Aa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., et al. (2018). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16, 321–331. https://doi.org/10.1002/2017SW001776
Article
Google Scholar
Abdu, M. A. (2019). Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Progress in Earth and Planetary Science, 6, 11. https://doi.org/10.1186/s40645-019-0258-1
Astafyeva, E., Zakharenkova, I., & Doornbos, E. (2015). Opposite hemispheric asymmetries during the ionospheric storm of 29–31 August 2004. Journal of Geophysical Research: Space Physics, 120(1), 697–714. https://doi.org/10.1002/2014JA020710
Article
Google Scholar
Basu, S., & Basu, S. (1981). Equatorial scintillations-a review. Journal of Atmospheric and Terrestrial Physics, 43, 473–489.
Article
Google Scholar
Blanc, M., & Richmond, A. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85, 1669–1686. https://doi.org/10.1029/JA085iA04p01669
Article
Google Scholar
Carter, B. A., et al. (2014). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophysical Research Letters, 41, 5331–5339. https://doi.org/10.1002/2014GL060953
Article
Google Scholar
Coster, A. J., Foster, J. C., & Erickson, P. J. (2003). Monitoring the ionosphere with GPS. GPS World, 14(5), 42–45.
Google Scholar
Emmert, J. T., Richmond, A. D., & Drob, D. F. (2010). A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. Journal of Geophysical Research, 115, A08322. https://doi.org/10.1029/2010JA015326
Article
Google Scholar
England, S. L., Immel, T. J., Huba, J. D., Hagan, M. E., Maute, A., & DeMajistre, R. (2010). Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. Journal of Geophysical Research, 115, A05308. https://doi.org/10.1029/2009JA014894
Article
Google Scholar
Fejer, B. G. (1997). The electrodynamics of the low-latitude ionosphere: Recent results and future challenges. Journal of Atmospheric and Terrestrial Physics, 59, 1465–1482. https://doi.org/10.1016/s1364-6826(96)00149-6
Article
Google Scholar
Fejer, B. G., Jensen, J. W., & Su, S.-Y. (2008). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophysical Research Letters, 35, L20106. https://doi.org/10.1029/2008GL03558
Article
Google Scholar
Fuller-Rowell, T.J., Codrescu, M.V., Roble, R.G. and Richmond, A.D. (1997). How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm? In B.T. Tsurutani, W.D. Gonzalez, Y. Kamide and J.K. Arballo (eds) Magnetic Storms. https://doi.org/10.1029/GM098p0203
Goncharenko, L. P., Foster, J., Coster, A., Huang, C., Aponte, N., & Paxton, L. (2007). Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 69(10–11), 1253–1272. https://doi.org/10.1016/j.jastp.2006.09.011
Article
Google Scholar
Hagan, M. E., Maute, A., & Roble, R. G. (2009). Tropospheric tidal effects on the middle and upper atmosphere. Journal of Geophysical Research, 114, A01302. https://doi.org/10.1029/2008JA013637
Article
Google Scholar
Häusler, K., & Lühr, H. (2009). Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Annales Geophysicae, 27(7), 2643–2652.
Article
Google Scholar
Huang, F., Lei, J., & Dou, X. (2017). Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network. Journal of Geophysical Research: Space Physics, 122, 6552–6561. https://doi.org/10.1002/2017JA023881
Article
Google Scholar
Huang, F., Lei, J., Dou, X., Luan, X., & Zhong, J. (2018). Nighttime mediumscale traveling ionospheric disturbances from airglow imager and Global Navigation Satellite Systems observations. Geophysical Research Letters, 45, 31–38. https://doi.org/10.1002/2017GL076408
Article
Google Scholar
Huang, F., Otsuka, Y., Lei, J., Luan, X., Dou, X., & Li, G. (2019). Daytime periodic wave-like structures in the ionosphere observed at low latitudes over the Asian-Australian sector using total electron content from Beidou geostationary satellites. Journal of Geophysical Research: Space Physics, 124, 2312–2322. https://doi.org/10.1029/2018JA026443
Article
Google Scholar
Hocke, K., & Schlegel, K. (1996). A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Annales De Geophysique, 14(9), 917–940. https://doi.org/10.1007/s00585-996-0917-6
Article
Google Scholar
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., & Paxton, L. J. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33, L15108. https://doi.org/10.1029/2006GL026161
Article
Google Scholar
Kikuchi, T., Lühr, H., Kitamura, T., Saka, O., & Schlegel, K. (1996). Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. Journal of Geophysical Research, 101(A8), 17161–17173. https://doi.org/10.1029/96JA01299
Article
Google Scholar
Kintner, P. M., Kil, H., Beach, T. L., & de Paula, E. R. (2001). Fading timescales associated with GPS signal and potential consequences. Radio Science, 36(4), 731–743. https://doi.org/10.1109/1999RS002310
Article
Google Scholar
Lei, J., Huang, F., Chen, X., Zhong, J., Ren, D., Wang, W., Yue, X., Luan, X., Jia, M., Dou, X., Hu, L., Ning, B., Owolabi, C., Chen, J., Li, G., & Xue, X. (2018). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? Journal of Geophysical Research: Space Physics, 123, 3217–3232. https://doi.org/10.1029/2017JA025166
