Aarons, J., & Lin, B. (1999). Development of high latitude phase fluctuations during the January 10, April 10–11, and May 15, 1997 magnetic storms. *Journal of Atmospheric and Solar-Terrestrial Physics,* *61*(3–4), 309–327. https://doi.org/10.1016/S1364-6826(98)00131-X

Article
Google Scholar

Adeniyi, J. O., Doherty, P. H., Oladipo, O. A., & Bolaji, O. (2014). Magnetic storm effects on the variation of TEC over Ilorin an equatorial station. *Radio Science,* *49*(12), 1245–1253. https://doi.org/10.1002/2014RS005404

Article
Google Scholar

Aquino, M., Moore, T., Dodson, A., Waugh, S., Souter, J., & Rodrigues, F. S. (2005). Implications of ionospheric scintillation for GNSS users in Northern Europe. *Journal of Navigation,* *58*(2), 241–256. https://doi.org/10.1017/s0373463305003218

Article
Google Scholar

Arikan, F., Erol, C. B., & Arikan, O. (2003). Regularized estimation of vertical total electron content from Global Positioning System data. *Journal of Geophysics Research-Space Physics,* *108*(A12), 12. https://doi.org/10.1029/2002ja009605

Article
Google Scholar

Bergeot, N., Chevalier, J.-M., Bruyninx, C., Pottiaux, E., Aerts, W., Baire, Q., Legrand, J., Defraigne, P., & Huang, W. (2014). Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data. *Journal of Space Weather Space Clim*. https://doi.org/10.1051/swsc/2014028

Article
Google Scholar

Bernhardt, P. A., Siefring, C. L., Galysh, I. J., Rodilosso, T. F., Koch, D. E., MacDonald, T. L., Wilkens, M. R., & Landis, G. P. (2006). Ionospheric applications of the scintillation and tomography receiver in space (CITRIS) mission when used with the DORIS radio beacon network. *Journal of Geodesy,* *80*(8–11), 473–485. https://doi.org/10.1007/s00190-006-0064-6

Article
Google Scholar

Cai, C., Liu, Z., Xia, P., & Dai, W. (2013). Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. *GPS Solution,* *17*(2), 247–260. https://doi.org/10.1007/s10291-012-0275-7

Article
Google Scholar

Chen, W., Gao, S., Hu, C., Chen, Y., & Ding, X. (2008). Effects of ionospheric disturbances on GPS observation in low latitude area. *GPS Solution,* *12*(1), 33–41. https://doi.org/10.1007/s10291-007-0062-z

Article
Google Scholar

Chen, W., Lee, C., Chu, F., & Teh, W. (2017). GPS TEC fluctuations over Tromso, Norway, in the solar minimum. *Terrestrial Atmospheric and Ocean Science,* *28*(6), 993–1008. https://doi.org/10.3319/TAO.2017.04.24.01

Article
Google Scholar

Czerniak, R. J., & Reilly, J. P. (1998). *Applications of GPS for surveying and other positioning needs in departments of transportation*. National Academy Press.

Google Scholar

Davies, K. (1990). *Ionospheric radio*. Peter Peregrinus.

Book
Google Scholar

Feltens, J. (2007). Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. *Space Weather*. https://doi.org/10.1029/2006SW000294

Article
Google Scholar

Gardner, F. M. (2005). *Phaselock Techniques*. Wiley.

Book
Google Scholar

Ghoddousi-Fard, R., Héroux, P., Danskin, D., & Boteler, D. (2011). Developing a GPS TEC mapping service over Canada. *Space Weather*. https://doi.org/10.1029/2010SW000621

Article
Google Scholar

Grejner-Brzezinska, D. A., Kashani, I., Wielgosz, P., Smith, D. A., Spencer, P. S. J., Robertson, D. S., & Mader, G. L. (2007). Efficiency and Reliability of Ambiguity Resolution in Network-Based Real-Time Kinematic GPS. *Journal of Surveying Engineering,* *133*(2), 56–65. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:2(56)

