Askne, J., & Nordius, H. (1987). Estimation of tropospheric delay for microwaves from surface weather data. *Radio Science,* *22*, 379–386.

Article
Google Scholar

Barindelli, S., Realini, E., Venuti, G., Fermi, A., & Gatti, A. (2018). Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. *Earth, Planets and Space,* *70*, 1.

Article
Google Scholar

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. *Journal of Applied Meteorology,* *33*, 379–386.

Article
Google Scholar

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. *Journal of Geophysics Research,* *97*, 15787–15801.

Article
Google Scholar

Böhm, J., Moller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). *GPS Solution,* *19*, 433–441.

Article
Google Scholar

Bolton, D. (1980). The computation of equivalent potential temperature. *Monthly Weather Review,* *108*, 1046–1053.

Article
Google Scholar

Byun, S., & Bar-Sever, Y. (2009). A new type of troposphere zenith path delay product of the international GNSS service. *Journal of Geodesy,* *83*, 367–373.

Article
Google Scholar

Calori, A., Santos, J. R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., & de la Torre, A. (2016). Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina). *Atmospheric Research,* *176–177*, 267–275.

Article
Google Scholar

Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. (2018). Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. *Atmospheric Measurement Techniques,* *11*, 5153–5166.

Article
Google Scholar

Chen, B., Liu, Z., Wong, W. K., & Woo, W. C. (2017). Detecting water vapor variability during heavy precipitation events in Hong Kong using the GPS tomographic technique. *Journal of Atmospheric and Oceanic Technology,* *34*, 1001–1019.

Article
Google Scholar

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. *Radio Science,* *20*, 1593–1607.

Article
Google Scholar

Elgered, G., Johansson, J. M., Rönnäng, B. O., & Davis, J. L. (1997). Measuring regional atmospheric water vapor using the Swedish permanent GPS network. *Geophysical Research Letters,* *24*, 2663–2666.

Article
Google Scholar

Emardson, T. R., Elgered, G., & Johannson, J. M. (1998). Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers. *Journal of Geophysical Research,* *103*(D2), 1807–1820.

Article
Google Scholar

Gui, K., Che, H., Chen, Q., Zeng, Z., Liu, H., Wang, Y., Zheng, Y., Sun, T., Liao, T., Wang, H., & Zhang, X. (2017). Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. *Atmospheric Research,* *197*, 461–473.

Article
Google Scholar

He, C., Wu, S., Wang, X., Hu, A., Wang, Q., & Zhang, K. (2017). A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding. *Atmospheric Measurement Techniques,* *10*, 2045–2060.

Article
Google Scholar

Hein, G. W. (2020). Status, perspectives and trends of satellite navigation. *Satellite Navigation,* *1*, 22.

Article
Google Scholar

Huang, L., Jiang, W., Liu, L., Hua, C., & Ye, S. (2019a). A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. *Journal of Geodesy,* *93*, 159–176.

Article
Google Scholar

Huang, L., Liu, L., Chen, H., & Jiang, W. (2019b). An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China. *GPS Solution,* *23*, 2.

Article
Google Scholar

King, M. D., Kaufman, Y. J., Menzel, W. P., & Tanré, D. (1992). Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). *IEEE Transactions on Geoscience and Remote Sensing,* *30*(1), 2–27.

Article
Google Scholar

Li, J., Mao, J., & Li, C. (1999). The approach to remote sensing of water vapor based on GPS and linear regression *T*_{m} in eastern region of China. *Acta Meteorologica Sinica,* *57*, 283–292. **(in Chinese)**.

Google Scholar

Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., & Schuh, H. (2015a). Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. *IEEE Transactions on Geoscience and Remote Sensing,* *53*(12), 6385–6393.

Article
Google Scholar

Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., & Schuh, H. (2015b). Retrievingof atmospheric parameters frommulti-GNSS in real time: Validationwith water vapor radiometer andnumerical weather model. *Journal of Geophysical Research: Atmospheres,* *120*, 7189–7204.

Google Scholar

Liu, C., Zheng, N., Zhang, K., & Liu, J. (2019a). A new method for refining the GNSS-derived precipitable water vapor map. *Sensors,* *19*, 3.

