a few hundred US dollars.

Data were collected using the Geo + + Receiver 
Independent Exchange Format (RINEX) Logger 
(Geo++  2018) and the GNSS Logger (Diggelen and 
Khider 2018). Figure  2 depicts data collection using the 
(A) Xiaomi MI 8 smartphone and (B) SwiftNav Piksi in 
different multipath environments:

1.	 Static: Tripod-mounted phone on the rooftop for one 
hour on Day of Year (DOY) 225, 2019 (Fig. 2a).

2.	 Static: Phone taped to the hand of a mannequin, 
placed on a rooftop at York University, on DOY 146, 
2019, for two hours (Fig. 2b).

Fig. 2  Data collection using (a) Xiaomi MI 8 smartphone and (b) SwiftNav Piksi in different multipath environments
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3.	 Kinematic: Two datasets collected with the phone 
clamped to the car dashboard, driven in a medium 
multipath environment at York University, DOY 85 
and 325, 2019. Collection duration of 41 and 33 min, 
respectively with SwiftNav antenna placed on the car 
roof (Fig. 2c).

4.	 Kinematic: 30-min datasets collected in a high mul-
tipath urban environment (DOY 54, 2019) and for-
ested area (DOY 67, 2019) with the phone in hand 
while walking and in the pocket while skiing, respec-
tively (Fig. 2d).

The measurements were processed with the YorkU 
PPP engine—a complete user PPP processor. This 
research focuses on dual-frequency GPS (L1 and L5) 
and Galileo (E1 and E5a) PPP processing in the uncom-
bined mode. The measurements were processed using 
a Sequential Least-Squares (SLS) filter, as the variabil-
ity in the measurement noise for smartphones GNSS 
measurements in different environments makes pro-
cess noise tuning in Extended Kalman Filter (EKF) 
processing extremely challenging. An elevation angle 
mask of 10° and a C/N0 mask of 20  dB·Hz were used, 
as below these thresholds, measurements suffer from 
high multipath or have several tens of seconds of data 
gaps. Also, choosing an extremely high C/N0 mask such 
as 30 or 35  dB·Hz results in several satellites getting 
rejected when data are collected in realistic environ-
ments, further reducing the available satellite count for 
processing. Table 1 discusses the different PPP process-
ing parameters deployed in the YorkU PPP processing 
engine. Several measurement quality parameters such 

as carrier-to-noise ratio, data gaps and multipath and 
their correlation with each other are then analysed in 
different multipath environments.

Carrier‑to‑noise density ratio and multipath
C/N0 is measured and outputted by the smartphone 
data logger and is dependent on: the power density of 
the incoming GNSS signal; reception area and gain of 
the receiver antenna; satellite elevation; and the receiv-
ing hardware, including antenna, receiver and cables 
(Braasch and van Dierendonck 1999; Fortunato et  al. 
2019). Low and irregular C/N0 values can be attributed 
to the inability of a smartphone monopole GNSS antenna 
to distinguish between incoming right-hand circularly 
polarized signals and reflected left-hand circularly polar-
ized signals. Low signal strength and variations further 
compound signal multipath. The following analysis inves-
tigates these limitations in various realistic environments 
and their subsequent adverse effects on positioning solu-
tion quality. Figure 3 illustrates C/N0 as a function of the 
elevation angle plot for the Xiaomi MI 8 and SwiftNav 
Piksi in a medium multipath kinematic scenario.

The received C/N0 for the smartphone is not influenced 
by the elevation angle, while for the SwiftNav, a typical 
decrease in signal strength with decreasing elevation 
angle is observed. The duration of data collection is about 
20 min and hence, there is a lack of data at all elevation 
angles. Due to the short time of observation for each sat-
ellite and limited number of satellites being tracked for 
the entire duration of data collection, there are gaps in 
the elevation plot. The average C/N0 of the smartphone 
L1 signal is 23% lower than that of the reference receiver. 