Article
Google Scholar

Gulyaeva, T., & Arikan, F. (2017). Statistical discrimination of global post-seismic ionosphere effects under geomagnetic quiet and storm conditions. *Geomat Nat Hazards Risk,* *8*(2), 509–524. https://doi.org/10.1080/19475705.2016.1246483

Article
Google Scholar

Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., & Krankowski, A. (2009). The IGS VTEC maps: A reliable source of ionospheric information since 1998. *Journal of Geodesy,* *83*(3), 263–275. https://doi.org/10.1007/s00190-008-0266-1

Article
Google Scholar

Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., & Orús-Pérez, R. (2017). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. *Journal of Geodesy,* *91*(12), 1405–1414. https://doi.org/10.1007/s00190-017-1032-z

Article
Google Scholar

Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. *Earth Science Reviews,* *147*, 54–64. https://doi.org/10.1016/j.earscirev.2015.05.003

Article
Google Scholar

Kong, J., Yao, Y., Xu, Y., Kuo, C., Zhang, L., Liu, L., & Zhai, C. (2017). A clear link connecting the troposphere and ionosphere: Ionospheric reponses to the 2015 Typhoon Dujuan. *Journal of Geodesy,* *91*(9), 1087–1097. https://doi.org/10.1007/s00190-017-1011-4

Article
Google Scholar

Leick, A., Rapoport, L., & Tatarnikov, D. (2015). *GPS Satellite Surveying* (3rd ed.). Wiley.

Google Scholar

Li, B., Shen, Y., Feng, Y., Gao, W., & Yang, L. (2014). GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. *Journal of Geodesy,* *88*(2), 99–112. https://doi.org/10.1007/s00190-013-0670-z

Article
Google Scholar

Li, Z., Wang, N., Hernández-Pajares, M., Yuan, Y., Krankowski, A., Liu, A., Zha, J., García-Rigo, A., Roma-Dollase, D., Yang, H., Laurichesse, D., & Blot, A. (2020). IGS real-time service for global ionospheric total electron content modeling. *Journal of Geodesy,* *94*(3), 32. https://doi.org/10.1007/s00190-020-01360-0

Article
Google Scholar

Li, Z., Yuan, Y., Wang, N., Hernandez-Pajares, M., & Huo, X. (2015). SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. *Journal of Geodesy,* *89*(4), 331–345. https://doi.org/10.1007/s00190-014-0778-9

Article
Google Scholar

Liu, Z. (2011). A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. *Journal of Geodesy,* *85*(3), 171–183. https://doi.org/10.1007/s00190-010-0426-y

Article
Google Scholar

Liu, Z., & Gao, Y. (2004). Ionospheric TEC predictions over a local area GPS reference network. *GPS Solut,* *8*(1), 23–29. https://doi.org/10.1007/s10291-004-0082-x

Article
Google Scholar

Liu, Z., Gong, Y., & Zhou, L. (2020). Impact of China’s high speed train window glass on GNSS signals and positioning performance. *Satellite Navigation,* *1*(1), 14. https://doi.org/10.1186/s43020-020-00013-z

Article
Google Scholar

Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. *Radio Science,* *33*, 565–582.

Article
Google Scholar

Mendillo, M., Lin, B., & Aarons, J. (2000). The application of GPS observations to equatorial aeronomy. *Radio Science,* *35*(3), 885–904. https://doi.org/10.1029/1999RS002208

Article
Google Scholar

Mungufeni, P., Habarulema, J. B., & Jurua, E. (2016). Trends of ionospheric irregularities over African low latitude region during quiet geomagnetic conditions. *J Atmospheric Sol-Terr Phys,* *138–139*, 261–267. https://doi.org/10.1016/j.jastp.2016.01.015

Article
Google Scholar

Opperman, B. D. L., Cilliers, P. J., McKinnell, L. A., & Haggard, R. (2007). Development of a regional GPS-based ionospheric TEC model for South Africa. *Advances in Space Research,* *39*(5), 808–815. https://doi.org/10.1016/j.asr.2007.02.026

