Azpilicueta, F., & Brunini, C. (2008). Analysis of the bias between TOPEX and GPS vTEC determinations. Journal of Geodesy, 83(2), 121–127.
Article
Google Scholar
Afraimovich, E. L., Astafyeva, E. I., Demyanov, V. V., Edemskiy, I. K., Gavrilyuk, N. S., Ishin, A. B., Kosogorov, E. A., Leonovich, L. A., Lesyuta, O. S., & Palamartchouk, K. S. (2013). A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. Journal of Space Weather and Space Climate, 3, A27.
Article
Google Scholar
Berdermann, J., Kriegel, M., Banyś, D., Heymann, F., Hoque, M., Wilken, V., Borries, C., Heßelbarth, A., & Jakowski, N. (2018). Ionospheric response to the X9. 3 flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather, 16(10), 1604–1615.
Article
Google Scholar
Bergeot, N., Chevalier, J.-M., Bruyninx, C., Pottiaux, E., Aerts, W., Baire, Q., Legrand, J., Defraigne, P., & Huang. (2014). Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data. J Space Weather Space Clim, 4, A31.
Article
Google Scholar
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., & Radicella, S. (2007). Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81(2), 111–120.
Article
Google Scholar
Dach, R., Brockmann, E., Schaer, S., Beutler, G., Meindl, M., Prange, L., Bock, H., Jäggi, A., & Ostini, L. (2009). GNSS processing at CODE: Status report. Journal of Geodesy, 83(3–4), 353–365.
Article
Google Scholar
Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3–4), 191–198.
Article
Google Scholar
Erdogan, E., Schmidt, M., Seitz, F., & Durmaz, M. (2017). Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter. Annales Geophysicae, 35(2), 263–277.
Article
Google Scholar
Feltens, J. (2003). The international GPS service (IGS) ionosphere working group. Advances in Space Research, 31(3), 635–644.
Article
Google Scholar
Feltens, J. (2007). Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather, 5(12), 1–17.
Article
Google Scholar
Feltens, J., Angling, M., Jackson-Booth, N., Jakowski, N., Hoque, M., Hernández-Pajares, M., Aragón-Àngel, A., Orús, R., & Zandbergen, R. (2011). Comparative testing of four ionospheric models driven with GPS measurements. Radio Science, 46(6), 1–11.
Article
Google Scholar
Fu, L.-L., & Haines, B. J. (2013). The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Advances in Space Research, 51(8), 1284–1300.
Article
Google Scholar
García-Rigo, A., Monte, E., Hernández-Pajares, M., Juan, J. M., Sanz, J., Aragón-Angel, A., & Salazar, D. (2011). Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Science, 46(6), 1–3.
Article
Google Scholar
Ghoddousi-Fard, R., Héroux, P., Danskin, D., & Boteler, D. (2011). Developing a GPS TEC mapping service over Canada. Space Weather, 9(6), S06D11.
Article
Google Scholar
Haines, G. V. (1988). Computer programs for spherical cap harmonic analysis of potential and general fields. Computers & Geosciences, 14(4), 413–447.
Article
Google Scholar
Hernández-Pajares, M., Juan, J., & Sanz, J. (1999). New approaches in global ionospheric determination using ground gps data. Journal of Atmospheric and Solar Terrestrial Physics, 61(16), 1237–1247.
Article
Google Scholar
Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., & Krankowski, A. (2009). The IGS VTEC maps: A reliable source of ionospheric information since 1998. Journal of Geodesy, 83(3–4), 263–275.
Article
Google Scholar
Hernández-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., & Escudero, M. (2011). The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. Journal of Geodesy, 85(12), 887–907.
Article
Google Scholar
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Feltens, J., Komjathy, A., Vergados, P., Schaer, S., Garcia-Rigo, A., & Gmez-Cama, J. M. (2016). Comparing performances of seven different global VTEC ionospheric models in the IGS context. In: IGS workshop 2016, 8–12 Feb, Sydney, Australia.
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., & Orús-Pérez, R. (2017). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. Journal of Geodesy, 91(12), 1405–1414.
Article
Google Scholar
Jakowski, N., Hoque, M. M., & Mayer, C. (2011). A new global TEC model for estimating transionospheric radio wave propagation errors. Journal of Geodesy, 85(12), 965–974.
Article
Google Scholar
Jee, G., Lee, H. B., & Solomon, S. C. (2014). Global ionospheric total electron contents (TECs) during the last two solar minimum periods. Journal of Geophysical Research: Space Physics, 119(3), 2090–2100.
Google Scholar
Juan, J. M., Rius, A., Hernandez-Pajares, M., & Sanz, J. (1997). A two-layer model of the ionosphere using global positioning system data. Geophysical Research Letters, 24(4), 393–396.
Article
Google Scholar
Lee, H. B., Jee, G., Kim, Y. H., & Shim, J. S. (2013). Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite. Journal of Geophysical Research: Space Physics, 118(2), 935–946.
Google Scholar
Li, Z., Yuan, Y., Li, H., Ou, J., & Huo, X. (2012). Two-step method for the determination of the differential code biases of COMPASS satellites. Journal of Geodesy, 86(11), 1059–1076.
Article
Google Scholar
Li, Z., Yuan, Y., Wang, N., Hernandez-Pajares, M., & Huo, X. (2015). SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 89(4), 331–345.
Article
Google Scholar
Li, Z., Wang, N., Hernández-Pajares, M., Yuan, Y., Krankowski, A., Liu, A., Zha, J., García-Rigo, A., Roma-Dollase, D., Yang, H., Laurichesse, D., & Blot, A. (2020). IGS real-time service for global ionospheric total electron content modeling. Journal of Geodesy. https://doi.org/10.1007/s00190-020-01360-0
Article
Google Scholar
Li, M., Yuan, Y., Wang, N., Li, Z., & Huo, X. (2018). Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data. GPS Solution, 22(2), 55.