Table 1  YorkU-PPP engine processing parameters for smartphones

Processing parameters YORK U GNSS PPP engine settings

PPP processing mode Uncombined dual-frequency

Estimator Sequential least squares

Antenna corrections International GNSS Service (IGS) Antenna Exchange Format (ANTEX)

Satellite orbits and clocks CNT-Centre National d’Etudes Spatiales (CNES)

Elevation mask 10°

C/N0 mask 20 dB·Hz for smartphone, 15 dB·Hz for Piksi

GNSS system GPS, Galileo

Observations processed L1, L5, E1, E5a

Measurement data format RINEX 3.03

Ionospheric mitigation Slant ionospheric delay estimation

Using Global Ionospheric Maps (GIM’s) as pseudo-observations in the 
uncombined filter to mitigate and estimate the slant ionospheric 
error

Tropospheric modelling Hydrostatic delay: Davis Global Pressure/Temperature (GPT)

Wet delay: Estimated

Mapping function: Global Mapping Function (GMF)
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A similar performance is observed for the L5 and E5a 
signals. Also, for L5/E5a, it is observed that the C/N0 
decreases above an elevation angle of 50° in medium 
to high multipath environments and above 60° in static 
open sky conditions. These findings correspond to results 

from Wanninger and Heßelbarth (2020) in static open 
sky environments.

The pseudorange multipath was estimated by taking 
the linear combination of the code and carrier-phase 
observables with mean removed. The multipath effect on 
the signals for Xiaomi MI 8 is on an average 84% higher 

Fig. 3  Variation of C/N0 with elevation angle for Xiaomi MI 8 and Piksi in a medium multipath, kinematic scenario, DOY 325, 2019

Fig. 4  Variation in C/N0, elevation angle and pseudorange multipath for two satellites in A kinematic, medium multipath scenario
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than that of the effect on the SwiftNav Piksi in a static 
environment and 83% higher in the kinematic environ-
ment. Since the smartphone antenna senses reflected sig-
nals from all directions, the multipath is related to the C/
N0 rather than the elevation angle as observed in Fig. 4.

Two satellites, G25 and E07, were observed to under-
stand the variation in multipath with a change in C/
N0 and elevation angle since they were tracked for the 
entire duration of the data collection and the infer-
ences that can be drawn are:

(1)	 The elevation angle does not influence C/N0 values 
and multipath for smartphones as shown in Fig. 4a. 
G25 with a lower elevation angle of 35° as compared 
to 60° for E07 had a higher mean C/N0 of 45 dB·Hz 
lower L1 code multipath with an RMS of 5.9 m. E07 
had a mean C/N0 and RMS multipath of 26.5 dB·Hz 
and 10.4 m, respectively.

(2)	 There was a general decrease in multipath with an 
increase in C/N0 values as highlighted by the brown 
boxes in Fig. 4b as the antenna picked up reflected 
signals with weaker signal strength. These infer-
ences highlight the need for a weighing model that 
considers these two factors.

Table  2 highlights the mean C/N0 and RMS mul-
tipath values for the L1/E1 and the L5/E5a signals for 
the smartphone in different multipath environments.

The L5/E5 signals are transmitted at higher power 
levels and chipping rate than L1/E1 and therefore 
should have higher received C/N0 and better noise 
suppression. However, the tested smartphone shows 
the opposite with received C/N0 for the L5 signal for, 
e.g., G25 in a medium multipath environment on an 
average is 3 dB·Hz lower than for L1, while the pseu-
dorange multipath RMS for L5 is ~ 5 m more than for 
L1 as shown in Fig. 5.

Overall, the smartphone C/N0 for GPS L5 is 8% 
weaker than for L1, and the C/N0 for Galileo E5a sig-
nal is 10% less than Galileo E1 for the medium mul-
tipath, kinematic scenario as shown in Table  3. The 

smartphone antenna affects these signal strength and 
noise values as the antenna is not as sensitive for the 
L5/E5a signal resulting in lower signal strength. (Wan-
ninger and Heßelbarth 2020).