Article
Google Scholar

Orús, R., Hernández-Pajares, M., Juan, J. M., & Sanz, J. (2005). Improvement of global ionospheric VTEC maps by using kriging interpolation technique. *Journal of Atmospheric Solar-Terrestrial Physics,* *67*(16), 1598–1609. https://doi.org/10.1016/j.jastp.2005.07.017

Article
Google Scholar

Pi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the Worldwide GPS Network. *Geophysical Research Letters,* *24*(18), 2283–2286. https://doi.org/10.1029/97GL02273

Article
Google Scholar

Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Wang, C., Feltens, J., Vergados, P., Komjathy, A., Schaer, S., García-Rigo, A., & Gómez-Cama, J. M. (2018). Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. *Journal of Geodesy,* *92*(6), 691–706. https://doi.org/10.1007/s00190-017-1088-9

Article
Google Scholar

Rosner, B. (1983). Percentage points for a generalized ESD many-outlier procedure. *Technometrics,* *25*(2), 165–172. https://doi.org/10.1080/00401706.1983.10487848

Article
MATH
Google Scholar

Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Dissertation Astronomical Institute, University of Berne, Berne, Switzerland, 25 March

Sreeja, V., Aquino, M., & Elmas, Z. G. (2011). Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. *Space Weather International Journal of Research Applications,* *9*(10), 1–6. https://doi.org/10.1029/2011sw000707

Article
Google Scholar

Tapping, K. F. (2013). The 10.7 cm solar radio flux (F10. 7). *Space Weather,* *11*(7), 394–406. https://doi.org/10.1002/swe.20064

Article
Google Scholar

Tariku, Y. A. (2015). Patterns of GPS-TEC variation over low-latitude regions (African sector) during the deep solar minimum (2008 to 2009) and solar maximum (2012 to 2013) phases. *Earth, Planets and Space,* *67*(1), 35. https://doi.org/10.1186/s40623-015-0206-2

Article
Google Scholar

Vuković J, Kos T (2016) Ionospheric spatial and temporal gradients for disturbance characterization. In: Proc. IEEE/ENC 2016, European Navigation Conference, Helsinki, Finland, May 30-June 2, 1–4. https://doi.org/10.1109/EURONAV.2016.7530564

Wanninger L (1993) Ionospheric monitoring using IGS data. In: Proceedings of the 1993 IGS Workshop. Astronomical Institute, University of Berne, Berne, Switzerland, March 25–26

Xie P, Petovello MG (2010) Improving carrier phase reacquisition using advanced receiver architectures. In: Proc. IEEE/ION PLANS 2010, Institute of Navigation, Indian Wells, CA, USA, May 4–6, 728–736. https://doi.org/10.1109/PLANS.2010.5507258

Yang, Z., & Liu, Z. (2016a). Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong. *Journal of Geophysics Research Space Physics,* *121*(5), 4705–4717. https://doi.org/10.1002/2016JA022398

Article
Google Scholar

Yang, Z., & Liu, Z. (2016b). Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. *GPS Solut,* *20*(4), 815–824. https://doi.org/10.1007/s10291-015-0492-y

Article
Google Scholar

Yang, Z., Song, S., Jiao, E., Chen, G., Xue, J., Zhou, W., & Zhu, W. (2016). Ionospheric tomography based on GNSS observations of the CMONOC: performance in the topside ionosphere. *GPS Solut,* *21*(2), 363–375. https://doi.org/10.1007/s10291-016-0526-0

Article
Google Scholar

Zhao, J., Hernández-Pajares, M., Li, Z., Wang, L., & Yuan, H. (2020). High-rate Doppler-aided cycle slip detection and repair method for low-cost single-frequency receivers. *GPS Solut,* *24*(3), 80. https://doi.org/10.1007/s10291-020-00993-0

Article
Google Scholar