Arnold, D., Meindl, M., Beutler, G., Dach, R., Schaer, S., Lutz, S., et al. (2015). CODE’s new solar radiation pressure model for GNSS orbit determination. Journal of Geodesy, 89, 775–791. https://doi.org/10.1007/s00190-015-0814-4.
Article
Google Scholar
Bar-Sever, Y. E. (1996). A new model for GPS yaw attitude. Journal of Geodesy, 70(11), 714–723. https://doi.org/10.1007/BF00867149.
Article
Google Scholar
Bar-Sever, Y., & Kuang, D. (2004). New empirically derived solar radiation pressure model for global positioning system satellites (pp. 42–159). The Interplanetary Network Progress Report.
Bar-Sever, Y., & Kuang, D. (2005). New empirically derived solar radiation pressure model for global positioning system satellites during eclipse seasons (pp. 42–160). The Interplanetary Network Progress Report.
Beutler, G., Brockmann, E., Gurtner, W., Hugentobler, U., Mervart, L., Rothacher, M., & Verdun, A. (1994). Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results. Manuscripta Geodaetica, 19(6), 367–386.
Google Scholar
Bury, G., Sosnica, K., & Zajdel, R. (2018). Multi-GNSS orbit determination using satellite laser ranging. Journal of Geodesy, 93, 2447–2469. https://doi.org/10.1007/s00190-018-1143-1.
Article
Google Scholar
CSNO (2019b). Definitions and descriptions of BDS/GNSS satellite parameters for high precision application. http://www.beidou.gov.cn/yw/gfgg/201912/W020200323534413026471.doc. Accessed 1 September 2021.
CSNO (2019a). Satellite Information of BDS, China Satellite Navigation Office. http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200103556125703019.rar. Accessed 1 September 2021.
Cai, H., Meng, Y., Geng, T., & Xie, X. (2020). Initial results of precise orbit determination using satellite-ground and inter-satellite link observations for BDS-3 satellites. Geomatics and Information Science of Wuhan University, 45, 1493–1500. https://doi.org/10.13203/j.whugis20180499.
Article
Google Scholar
Chen, Z., & Wu, X. (2020). General design of the third generation BeiDou navigation satellite system. Journal of Nanjing University of Aeronautics & Astronautics, 52, 6. https://doi.org/10.16356/j.1005-2615.2020.06.001.
Article
Google Scholar
Chen, Q., Yang, H., Chen, Z., Wang, H., & Wang, C. (2019). Solar radiation pressure modeling and application of BDS satellite. Acta Geodaeticaet Cartographica Sinica, 48(2), 169–175. https://doi.org/10.11947/j.AGCS.2019.20180097.
Article
Google Scholar
Chen, X., Zhao, S., Wang, M., & Lu, M. (2016). Space-borne BDS receiver for LING QIAO satellite: Design, implementation and preliminary in-orbit experiment results. GPS Solutions, 20, 837–847. https://doi.org/10.1007/s10291-015-0493-x.
Article
Google Scholar
Chen, G., Guo, J., Geng, T., & Zhao, Q. (2020). Multi-GNSS orbit combination at Wuhan University: strategy and preliminary products. Journal of Geodesy (under review).
Chen, K., Xu, T., Chen, G., Li, J., & Yu, S. (2015). The orbit and clock combination of iGMAS analysis centers and the analysis of their precision. In Sun et al. (Ed.), China satellite navigation conference (CSNC) 2015 proceedings: Volume II. Lecture Notes in Electrical Engineering (Vol. 341). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-46635-3_36.
Dai, X., Ge, M., Lou, Y., Shi, C., Wickert, J., & Schuh, H. (2015). Estimating the yaw-attitude of BDS IGSO and MEO satellites. Journal of Geodesy, 89(10), 1005–1018. https://doi.org/10.1007/s00190-015-0829-x
Article
Google Scholar
Deng, Z. (2021). WL_UPD, integer clock and OBX from GFZ MGEX RAPID products. IGSMAIL-8068.
Dilssner, F., Springer, T., Gienger, G., & Dow, J. (2011). The GLONASS-M satellite yaw-attitude model. Advances in Space Research, 47(1), 160–171. https://doi.org/10.1016/j.asr.2010.09.007.