Cycle slips and data gaps
In realistic data collection scenarios, there is consider-
able blockage and interference of GNSS signals, imply-
ing that the receiver loses lock and cycle slips occur. The 
antenna loses track of the signal and takes an average of 
3–5 s before re-acquisition. In high multipath urban and 
forested areas, this signal re-acquisition can take tens of 

Table 2  Mean C/N0 and RMS pseudorange multipath for L1/E1 and L5/E5a frequencies for Xiaomi MI 8 in different multipath scenarios

Different multipath scenarios Mean C/N0 for different frequency RMS for different frequency

Mean L1/E1 C/N0 (dB·Hz) Mean L5/E5a C/N0 (dB·Hz) RMS L1/E1 code multipath 
(m)

RMS L5/E5a 
code multipath 
(m)

Low multipath 35.9 34.9 6.4 8.2

Medium multipath 35.5 33.2 10.2 16.1

High multipath 29.0 26.5 14.8 19.5

Fig. 5  Comparison of C/N0 and multipath for the L1 and L5 signal for 
G25 for the Xiaomi MI 8

Table 3  Mean C/N0 for L1 and L2/L5 frequencies for GPS and E1 
and E5a/E5b frequencies for Galileo for Xiaomi MI 8 and SwiftNav 
Piksi in medium multipath, kinematic scenario

Smartphone names Frequency GPS-mean C/
N0 (dB·Hz)

Galileo—mean 
C/N0 (dB·Hz)

Xiaomi MI 8 L1/E1 39.2 35.4

L5/E5a 36.1 32.0

SwiftNav Piksi L1/E1 47.4 48.1

L2/E5b 47.9 49.1
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seconds. The carrier-phase observables are most vulner-
able to these blockages (Marçal and Nunes 2016) and, 
hence, the carrier-phase tracking is not continuous (Sen-
nott 1999). Figure  6 highlights the cycle slips affecting 
the GPS L1 carrier-phase measurements in a high mul-
tipath (forested) environment. The frequency of these 
cycle-slips increases with the increase in multipath, as is 
indicated by the increase in the number of black crosses. 
For urban canyons and forested areas, it is virtually 

impossible to process the carrier-phase measurements 
with large and frequent data gaps; hence, such datasets 
were excluded from further analysis.

Figure 7 compares the duration of the missing observa-
bles (depicted with red boxes) for two satellites in a low, 
medium and high multipath environment.

Each figure shows the proportion of missing measure-
ments for any observable using a red bar graph and the 
different combinations of the presence and absence of the 

Fig. 6  Carrier-phase residuals showing cycle slips for GPS L1 carrier-phase measurements in a high multipath forested environment (DOY 67, 2019)

Fig. 7  Percentage and count of missing observables (in red) for satellites in different multipath environments
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observable using the blue and red box graph. The num-
bers on the right indicate the duration in terms of sec-
onds or epochs. The blue boxes signify the presence of 
the observable, while the red boxes indicate the absence 
of the observable. The L5 carrier-phase measurements 
are the most affected, followed by the L1 carrier-phase 
measurements, and the presence of all four observa-
bles decreased from 90% in low multipath static envi-
ronments to just 47% in medium multipath kinematic 
environments and 20% in high multipath scenarios. The 
smartphone antenna is not as sensitive to tracking the 
L5 signal as compared to the L1 signal (Wanninger and 
Heßelbarth 2020), which explains the frequent phase-
loss-of-lock and consequent data gaps affecting the L5 
carrier-phase measurements the most. These data gaps in 
any particular observable lead to the rejection of the sat-
ellite in the processing. And subsequently, after satellite 
rejections due to missing observables or large residuals, 
the count of useable satellites falls to below the minimum 
requirement resulting in no solution.

Figure  8 compares the count of actual satellites avail-
able versus useable satellites after rejection for the driv-
ing dataset, with the solution gap portions identified with 
black arrows.

On average, 11 satellites were tracked, but only 5 could 
be processed after rejections due to large residual mag-
nitude, low elevation angle or C/N0 value, or missing 
measurements. Several epochs only had 3 to 4 satellites 
available for processing with all 4 measurements present.