Article
Google Scholar
Li, Q., Huang, F., Zhong, J., Zhang, R., Kuai, J., Lei, J., et al. (2020). Persistence of the long‐duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm. Journal of Geophysical Research: Space Physics, 125, e2020JA028238. https://doi.org/10.1029/2020JA028238
Mrak, S., Semeter, J., Nishimura, Y., Rodrigues, F. S., Coster, A. J., & Groves, K. (2020). Leveraging geodetic GPS receivers for ionospheric scintillation science. Radio Science, 55, e2020RS007131. https://doi.org/10.1029/2020RS007131
Nishida, A. (1968). Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. Journal of Geophysical Research, 73(17), 5549–5559. https://doi.org/10.1029/JA073i017p05549
Article
Google Scholar
Nishimura, Y., Mrak, S., Semeter, J. L., Coster, A. J., Jayachandran, P. T., Groves, K. M., et al. (2021). Evolution of mid-latitude density irregularities and scintillation in North America during the 7–8 September 2017 storm. Journal of Geophysical Research: Space Physics, 126, e2021JA029192. https://doi.org/10.1029/2021JA029192
Pedatella, N. M. (2016). Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm. Geophysical Research Letters, 43, 9383–9389. https://doi.org/10.1002/2016GL070592
Article
Google Scholar
Pedatella, N. M., & Liu, H.-L. (2018). The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm. Geophysical Research Letters, 45, 4578–4585. https://doi.org/10.1029/2018GL077867
Article
Google Scholar
Prölss, G. W. (1993). On explaining the local time variation of ionospheric storm effects. Annales Geophysicae, 11, 19.
Google Scholar
Prölss, G. W. (1995). Ionospheric F-region storms. In H. Volland (Ed.), Handbook of atmospheric electrodynamics (Vol. 2, pp. 195–248). CRC Press.
Google Scholar
Redmon R, Seaton D, Steenburgh R, He J, Rodriguez J (2018) 2017's geoeffective space weather and impacts to Caribbean radio communications during hurricane response, Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.a530e85443c2d357.102532a29f074aec.2
Richmond, A. D., & Matsushita, S. (1975). Thermospheric response to a magnetic substorm. Journal of Geophysical Research, 80(19), 2839–2850. https://doi.org/10.1029/JA080i019p02839
Article
Google Scholar
Scherliess, L., & Fejer, B. G. (1997). Storm time dependence of equatorial disturbance dynamo zonal electric fields. Journal of Geophysical Research, 102(A11), 24037–24046. https://doi.org/10.1029/97JA02165
Article
Google Scholar
Scherliess, L., Thompson, D. C., & Schunk, R. W. (2008). Longitudinal variability of low-latitude total electron content: Tidal influences. Journal of Geophysical Research, 113, A01311. https://doi.org/10.1029/2007JA012480
Article
Google Scholar
Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101, 26875–26891. https://doi.org/10.1029/96JA00682
Article
Google Scholar
Wan, W., Xiong, J., Ren, Z., Liu, L., Zhang, M.-L., Ding, F., Ning, B., Zhao, B., & Yue, X. (2010). Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. Journal of Geophysical Research, 115, A11303. https://doi.org/10.1029/2010JA015527
Article
Google Scholar
Wan, X., Xiong, C., Wang, H., Zhang, K., Zheng, Z., He, Y., & Yu, L. (2019). A statistical study on the climatology of the equatorial plasma depletions occurrence at topside ionosphere during geomagnetic disturbed periods. Journal of Geophysical Research: Space Physics, 124(10), 8023–8038. https://doi.org/10.1029/2019JA026926
Article
Google Scholar
Xiong, C., Park, J., Lühr, H., Stolle, C., & Ma, S. Y. (2010). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Annales Geophysicae, 28(9), 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010
Article
Google Scholar
Xiong, C., Luhr, H., & Fejer, B. G. (2015). Global features of the disturbance winds during storm time deduced from CHAMP observations. Journal of Geophysical Research: Space Physics, 120, 5137–5150. https://doi.org/10.1002/2015JA021302
Article
Google Scholar
Xiong, C., Stolle, C., & Lühr, H. (2016). The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather, 14, 563–577. https://doi.org/10.1002/2016SW001439
Article
Google Scholar
Xiong, C., Stolle, C., & Park, J. (2018). Climatology of GPS signal loss observed by Swarm satellites. Annales Geophysicae, 36(2), 679–693. https://doi.org/10.5194/angeo-36-679-2018
Article
Google Scholar
Xiong, C., Lühr, H., & Yamazaki, Y. (2019). An opposite response of the low-latitude ionosphere at Asian and American sectors during storm recovery phases: Drivers from below or above. Journal of Geophysical Research: Space Physics, 124, 6266–6280. https://doi.org/10.1029/2019JA026917
Article
Google Scholar
Yao, D., & Makela, J. J. (2007). Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques. Annales Geophysicae, 25, 701–709. https://doi.org/10.5194/angeo-25-701-2007
Article
Google Scholar