Article
Google Scholar
Dilssner, F., Springer, T., Schönemann, E., & Enderle, W. (2014). Estimation of satellite antenna phase center corrections for BeiDou. In Proceedings of IGS workshop 2014, 23–27 June 2014, Pasadena, USA.
Dilssner, F. (2017). A note on the yaw attitude modeling of BeiDou IGSO-6. http://navigation-office.esa.int/attachments_24576369_1_BeiDou_IGSO6_Yaw_Modeling.pdf. Accessed 21 September 2021.
Dilssner, F., Springer, T., Schönemann, & Enderle, W. (2018). Initial orbit determination of third-generation BeiDou MEO spacecraft. IGS Workshop 2018, 28 Oct -2 Nov 2018, Wuhan, China
Duan, B., Hugentobler, U., Hofacker, M., & Selmke, I. (2020). Improving solar radiant pressure for GLONASS satellites. Journal of Geodesy, 94, 72. https://doi.org/10.1007/s00190-020-01400-9.
Article
Google Scholar
Duan, B., Hugentobler, U., & Selmke, I. (2019). The adjusted optical properties for Galileo/BeiDou-2/QZS-1 satellites and initial results on BeiDou-3e and QZS-2 satellites. Advances in Space Research, 63(5), 1803–1812. https://doi.org/10.1016/j.asr.2018.11.007.
Article
Google Scholar
Duan, B., Hugentobler, U., Selmke, I., & Marz, S. (2021a). Physical a priori solar radiation pressure models for GNSS satellites with focus on BDS. EGU2021, vPICOonline, 27.Apr, 2021, EGU21-12358.
Duan, B., Hugentobler, U., Selmke, I., Marz, S., Killian, M., & Rott, M. (2021b). BeiDou satellite radiation force models for precise orbit determination and geodetic applications. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.15111978.v1
Fliegel, H., & Gallini, T. (1996). Solar force modeling of block IIR global positioning system satellites. Journal of Spacecraft and Rockets, 33(6), 863–866. https://doi.org/10.2514/3.26851.
Article
Google Scholar
Fliegel, H., Gallini, T., & Swift, E. (1992). Global positioning system radiation force model for geodetic applications. Journal of Geophysical Research, 97(B1), 559–568. https://doi.org/10.1029/91JB02564
Article
Google Scholar
Ge, M., Zhang, H. P., Jia, X. L., Song, S. L., & Wickert, L. (2012). What is achievable with the current COMPASS Constellations? In Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2012), Nashville, 17–21 September 2012.
Glaser, S., Michalak, G., Männel, B., König, R., Neumayer, K. H., & Schuh, H. (2020). Reference system origin and scale realization with the futhre GNSS constellation “Kapler”. Journal of Geodesy, 94, 117. https://doi.org/10.1007/00190-020-01441-0
Article
Google Scholar
Guo, J. (2014). The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites. PhD Dissertation, GNSS Research Center, Wuhan University.
Guo, J., Chen, G., Zhao, Q., Liu, J., & Liu, X. (2017). Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solutions, 21, 511–522. https://doi.org/10.1007/s10291-016-0540-2.
Article
Google Scholar
Guo, F., Li, X., Zhang, X., & Wang, J. (2016b). Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solution, 21, 279–290. https://doi.org/10.1007/s10291-016-0523-3.
Article
Google Scholar
Guo, J., Xu, X., Zhao, Q., & Liu, J. (2016a). Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. Journal of Geodesy, 90, 143–159. https://doi.org/10.1007/s00190-015-0862-9.
Article
Google Scholar
Guo, R., Zhou, J., Hu, X., Liu, L., Tang, B., Li, X., & Wu, S. (2015). Precise orbit determination and rapid orbit recovery supported by time synchronization. Advances in Space Research, 55(12), 2889–2898. https://doi.org/10.1016/j.asr.2015.03.001.