Article
Google Scholar

Liu, L., Yao, C., & Wen, H. (2012). Empirical *T*_{m} modeling in the region of Guangxi. *Geodesy and Geodynamics,* *3*, 47–52.

Google Scholar

Liu, Y., Zhao, Q., Yao, W., Ma, X., Yao, Y., & Liu, L. (2019b). Short-term rainfall forecast model based on the improved BP-NN algorithm. *Scientific Reports,* *9*, 19751.

Article
Google Scholar

Manandhar, S., Lee, Y. H., Meng, Y. S., Yuan, F., & Ong, J. T. (2018). GPS-derived PWV for rainfall nowcasting in tropical region. *IEEE Transactions on Geoscience and Remote Sensing,* *56*, 4835–4844.

Article
Google Scholar

Onn, F., & Zebker, H. A. (2006). Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. *Journal of Geophysical Research-Solid Earth,* *111*, B09102.

Article
Google Scholar

Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. *Geophysical Monograph Series,* *15*, 247–251.

Google Scholar

Shi, J., Gao, Y., & Guo, J. (2015). Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. *IEEE Transactions on Geoscience and Remote Sensing,* *53*, 3452–3459.

Article
Google Scholar

Suparta, W., & Rahman, R. (2016). Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood. *Atmospheric Research,* *168*, 205–219.

Article
Google Scholar

Vaquero-Martínez, J., Antón, M., de Galisteo, J. P. O., Cachorro, V. E., Wang, H., Abad, G. G., Román, R., & Costa, M. J. (2017). Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. *Science of the Total Environment,* *580*, 857–864.

Article
Google Scholar

Wang, H., Wei, M., Li, G., Zhou, S., & Zeng, Q. (2013). Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn. *Advances in Space Research,* *52*, 656–667.

Article
Google Scholar

Wang, J., Zhang, L., & Dai, A. (2005). Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. *Journal of Geophysical Research,* *110*, D21101.

Article
Google Scholar

Wang, J., Zhang, L., Dai, A. G., Van Hove, T., & Van Baelen, J. (2007). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. *Journal of Geophysical Research,* *112*, D11107.

Article
Google Scholar

Wang, S., Xu, T., Nie, W., Jiang, C., Yang, Y., Fang, Z., Li, M., & Zhang, Z. (2020). Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations. *Remote Sensing,* *12*, 1817.

Article
Google Scholar

Wang, X., Zhang, K., Wu, S., Fan, S., & Cheng, Y. (2016). Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. *Journal of Geophysical Research: Atmospheres,* *121*, 833–852.

Google Scholar

Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. *Satellite Navigation,* *1*, 1.

Article
Google Scholar

Yao, Y., Shan, L., & Zhao, Q. (2017). Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. *Scientific Reports,* *7*, 12465.

Article
Google Scholar

Zhang, H., Yuan, Y., Li, W., & Zhang, B. (2019a). A real-time precipitable water vapor monitoring system using the national GNSS network of China: Method and preliminary results. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,* *12*(5), 1587–1598.

Article
Google Scholar

Zhang, K., Manning, T., Wu, S., Rohm, W., Silcock, D., & Choy, S. (2015). Capturing the signature of severe weather events in Australia using GPS measurements. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,* *8*, 1839–1847.

Article
Google Scholar

Zhang, Y., Cai, C., Chen, B., & Dai, W. (2019b). Consistency evaluation of precipitable water vapor derived from ERA5 GNSS, and radiosondes over China. *Radio Science,* *54*, 561–571.

Article
Google Scholar

Zhao, Q., Ma, X., Yao, W., & Yao, Y. (2019a). A new typhoon-monitoring method using precipitation water vapor. *Remote Sensing,* *11*, 23.

Google Scholar

Zhao, Q., Yang, P., Yao, W., & Yao, Y. (2019b). Hourly PWV dataset derived from GNSS observations in China. *Sensors,* *20*, 1.

Article
Google Scholar

Zhao, Q., Yao, Y., & Yao, W. (2018). GPS-based PWV for precipitation forecasting and its application to a typhoon event. *Journal of Atmospheric and Solar-Terrestrial Physics,* *167*, 124–133.

Article
Google Scholar