Askne, J., & Nordius, H. (1987). Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22, 379–386.
Article
Google Scholar
Barindelli, S., Realini, E., Venuti, G., Fermi, A., & Gatti, A. (2018). Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth, Planets and Space, 70, 1.
Article
Google Scholar
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 33, 379–386.
Article
Google Scholar
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysics Research, 97, 15787–15801.
Article
Google Scholar
Böhm, J., Moller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solution, 19, 433–441.
Article
Google Scholar
Bolton, D. (1980). The computation of equivalent potential temperature. Monthly Weather Review, 108, 1046–1053.
Article
Google Scholar
Byun, S., & Bar-Sever, Y. (2009). A new type of troposphere zenith path delay product of the international GNSS service. Journal of Geodesy, 83, 367–373.
Article
Google Scholar
Calori, A., Santos, J. R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., & de la Torre, A. (2016). Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina). Atmospheric Research, 176–177, 267–275.
Article
Google Scholar
Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. (2018). Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. Atmospheric Measurement Techniques, 11, 5153–5166.
Article
Google Scholar
Chen, B., Liu, Z., Wong, W. K., & Woo, W. C. (2017). Detecting water vapor variability during heavy precipitation events in Hong Kong using the GPS tomographic technique. Journal of Atmospheric and Oceanic Technology, 34, 1001–1019.
Article
Google Scholar
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20, 1593–1607.
Article
Google Scholar
Elgered, G., Johansson, J. M., Rönnäng, B. O., & Davis, J. L. (1997). Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophysical Research Letters, 24, 2663–2666.
Article
Google Scholar
Emardson, T. R., Elgered, G., & Johannson, J. M. (1998). Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers. Journal of Geophysical Research, 103(D2), 1807–1820.
Article
Google Scholar
Gui, K., Che, H., Chen, Q., Zeng, Z., Liu, H., Wang, Y., Zheng, Y., Sun, T., Liao, T., Wang, H., & Zhang, X. (2017). Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmospheric Research, 197, 461–473.
Article
Google Scholar
He, C., Wu, S., Wang, X., Hu, A., Wang, Q., & Zhang, K. (2017). A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding. Atmospheric Measurement Techniques, 10, 2045–2060.
Article
Google Scholar
Hein, G. W. (2020). Status, perspectives and trends of satellite navigation. Satellite Navigation, 1, 22.
Article
Google Scholar
Huang, L., Jiang, W., Liu, L., Hua, C., & Ye, S. (2019a). A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. Journal of Geodesy, 93, 159–176.
Article
Google Scholar
Huang, L., Liu, L., Chen, H., & Jiang, W. (2019b). An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China. GPS Solution, 23, 2.
Article
Google Scholar
King, M. D., Kaufman, Y. J., Menzel, W. P., & Tanré, D. (1992). Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 30(1), 2–27.
Article
Google Scholar
Li, J., Mao, J., & Li, C. (1999). The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China. Acta Meteorologica Sinica, 57, 283–292. (in Chinese).
Google Scholar
Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., & Schuh, H. (2015a). Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6385–6393.
Article
Google Scholar
Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., & Schuh, H. (2015b). Retrievingof atmospheric parameters frommulti-GNSS in real time: Validationwith water vapor radiometer andnumerical weather model. Journal of Geophysical Research: Atmospheres, 120, 7189–7204.
Google Scholar
Liu, C., Zheng, N., Zhang, K., & Liu, J. (2019a). A new method for refining the GNSS-derived precipitable water vapor map. Sensors, 19, 3.
Article
Google Scholar
Liu, L., Yao, C., & Wen, H. (2012). Empirical Tm modeling in the region of Guangxi. Geodesy and Geodynamics, 3, 47–52.
Google Scholar
Liu, Y., Zhao, Q., Yao, W., Ma, X., Yao, Y., & Liu, L. (2019b). Short-term rainfall forecast model based on the improved BP-NN algorithm. Scientific Reports, 9, 19751.
Article
Google Scholar
Manandhar, S., Lee, Y. H., Meng, Y. S., Yuan, F., & Ong, J. T. (2018). GPS-derived PWV for rainfall nowcasting in tropical region. IEEE Transactions on Geoscience and Remote Sensing, 56, 4835–4844.
Article
Google Scholar
Onn, F., & Zebker, H. A. (2006). Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. Journal of Geophysical Research-Solid Earth, 111, B09102.
Article
Google Scholar
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph Series, 15, 247–251.
Google Scholar
Shi, J., Gao, Y., & Guo, J. (2015). Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. IEEE Transactions on Geoscience and Remote Sensing, 53, 3452–3459.
Article
Google Scholar
Suparta, W., & Rahman, R. (2016). Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood. Atmospheric Research, 168, 205–219.
Article
Google Scholar
Vaquero-Martínez, J., Antón, M., de Galisteo, J. P. O., Cachorro, V. E., Wang, H., Abad, G. G., Román, R., & Costa, M. J. (2017). Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. Science of the Total Environment, 580, 857–864.
Article
Google Scholar
Wang, H., Wei, M., Li, G., Zhou, S., & Zeng, Q. (2013). Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn. Advances in Space Research, 52, 656–667.
Article
Google Scholar
Wang, J., Zhang, L., & Dai, A. (2005). Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. Journal of Geophysical Research, 110, D21101.
Article
Google Scholar
Wang, J., Zhang, L., Dai, A. G., Van Hove, T., & Van Baelen, J. (2007). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research, 112, D11107.
Article
Google Scholar
Wang, S., Xu, T., Nie, W., Jiang, C., Yang, Y., Fang, Z., Li, M., & Zhang, Z. (2020). Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations. Remote Sensing, 12, 1817.
Article
Google Scholar
Wang, X., Zhang, K., Wu, S., Fan, S., & Cheng, Y. (2016). Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. Journal of Geophysical Research: Atmospheres, 121, 833–852.
Google Scholar
Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. Satellite Navigation, 1, 1.
Article
Google Scholar
Yao, Y., Shan, L., & Zhao, Q. (2017). Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. Scientific Reports, 7, 12465.
Article
Google Scholar
Zhang, H., Yuan, Y., Li, W., & Zhang, B. (2019a). A real-time precipitable water vapor monitoring system using the national GNSS network of China: Method and preliminary results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(5), 1587–1598.
Article
Google Scholar
Zhang, K., Manning, T., Wu, S., Rohm, W., Silcock, D., & Choy, S. (2015). Capturing the signature of severe weather events in Australia using GPS measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 1839–1847.
Article
Google Scholar
Zhang, Y., Cai, C., Chen, B., & Dai, W. (2019b). Consistency evaluation of precipitable water vapor derived from ERA5 GNSS, and radiosondes over China. Radio Science, 54, 561–571.
Article
Google Scholar
Zhao, Q., Ma, X., Yao, W., & Yao, Y. (2019a). A new typhoon-monitoring method using precipitation water vapor. Remote Sensing, 11, 23.
Google Scholar
Zhao, Q., Yang, P., Yao, W., & Yao, Y. (2019b). Hourly PWV dataset derived from GNSS observations in China. Sensors, 20, 1.
Article
Google Scholar
Zhao, Q., Yao, Y., & Yao, W. (2018). GPS-based PWV for precipitation forecasting and its application to a typhoon event. Journal of Atmospheric and Solar-Terrestrial Physics, 167, 124–133.
Article
Google Scholar