Article
Google Scholar
Guo, J., Zhao, Q., Geng, T., Su, X., & Liu, J. (2013). Precise orbit determination for COMPASS IGSO satellites during yaw maneuvers. In J. Sun, W. Jiao, H. Wu, & C. Shi (Eds.), Proceedings China satellite navigation conference (CSNC) 2013 (Vol. III, no. 245, pp. 41–53). Springer. https://doi.org/10.1007/978-3-642-37407-4_4.
Guo, J., & Zhao, Q. (2014). Analysis of precise orbit determination for Beidou satellites during yaw maneuvers. Presented at China Satellite Navigation Conference (CSNC) 2014, Wuhan, 22 May 2014.
Guo, J., Qu, Z., Chao, Y., Chen, G., Wang, C., & Zhao, Q. (2020). The potential contributions and challenges of BDS to establishment of terrestrial reference frame. Presented at China Satellite Navigation Conference (CSNC) 2020, Chengdu, 23 November 2014.
Guo, J., Wang, C., & Zhao, Q. (2021). BDS-3 precise orbit and clock solution at Wuhan University: status and improvement. Journal of Geodesy (under review)
Hackel, S., Steigenberger, P., Hugentobler, U., Uhlemann, M., & Montenbruck, O. (2015). Galileo orbit determination using combined GNSS and SLR observations. GPS Solution, 19(1), 15–25. https://doi.org/10.1007/s10291-013-0361-5.
Article
Google Scholar
Hauschild, A., Montenbruck, O., Sleewaegen, J. M., Huisman, L., & Teunissen, P. (2011). Characterization of compass M-1 signals. GPS Solutions, 16, 117–126. https://doi.org/10.1007/s10291-011-0210-3.
Article
Google Scholar
Hauschild, A., Montenbruck, O., Sleewaegen, J. M., Huisman, L., & Teunissen, P. G. (2012). Characterization of compass M-1 signals. GPS Solutions, 16, 117–126. https://doi.org/10.1007/s10291-011-0210-3.
Article
Google Scholar
Huang, W., Männel, B., Brack, A., & Schuh, H. (2021). Two methods to determine scale-independent GPS PCOs and GNSS-based terrestrial scale: Comparison and cross-check. GPS Solution, 25, 4. https://doi.org/10.1007/s10291-020-01035-5.
Article
Google Scholar
Huang, G., Yan, X., Zhang, Q., Liu, C., Wang, L., & Qin, Z. (2018). Estimation of antenna phase center offset for BDS IGSO and MEO satellites. GPS Solution, 22, 49. https://doi.org/10.1007/s10291-018-0716-z.
Article
Google Scholar
Jiao, W., Ding, Q., Li, J., Lu, X., Feng, L., Ma, J., & Chen, G. (2011). Monitoring and assessment of GNSS open services. Journal of Navigation, 64(S1), S19–S29. https://doi.org/10.1017/s0373463311000385.
Article
Google Scholar
Krzan, G., Dawidowicz, K., & Wielgosz, P. (2020). Antenna phase center correction differences from robot and chamber calibrations: The case study LEIAR25. GPS Solutions, 24, 747. https://doi.org/10.1007/s10291-020-0957-5.
Article
Google Scholar
Kröger, J., Kersten, T., Breva, Y., & Schön, S. (2021). Multi-frequency multi-GNSS receiver antenna calibration at IfE: Concept—Calibration results—Validation. Advances in Space Research. https://doi.org/10.1016/j.asr.2021.01.029.
Article
Google Scholar
Li, X., Hu, X., Guo, R., Tang, C., Zhou, S., Liu, S., & Chen, J. (2018). Orbit and positioning accuracy for new generation BeiDou satellites during the earth eclipsing period. The Journal of Navigation, 71, 1069–1087. https://doi.org/10.1017/S0373463318000103.
Article
Google Scholar
Li, J., Yuan, Y., Huang, S., Liu, C., Lou, J., & Li, X. (2021). Examination and enhancement of solar radiation pressure model for BDS-3 satellites. EGU2021, vPICOonline, 27.Apr, 2021, EGU21-12358171635.