C/N0‑based stochastic model
Measurement weighting of parameters is another 
important aspect in PPP processing and since C/N0 is 
a key quality indicator in assessing smartphone GNSS 
measurements, this ratio can be employed in stochas-
tic modeling (Braasch and van Dierendonck 1999). The 

measurement noises, σ2
C/A

 , σ2
L1/L5 of the C/A-code and 

carrier-phase measurements, respectively, at zenith is 
directly proportional to the square of the pseudorange 
chip length, �C/A or  carrier wavelength, and inversely 
proportional to the C/N0 (Braasch and van Dierendonck 
1999). Unlike geodetic receivers, an elevation angle-
based weighing strategy is not justified for smartphone 
GNSS measurements, as smartphones receive signals 
from all directions and have varying orientations due to 
use. (Paziewski et al. 2019; Banville et al. 2019). A C/N0-
based stochastic model had been suggested by Banville 
et al. (2019) where the parameters used to compute the 
standard deviation of the code and carrier-phase meas-
urements were estimated from the filter residuals. This 
model was adapted to assign measurement weights based 
on multipath noise, chipping-length or wavelength and 
C/N0. Since measurement prediction is carried out, espe-
cially for the missing carrier-phase measurements, the 
prediction error (1 m) was incorporated into this weigh-
ing factor. The C/N0-based stochastic model is as follows 
(Banville et al. 2019): 

 where a is the RMS of pseudorange multipath noise for 
code measurements, while it is limited to the 1 m wave-
length for carrier-phase (compensated for prediction 
error); b is the pseudorange chipping length of C/A-code 
(293  m for L1 measurements and 29.3  m for L5 code 
measurements) or carrier-phase wavelength for code and 
carrier parameters, respectively.

Static scenario assessment
Figure 9 compares the 2D and 3D RMS positioning accu-
racy and convergence time for the static mannequin 
dataset after employing three different measurements 

(1)σ = a+ b× 10
−

1

2
×

C/N0
10

Fig. 8  Satellites tracked versus satellites processed in a kinematic medium multipath scenario



Page 9 of 17Shinghal and Bisnath ﻿Satell Navig            (2021) 2:10 	

weighting assignments: static, elevation-based and C/
N0-based.

The horizontal and vertical positioning accuracy after 
convergence is presented in Table 4.

To obtain sub-metre level positioning accuracy, the 
convergence threshold was chosen to be 1  m, and with 
C/N0-based stochastic modeling, the dataset position-
ing converges in 58 min, as compared to 72 min for the 
elevation-based model and 75 min for the static stochas-
tic model. The C/N0-based stochastically modeled data 
show improved initialization, convergence and least 2D 
and 3D RMS error.

To validate the reproducibility of the results and the 
effectiveness of the C/N0-based technique over the ele-
vation-based weighting technique, the first hour of data 
processing for the mannequin dataset was divided into 
segments of 20  min each. Therefore, the PPP processor 
resets every 20 min and processes the data using the C/
N0 and elevation-based weighting strategy. The horizon-
tal RMS of the two solutions is compared and depicted 
in Fig. 10.

Fig. 9  PPP 2D and 3D RMS positioning accuracy using three different stochastic models for Xiaomi MI 8 and SwiftNav Piksi measurements, DOY 
146, 2019

Table 4  PPP positioning accuracy using three different stochastic models for Xiaomi MI 8 and SwiftNav Piksi measurements, DOY 146, 
2019

Scenario Positioning accuracy Convergence 
time (min)

Horizontal (m) 3D (m)

Static stochastic modeling—Xiaomi MI 8 0.81 1.35 75

C/N0-based stochastic modeling—Xiaomi MI 8 0.72 1.27 58

Elevation-based stochastic modeling—Xiaomi MI 8 0.94 1.74 72

Elevation-based stochastic modeling—Piksi 0.14 0.16 9

Fig. 10  PPP horizontal positioning accuracy using different 
stochastic models for smartphone reset experiment
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The RMS horizontal errors for the 20-min segment for 
two weighting strategies are highlighted in Table 5.