Article
Google Scholar
Komjathy, A., Sparks, L., Wilson, B. D., & Mannucci, A. J. (2005). Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric stoRMS. Radio Science, 40(6), RS6006.
Article
Google Scholar
Krankowski, A., Hernandez-Pajares, M., Cherniak, I., Roma-Dollase, D., Zakharenkova, I., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Feltens, J., Komjathy, A., Vergados, P., Schaer, S., Garcia-Rigo, A., & Gómez-Cama, J. M. (2017). Ionosphere Working Group Technical Report 2016. In: A. Villiger and R. Dach (Eds.) IGS Technical Report 2016. Astronomical Institute University of Bern (pp. 155–162).
Mannucci, A., Wilson, B., Yuan, D., Ho, C., Lindqwister, U., & Runge, T. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33(3), 565–582.
Article
Google Scholar
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Sturze, A., & Weber, G. (2017). The multi-GNSS experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Advances in Space Research, 59(7), 1671–1697.
Article
Google Scholar
Noll, C. E. (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, 45(12), 1421–1440.
Article
Google Scholar
Orús, R., Hernández-Pajares, M., Juan, J., & Sanz, J. (2005). Improvement of global ionospheric VTEC maps by using kriging interpolation technique. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1598–1609.
Article
Google Scholar
Rideout, W., & Coster, A. (2006). Automated GPS processing for global total electron content data. GPS Solution, 10(3), 219–228.
Article
Google Scholar
Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., & Wang, C. (2018). Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. Journal of Geodesy, 92(6), 691–706.
Article
Google Scholar
Rovira-Garcia, A., Juan, J., Sanz, J., González-Casado, G., & Ibáñez, D. (2016). Accuracy of ionospheric models used in GNSS and SBAS: Methodology and analysis. Journal of Geodesy, 90(3), 229–240.
Article
Google Scholar
Schaer, S., Gurtner, W., & Feltens, J. (1998). IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC workshop, Darmstadt, Germany. ftp://igs.org/pub/data/format/ionex1.pdf.
Schaer, S. (1999). Mapping and predicting the earths ionosphere using the Global Positioning System, 1999. Ph.D. dissertation, University of Bern, Bern, Switzerland.
Schaer, S. (2016). SINEX BIAS—Solution (Software/technique) INdependent EXchange Format for GNSS Biases Version 1.00. Dec 2016. ftp://ftp.aiub.unibe.ch/bcwg/format/draft/sinex_bias_100.pdf
Schmidt, M. (2018). High-precision and high-resolution VTEC maps based on B-spline expansions and GNSS data. In IGS Workshop 2018, 29 Oct–2 Nov, Wuhan, China.
Vergados, P., Komjathy, A., Runge, T. F., Butala, M. D., & Mannucci, A. J. (2016). Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Science, 51(7), 1010–1021.
Article
Google Scholar
Wang, N., Yuan, Y., Li, Z., Montenbruck, O., & Tan, B. (2016a). Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, 90(3), 209–228.
Article
Google Scholar
Wang, N., Yuan, Y., Li, Z., & Huo, X. (2016b). Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Advances in Space Research, 57(7), 1555–1569.
Article
Google Scholar
Wang, N., Yuan, Y., Li, Z., Li, Y., Huo, X., & Li, M. (2017). An examination of the Galileo NeQuick model: Comparison with GPS and JASON TEC. GPS Solution, 21(2), 605–615.
Article
Google Scholar
Wang, N., Li, Z., Montenbruck, O., & Tang, C. (2019a). Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays. Advances in Space Research, 64(9), 1764–1779.
Article
Google Scholar
Wang, N., Li, Z., Huo, X., Li, M., Yuan, Y., & Yuan, C. (2019b). Refinement of global ionospheric coefficients for GNSS applications: Methodology and results. Advances in Space Research, 63(1), 343–358.
Article
Google Scholar
Wang, N., Li, Z., Duan, B., Hugentobler, U., & Wang, L. (2020). GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. Journal of Geodesy. https://doi.org/10.1007/s00190-020-01404-5
Article
Google Scholar
Yasyukevich, Y., Mylnikova, A., & Vesnin, A. (2020). GNSS-based non-negative absolute ionosphere total electron content, its spatial gradients, time derivatives and differential code biases: Bounded-variable least-squares and Taylor series. Sensors, 20(19), 5702.
Article
Google Scholar
Yuan, Y., & Ou, J. (2002). Differential areas for differential stations (dads): A new method of establishing grid ionospheric model. Chinese Science Bulletin, 47(12), 1033–1036.
Article
MATH
Google Scholar
Yuan, Y., & Ou, J. (2004). A generalized trigonometric series function model for determining ionospheric delay. Progress in Natural Science, 14(11), 1010–1014.
Article
Google Scholar
Yuan, Y., Li, Z., Wang, N., & Li, M. (2016). The recent activities of CAS ionosphere analysis center on GNSS ionospheric modeling within IGS. In IGS workshop 2017, 3–7 Jul, Paris, France. http://www.igs.org/assets/pdf/W2017-PY04-02%20-%20Li.pdf.
Yuan, Y., Wang, N., Li, Z., & Huo, X. (2019). The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation. https://doi.org/10.1002/navi.292
Article
Google Scholar
Zhang, Q., & Zhao, Q. (2018). Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software. Remote Sensing, 10(5), 705.
Article
Google Scholar