Li, R., Wang, N., Li, Z., Shang, Y., Wang, Z., & Ma, H. (2021b). Precise orbit determination of BDS-3 satellites using B1C and B2a dual-frequency measurements. GPS Solutions, 25, 95. https://doi.org/10.1007/s10291-021-01126-x.
Article
Google Scholar
Li, X., Yuan, Y., Zhu, Y., Huang, J., Wu, J., Xiong, Y., et al. (2019). Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks. Journal of Geodesy, 93, 103–117. https://doi.org/10.1007/s00190-018-1144-0.
Article
Google Scholar
Li, X., Yuan, Y., Zhu, Y., Jiao, W., Bian, L., Li, X., & Zhang, K. (2020a). Improving BDS-3 precise orbit determination for medium earth orbit satellites. GPS Solution, 24, 53. https://doi.org/10.1007/s10291-020-0967-3.
Article
Google Scholar
Li, X., Zhu, Y., Zheng, K., Yuan, Y., Liu, G., & Xiong, Y. (2020b). Precise orbit and clock products of galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP validation. Remote Sensing, 2020(12), 1415. https://doi.org/10.3390/rs12091415.
Article
Google Scholar
Li, X., Zhang, K., Meng, X., Zhang, Q., Zhang, W., Li, X., & Yuan, Y. (2020c). LEO-BDS-GPS integrated precise orbit modeling using FengYun-3D, FengYun-3 C onboard and ground observations. GPS Solutions, 24, 48. https://doi.org/10.1007/s10291-020-0962-8.
Article
Google Scholar
Li, X., Zhang, K., Meng, X., Zhang, W., Zhang, Q., Zhang, X., & Li, X. (2020d). Precise orbit determination for the FY-3 C satellite using onboard BDS and GPS observations from 2013, 2015, and 2017. Engineering, 6(8), 904–913. https://doi.org/10.1016/j.eng.2019.09.001.
Article
Google Scholar
Liu, C., Gao, W., Pan, J., Tang, C., Hu, X., Wang, W., et al. (2020). Inter-satellite clock offsets adjustment based on closed-loop residual detection of BDS inter-satellite link. Acta Geodaetica et Cartographica Sinica, 49(9), 1149–1157. https://doi.org/10.11947/j.AGCS.2020.20200319.
Article
Google Scholar
Liu, J., Gu, D., Ju, B., Shen, Z., Lai, Y., & Yi, D. (2016). A new empirical solar radiation pressure model for BeiDou GEO satellites. Advances in Space Research, 57(1), 234–244. https://doi.org/10.1016/j.asr.2015.10.043.
Article
Google Scholar
Lin, X., Lin, B., Liu, Y., Xiong, S., Bai, T. (2018). Satellite Geometry and Attitude Mode of BDS-3 MEO Satellites Developed by SECM. Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, Florida, September 2018, pp. 1268–1289.
Loyer, S., Perosanz, F., Versini, L., Katsigianni, G., Mercier, F., & Mezerette. (2018). CNES/CLS IGS analysis center: recent activities. IGS Workshop 2018, 29 October to 2 November, Wuhan, China.
Lv, Y., Geng, T., Zhao, Q., Xie, X., Zhang, F., & Wang, X. (2020). Evaluation of BDS-3 orbit determination strategies using ground-tracking and inter-satellite link observation. Remote Sensing, 12(16), 2647. https://doi.org/10.3390/rs12162647.
Article
Google Scholar
Mi, X., Sheng, C., EI-Mowafy, A., & Zhang, B. (2021). Characteristics of receiver-related biases between BDS-3 and BDS-2 for five frequencies including inter–system biases, differential code biases, and differential phase biases. GPS Solutions, 25, 113. https://doi.org/10.1007/s10291-021-01151-w.
Article
Google Scholar
Montenbruck, O., Hauschild, A., & Hessels, U. (2011). Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solution, 15(3), 193–205. https://doi.org/10.1007/s10291-010-0182-8.
Article
Google Scholar
Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., Fatkulin, R., et al. (2015b). GNSS satellite geometry and attitude models. Advances in Space Research, 56(6), 1015–1029. https://doi.org/10.1016/j.asr.2015.06.019.