These results depict the effectiveness of a C/N0-based 
technique due to significantly reduced initialization error 
on each reset and lower RMS error. Overall, the mean 
RMS error was 30% lower for the C/N0-based weighting 
strategy for the three segments.

The post-fit residuals for the three weighing models are 
compared in Table 6.

The C/N0-based model outperformed the other two 
models in terms of residual magnitude, as there is a 
decrease in residual magnitude with increasing C/N0 
values. No such dependence can be observed for the 
residuals and the elevation angle as seen in Fig. 11, where 
the C1 post-fit residuals for three satellites have plotted 
against C/N0 and elevation angle.

Measurement prediction
A measurement prediction technique has been devised 
to predict missing measurements to increase position-
ing solution availability. As mentioned earlier, it was 
extremely difficult to tune the noise parameters for the 
highly variable smartphone raw GNSS measurements in 
realistic environments in an EKF filter. Accordingly, the 
EKF filter could not used for measurement prediction. 
Hence, a separate measurement prediction technique 
had to be devised. Various real-time extrapolation 
and estimated Doppler prediction techniques were 
tested; however, they were discarded for a simple linear 
extrapolator, as it provides lower prediction error for 
filling data-gaps in low to medium multipath environ-
ments. For example, the estimated Doppler prediction 
technique (Li et al. 2019) is limited by a lack of knowl-
edge of dynamics without the aid of an Inertial Meas-
urement Unit (IMU). The current research focuses on 
GNSS-only processing. The logged Doppler measure-
ments show large variability and gaps, as can be seen in 
Fig. 12 and therefore cannot be used for prediction.

For satellite G32, there are no L1 carrier-phase meas-
urements depicted by the jumps in the logged Dop-
pler measurements, even though the satellite had a 
mean elevation of above 70° and a C/N0 value averag-
ing 35  dB·Hz. The lack of L1 carrier-phase measure-
ments in such a scenario could be attributed to the 
low-cost antenna. For satellite E30, the L5 Doppler 

Table 5  PPP 2D RMS positioning accuracy using different 
stochastic models for smartphone reset experiment, DOY 146, 
2019

Time 
Interval 
(min)

2D RMS error (m) C/
N0-based weighting

2D RMS error (m) 
Elevation-based 
weighting

Percentage 
difference 
(%)

0–20 1.7 2.8 64.7

20–40 5.2 5.3 1.9

40–60 4.1 5.1 24.4

Table 6  Post-fit residual RMS for different stochastic models for Xiaomi MI 8, DOY 146, 2019

Scenario Post-fit C1 (m) Post-fit L1 (cm) Post-fit C5 (m) Post-fit L5 (cm)

Static stochastic model 13.8 32.7 2.3 25.8

C/N0-based stochastic model 4.3 6.0 1.9 4.3

Elevation-based stochastic model 5.0 9.0 2.1 6.1

Fig. 11  Variation of PPP C1 post-fit residuals with C/N0 and elevation angle for Xiaomi MI 8, DOY 146, 2019
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measurements are not continuous, with more frequent 
and larger gaps than for the carrier-phase data gaps. 
The occurrence of long durations of missing Doppler 
measurements can be attributed to poor carrier-phase 
tracking in challenging environments and due to the 
low-cost antenna.

Different extrapolations methods were tested and a sum-
mary is presented in Fig. 13 using the example of satellite 
G26 L5 carrier-phase measurements.

Artificial gaps ranging from 4 and 5 s were synthesized. 
‘n’ corresponds to the number of past measurements used 
to predict the next measurement in case of a gap for a lin-
ear extrapolator. The linear model is a simple mathematical 
technique that computes the slope based on the past meas-
urement and uses it to predict the next measurement. If the 
epochs are taken as X and the carrier-phase / pseudorange 
measurements are taken as Y, then

where n is the number of past measurements considered. 
The extrapolated measurements are taken into considera-
tion if the gap is greater than one epoch. X is the index to 
count the number of epochs; Y is the value of the observ-
able being predicted. The next measurement at X can be 
predicted as:

As seen in Fig.  13, the carrier-phase measurements 
already have a data gap present at epoch 17. The linear 
extrapolator with the past 2 measurements produces an 
RMS prediction error of 16 cm over the 4 epochs (epochs 
21–24, inclusive), while the prediction error using 3 and 

(2)m =
n�XY −�X�Y

n�X2 − (�X)2

(3)c =
�Y −m�X

n

(4)c +m× x

Fig. 12  Change in carrier-phase measurements compared to Doppler measurements for a kinematic dataset in a medium multipath environment, 
DOY 325, 2019

Fig. 13  Predicted L5 measurements and prediction error using different extrapolation technique
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4 measurements is 2.8 and 2.6 m, respectively. The cubic 
spline extrapolation yields an error of 3.5 m for the same. 
Based on the analysis carried for a wide range of data, it 
was concluded that better prediction occurs with linear 
extrapolation using measurements from the previous two 
epochs. This result can be attributed to the large variabil-
ity in the magnitude of code and carrier-phase measure-
ments over successive epochs in a dynamic environment 
and hence, it is best to use measurements from a mini-
mum number of past epochs to predict ahead. The posi-
tioning solution obtained with the application of this 
technique is investigated next.

Kinematic scenario assessment
Suburban vehicle data collected on DOY 325, 2019 suf-
fered from frequent data gaps. Figure 14 shows the vehi-
cle trajectory positioning accuracy and availability before 
the application of the C/N0-based stochastic model and 
measurement prediction techniques (Fig.  14a), after the 
implementation of the C/N0-based stochastic model but 
no prediction (Fig. 14b), and after the application of the 
C/N0-based stochastic model and the prediction strat-
egy (Fig. 14c). The red ovals indicate periods of no solu-
tion and/or solution divergence. The three solutions have 
been plotted together (Fig.  14d) and with the SwiftNav 
PPP solution (Fig. 14e).

The objective of the analysis is to compare the overall 
improvement in the horizontal positioning accuracy and 
availability of the Xiaomi PPP solution with itself before 
and after the implementation of the C/N0-based stochas-
tic model and prediction technique using the Piksi PPP 
reference solution as shown in Fig. 15.

Notably, the phase centers of the SwiftNav antenna 
and the phone antenna were not aligned. The SwiftNav 
antenna on the vehicle roof had better signal availability, 
while the smartphone being inside the car had additional 
signal blockages, fewer tracked satellites, consider-
able missing carrier-phase measurements and multipath 
affecting the code measurements. Despite these adversi-
ties, with the implementation of prediction and C/N0-
based stochastic model, a solution with 100% availability 
is achieved and the accuracy of the positioning solution 
improved, especially over the region between epoch 1553 
and 1953 – highlighted in Fig. 14. Overall, there is a 64% 
decrease in horizontal positioning standard deviation 
and RMS error and a 1.3% increase in solution availability 
to 100% after the conditioning and prediction as shown 
in Table 7.

For the major outage between epochs 1553–1953, 23% 
(91/400) of epochs has no solution before the C/N0-
based stochastic model and prediction, which decreased 
to 5% (21/400) after the stochastic model implementa-
tion, while with both the conditioning and prediction, a 

100% continuous solution was obtained. The RMS hori-
zontal positioning error decreases from 15.5 m to 8.4 m 
and finally to 5.8  m for the portion between epochs 
1553–1953.

As seen, the prediction and C/N0-based stochastic 
model improved the position availability and accuracy, 
considerably. The RTK solution for the same had an avail-
ability of 98% (1983/2021), suggesting the successful use 
of a similar prediction technique for it as well. Further, 
several other datasets were tested for the same and the 
positioning accuracy was compared against the SPP, RTK 
and internal positioning solution.

Comparison of various positioning solutions
This section compares the PPP positioning solution after 
conditioning of raw measurements with the SPP, RTK 
and internal phone solutions. Both static and kinematic 
data have been compared and quantitative comparison 
results are tabulated.