Article
Google Scholar
Montenbruck, O., Steigenberger, P., & Darugna, F. (2017b). Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Advances in Space Research, 59(8), 2088–2100. https://doi.org/10.1016/j.asr.2017.01.036.
Article
Google Scholar
Montenbruck, O., Steigenberger, P., & Hugentobler, U. (2015a). Enhanced solar radiation pressure modeling for Galileo satellites. Journal of Geodesy, 89(3), 283–297. https://doi.org/10.1007/s00190-014-0774-0.
Article
Google Scholar
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., et al. (2017a). The Multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—Achievements, prospects and challenges. Advances in Space Research, 59, 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011.
Article
Google Scholar
Pan, J., Hu, X., Zhou, S., Tang, C., Guo, R., Zhu, L., et al. (2018). Time synchronization of new-generation BDS satellites using inter-satellite link measurements. Advances in Space Research, 61(1), 145–153. https://doi.org/10.1016/j.asr.2017.10.004.
Article
Google Scholar
Pan, J., Hu, X., Zhou, S., Tang, C., Wang, D., Yang, Y., & Dong, W. (2021). Full-ISL clock offset estimation and prediction algorithm for BDS3. GPS Solutions, 25, 140. https://doi.org/10.1007/s10291-021-01177-0.
Article
Google Scholar
Pearlman, M. R., Degnan, J. J., & Bosworth, J. M. (2002). The international laser ranging service. Advances in Space Research, 30, 135–143. https://doi.org/10.1016/S0273-1177(02)00277-6.
Article
Google Scholar
Prange, L., Orliac, E., Dach, R. et al. (2017). CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod, 91, 345–360. https://doi.org/10.1007/s00190-016-0968-8
Prange, L., Beutler, G., Dach, R., Arnold, D., Schaer, S., & Jäggi, A. (2020b). An empirical solar radiation pressure model for satellites moving in the orbit-normal mode. Advances in Space Research, 65(1), 235–250. https://doi.org/10.1016/j.asr.2019.07.031.
Article
Google Scholar
Prange, L., Villiger, A., Sidorov, D., Schaer, S., Beutler, G., Dach, R., & Jäggi, A. (2020a). Overview of CODE’s MGEX solution with the focus on Galileo. Advances in Space Research, 66(12), 2786–2798. https://doi.org/10.1016/j.asr.2020.04.038.
Article
Google Scholar
Qing, Y., Lou, Y., Dai, X., & Liu, Y. (2017). Benefits of satellite clock modeling in BDS and Galileo orbit determination. Advances in Space Research, 60(12), 2550–2560. https://doi.org/10.1016/j.asr.2017.03.040.
Article
Google Scholar
Qu, Z., Guo, J., & Zhao, Q. (2021). Phase center corrections for BDS IGSO and MEO satellites in IGb14 and IGSR3 frame. Remote Sensing, 13(4), 745. https://doi.org/10.3390/rs13040745.
Article
Google Scholar
Qu, Z. (2021). Phase center corrections for BDS satellites with ground and LEO onboard data. Master Dissertation, Wuhan University.
Rebischung, P., Altamimi, Z., & Springer, T. (2014). A collinearity diagnosis of the GNSS geocenter determination. Journal of Geodesy, 88, 65–85. https://doi.org/10.1007/s00190-013-0669-5.
Article
Google Scholar
Rebischung, P. (2014). Can GNSS contribute to improving the ITRF definition? PhD Thesis, Ecole Doctorale Astronomie et Astrophysique d’Ile-de-France.
Rodriguez-Solano, C., Hugentobler, U., Steigenberger, P., & Lutz, S. (2012b). Impact of earth radiation pressure on GPS position estimates. Journal of Geodesy, 86(5), 309–317. https://doi.org/10.1007/s00190-011-0517-4.
Article
Google Scholar
Rodríguez-Solano, C., Hugentobler, U., & Steigenberger, P. (2012a). Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Advances in Space Research, 49, 1113–1128. https://doi.org/10.1016/j.asr.2012.01.016.
Article
Google Scholar
Rodríguez-Solano, C. (2009). Impact of albedo modeling on GPS orbits. Master Thesis. Technische Universität München.
Ruan, R., Jia, X., Feng, L., Zhu, J., Huyan, Z., Li, J., & Wei, Z. (2020). Orbit determination and time synchronization for BDS-3 satellites with raw inter-satellite link ranging observations. Satellite Navigation, 1, 8. https://doi.org/10.1186/s43020-020-0008-y.
Article
Google Scholar
Scaramuzza, S., Dach, R., Beutler, G., Arnold, D., Sušnik, A., & Jäggi, A. (2018). Dependency of geodynamic parameters on the GNSS constellation. Journal of Geodesy, 92(1), 93–104https://doi.org/10.1007/s00190-017-1047-5.
Article
Google Scholar
Selmke, I., Duan, B., & Hugentobler, U. (2018). Status of the TUM MGEX orbit and clock products. IGS Workshop 2018, 29 October to 2 November, Wuhan, China.
Shi, C., Zhao, Q., Li, M., Tang, W., Hu, Z., Lou, Y., et al. (2012). Precise orbit determination of BeiDou satellites with precise positioning. Science China Earth Sciences, 55, 1079–1086. https://doi.org/10.1007/s11430-012-4446-8.
Article
Google Scholar
Sidorov, D., Dach, R., Polle, B., Prange, L., & Jaggi, A. (2020). Adopting the empirical CODE orbit model to Galileo satellites. Advances in Space Research, 66(12), 15. https://doi.org/10.1016/j.asr.2020.05.028.
Article
Google Scholar
Sośnica, K., Zajdel, R., Bury, G., Bosy, J., Moore, M., & Masoumi, S. (2020). Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solutions, 24, 54. https://doi.org/10.1007/s10291-020-0965-5.
Article
Google Scholar
Springer, T., Beutler, G., & Rothacher, M. (1999). A new solar radiation pressure model for GPS satellites. GPS Solution, 2(3), 50–62. https://doi.org/10.1007/PL00012757.
Article
Google Scholar
Springer, T., Agrotis, L., Dilssner, F., Feltens, J., Van Kints, M., Mayer, V., et al. (2020). The ESA/ESOC IGS analysis centre technical report 2019. http://ftp.aiub.unibe.ch/users/villiger/2019_techreport.pdf. Accessed 30 August 2021.
Steigenberger, P., Hugentobler, U., Hauschild, A., & Montenbruck, O. (2013). Orbit and clock analysis of Compass GEO and IGSO satellites. Journal of Geodesy, 87(6), 515–525. https://doi.org/10.1007/s00190-013-0625-4.
Article
Google Scholar
Steigenberger, P., & Mentenbruck, O. (2020). Consistency of MGEX orbit and clock products. Engineering, 6(8), 898–903. DOI: https://doi.org/10.1016/j.eng.2019.12.005
Article
Google Scholar
Steigenberger, P., Thoelert, S., & Montenbruck, O. (2018). GNSS satellite transmit power and its impact on orbit determination. Journal of Geodesy, 92, 609–624. DOI: https://doi.org/10.1007/s00190-017-1082-2
Article
Google Scholar
Steigenberger, P., & Thoelert, S. (2020). Initial BDS-3 transmit power analysis (with BDS-2 gain pattern)
Su, M., Zhao, Q., Guo, J., Su, X., Hu, Z., & Guo, H. (2018). Phase center calibration for receiver antenna and its impact on precise orbit determination of BDS satellites. Acta Geodaetica et Cartographica Sinica, 47(S0), 78–85. https://doi.org/10.11947/j.AGCS.2018.20180324.
Article
Google Scholar
Sun, B., Su, H., Zhang, Z., Kong, Y., & Yang, X. (2016). GNSS GEO satellites precise orbit determination based on carrier phase and SLR observations. IGS Workshop 2016, Feb 8-12, 2016, Sydney.
Tan, B., Yuan, Y., Wen, M., Ning, Y., & Liu, X. (2017). Initial results of the precise orbit determination for the new-generation BeiDou satellites (BeiDou-3) based on the iGMAS network. International Journal of Geo-information, 5, 196. https://doi.org/10.3390/ijgi5110196.