Static dataset
Most GNSS chips compute positioning solutions using 
the SPP technique using the GPS L1 code measure-
ments. Hence, it is deemed necessary to test the posi-
tioning accuracy of the SPP technique with PPP solution 
obtained by the YorkU PPP engine. A static dataset was 
chosen and a weighted, least-squares, epoch-by-epoch, 
GPS L1 code SPP solution was computed. Data collected 
on DOY 225, 2019, by attaching the phone to a tripod, 
was chosen since it represents the standard open sky, 
static positioning test. In degraded and difficult environ-
ments, the SPP solution quality was expected to dete-
riorate, further. Figure 16 compares the two positioning 
solutions where the smooth and continuous PPP solution 
converges to a horizontal positional accuracy of 1  m in 
9 min.

The RMS in the horizontal and vertical directions are 
22  cm and 35  cm, respectively, whereas the SPP solu-
tion is scattered and irregular with a horizontal and ver-
tical RMS of 2.0 m and 3.0 m, respectively, as shown in 
Table 8.

Kinematic dataset
The kinematic dataset collected on DOY 85 was pro-
cessed in PPP mode after implementing the C/N0-based 
stochastic modeling and prediction technique and the 
solution is compared against RTK and internal smart-
phone solutions. It is expected that the internal solution 
was computed using SPP with the aid of measurements 
from internal sensors. Due to lack of internet connection, 
the solution was not aided by measurements from cell 
towers and hence, the positioning solution periodically 
showed drifts. The RTK baseline, which matched the PPP 
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baseline, was ~ 1 km. The base station used consisted of 
a geodetic antenna and Topcon NET-G3A, and RTKLIB 
ver.2.4.2 was used to process the GPS and Galileo meas-
urements to maintain uniformity with the smartphone 
PPP processing. An elevation angle mask of 10° and a C/

N0 mask of 20 dB·Hz were maintained similar to the PPP 
processing. Precise orbit and clock products were used 
for processing along with slant ionospheric error mod-
eling. As shown in Fig. 17, the internal solution obtained 
from the smartphone represents a zig-zag pattern, which 

Fig. 14  Xiaomi MI 8 PPP kinematic track before and after C/N0-based stochastic modeling and prediction with SwiftNav Piksi reference track, DOY 
325, 2020
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possibly relates to the drift in the solution. The phone 
does not consistently determine or update its position 
using GNSS and there was no connection to cell towers. 
The PPP solution is far smoother, continuous and follows 
the reference track of the Piksi RTK solution. Ideally, over 
short baselines, the RTK solution is better or as good as 
the PPP solution. However, when the smartphone raw 

measurements were processed in RTKLIB, around 8% 
of the measurements were rejected resulting in solution 
outages in the presented RTK solution than the pre-
sented PPP solution as can be seen in Fig. 17.

The internal solution has periodic deviations and 
higher positioning error as compared to the RTK and 
PPP solutions, as shown by the track in yellow. The RMS 

Fig. 15  Horizontal positioning error before and after implementing the C/N0-based stochastic modeling and prediction for Xiaomi MI 8, DOY 325, 
2019

Table 7  RMS and STandard Deviation (STD) deviation of horizontal positioning error and availability of solution before and after 
implementing C/N0-based stochastic modeling and prediction for Xiaomi MI 8, DOY 325, 2019

Scenario Horizontal RMS (m) Horizontal STD (m) Solution availability

Before prediction and C/N0-based stochastic model 12.7 7.6 1995/2021 = 98.7%

Before prediction but after C/N0-based stochastic model 8.0 5.1 2004/2021 = 99.2%

After Prediction and C/N0-based stochastic model 4.6 2.7 2021/2021 = 100%

Fig. 16  Positioning error for SPP and PPP solutions, DOY 225, 2019
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and standard deviation of the horizontal positioning 
error are depicted in Table 9.

The first few epochs are ignored, as the car was parked 
in a high multipath environment (parking lot). The RTK 
RMS is 33% lower than the PPP solution but only have 
92% solution availability, as marked by the data gaps in 
Fig.  17a between epochs 50–100. The gaps in the RTK 
solution can be attributed again to the rejection of 
epochs with missing measurements, a problem which is 

Table 8  Position accuracy for SPP and PPP solutions, DOY 225, 
2019

Position methods for Xiaomi MI 8 Position accuracy in different 
dimensional (m)

2D RMS 3D RMS

SPP 2.0 3.0

PPP 0.2 0.3

Fig. 17  Positioning solution comparison for a kinematic dataset using different positioning techniques, DOY 85, 2019



Page 16 of 17Shinghal and Bisnath ﻿Satell Navig            (2021) 2:10 

solved by prediction in the PPP processing. Figure  18b 
represents the positioning error comparison for the three 
positioning solutions. The internal solution performs the 
worst in the circular track, shown in Fig. 17, due to fre-
quent switching on and off of the position tracking sys-
tem. During this circular portion of the track, the PPP 
solution outperforms the RTK and internal solution. The 
internal solution failed to follow the circular track, while 
the RMS of the RTK solution is 6.1 m compared to the 
PPP solution of 5.6 m. The RTK solution over the circular 
portion of the track shows drifts from the reference track 
which is due to frequent loss of solution as the satellite 
count drops to below the minimum required as a result of 
the rejection of satellites due to missing measurements.

Conclusions and future work
This research attempts to address gaps in GNSS research 
related to smartphones by focusing on analyzing and 
addressing challenges posed by the non-continuous and 
poor quality of raw measurements collected in realis-
tic environments. The York-PPP engine has been cus-
tomized for smartphone GNSS measurements through 
improved C/N0-based stochastic modeling and measure-
ment prediction. Tested in realistic static and scenarios, 
positioning accuracy is compared with results from SPP 
processing, internal smartphone positioning solutions 
and RTK processing. In static testing, the PPP RMS in the 
horizontal direction is 22 cm and 35 cm in the up direc-
tion. This positioning solution is certainly an improve-
ment from the SPP solution, which has an RMS of 2.0 m 
in the horizontal direction and 3.0 m in the vertical direc-
tion, in low-multipath and open-sky static environments.

Using developed measurement prediction and stochas-
tic modeling approaches to condition the smartphone 
GNSS measurement, there is a 64% decrease in the hori-
zontal positioning RMS error and 100% positioning solu-
tion availability with the car dashboard data collected 
in suburban environments. There is a 62% decrease in 
the positioning error and a 23% increase in positioning 
availability over regions where signals are significantly 
impacted by multipath and blockages. With the help of 
measurement prediction and C/N0-based stochastic 
modeling, the post-processed PPP solution had 100% 
availability and outperformed RTK in terms of availability 
of the solution. For the data processed, PPP is 84% more 

Table 9  Comparison of RMS and std of positioning error for PPP, 
RTK and internal positioning solution for Xiaomi MI 8, DOY 85, 
2019

Processing scenario 
Xiaomi MI 8

Horizontal 
positioning error (m)

Solution availability (%)

RMS STD

PPP 6.84 5.20 2443/2443 = 100

RTK 4.55 2.80 2253/2443 = 92

Internal solution 42.33 16.21 2443/2443 = 100

Fig. 18  Comparison of 2D RMS error for PPP, RTK and internal positioning solution for Xiaomi MI 8, DOY 85, 2019
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accurate than the internal smartphone solution, which 
suffers from biases due to non-constant tracking and 
has comparable accuracy with the RTK solution. With 
improvements in antenna quality and GNSS data loggers, 
the positioning accuracy of the smartphone-based PPP 
solution is expected to improve. Currently, only 14 GPS 
satellites transmit L5 frequency observations, which lim-
its dual-frequency processing. Future work will involve 
further analysis, improvement and testing of the devel-
oped C/N0-based stochastic modeling and measurement 
prediction approaches, and for real-time PPP process-
ing of smartphone measurements. The newly released 
second-generation, dual-frequency GNSS chips, such as 
the BCM47765, will also be tested. Lastly, the integration 
of the GNSS measurements with measurements from 
other smartphone sensors such as accelerometers and 
gyroscopes to obtain a tightly-coupled solution will be 
considered.
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