Article
Google Scholar
Tan, B., Yuan, Y., Zhang, B., Hsu, H., & Ou, J. (2016). A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM. Scientific Report, 6, 32967. https://doi.org/10.1038/srep32967.
Article
Google Scholar
Tang, C., Hu, X., Zhou, S., Liu, L., Pan, J., & Chen, L. (2018). Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal of Geodesy, 92, 1155–1169. https://doi.org/10.1007/s00190-018-1113-7.
Article
Google Scholar
Villiger, A., Dach, R., Prange, L., Jaggi, A. (2021). Extension of the IGS Repro3 ANTEX file with BeiDou and QZSS satellite antenna pattern. EGU General Assembly 2021, 23. April 2021, Vienna, Austria
Wang, C., Guo, J., Zhao, Q., & Liu, J. (2018). Yaw attitude modeling for BeiDou I06 and BeiDou-3 satellites. GPS Solutions, 22, 117. https://doi.org/10.1007/s10291-018-0783-1.
Article
Google Scholar
Wang, C., Guo, J., Zhao, Q., & Liu, J. (2019a). Empirically derived model of solar radiation pressure for BeiDou GEO satellites. Journal of Geodesy, 93, 791. https://doi.org/10.1007/s00190-018-1199-y.
Article
Google Scholar
Wang, J., Liu, G., Guo, A., Xiao, G., Wang, B., Gao, M., & Wang, S. (2020a). BDS receiver antenna phase center calibration. Acta Geodaetica et Cartographica Sinica, 49(3):312-321. https://doi.org/10.11947/j.AGCS.2020.20190072.
Article
Google Scholar
Wang, L., Xu, B., Fu, F., Chen, R., Li, T., Han, Y., & Zhou, H. (2020b). Centimeter-level precise orbit determination for the Luojia-1A satellite using BeiDou observations. Remote Sensing, 12, 2063. https://doi.org/10.3390/rs12122063.
Article
Google Scholar
Wang, C., Zhao, Q., Guo, J., Liu, J., & Chen, G. (2019b). The contribution of intersatellite links to BDS-3 orbit determination: Model refinement and comparisons. Navigation, 66(1), 71–82. https://doi.org/10.1002/navi.295
Article
Google Scholar
Wang, W., Chen, G., Guo, S., Song, X., & Zhao, Q. (2013). A study on the Beidou IGSO/MEO satellite orbit determination and prediction of the different yaw control mode. In J. Sun, W. Jiao, H. Wu, & C. Shi (Eds.), Proceedings China satellite navigation conference (CSNC) 2013 (Vol. III, pp. 31–40). Springer. https://doi.org/10.1007/978-3-642-37407-4_3.
Wanninger, L., & Beer, S. (2015). BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19, 639–648. https://doi.org/10.1007/s10291-014-0423-3.
Article
Google Scholar
Willi, D., Lutz, S., Brockmann, E., & Rothacher, M. (2020). Absolute field calibration for multi-GNSS receiver antennas at ETH Zurich. GPS Solutions, 24, 375. https://doi.org/10.1007/s10291-019-0941-0.
Article
Google Scholar
Wübbena, G., Schmitz, M., & Warneke, A. (2019). Geo++ absolute multi frequency GNSS antenna calibration. In Presentation at the EUREF analysis center (AC) Workshop, October 16–17, Warsaw, Poland. http://www.geopp.com/pdf/gpp_cal125_euref19_p.pdf. Accessed 01 September 2021.
Xia, F., Ye, S., Chen, D., & Jiang, N. (2019). Observation of BDS-2 IGSO/MEOs yaw-attitude behavior during eclipse seasons. GPS Solutions, 23, 71. https://doi.org/10.1007/s10291-019-0857-8.
Article
Google Scholar
Xia, F., Ye, S., Chen, D., Wu, J., Wang, C., & Sun, W. (2020). Estimation of antenna phase center offsets for BeiDou IGSO and MEO satellites. GPS Solution, 24, 90. https://doi.org/10.1007/s10291-020-01002-0.
Article
Google Scholar
Xie, X., Geng, T., Zhao, Q., Lv, Y., Cai, H., & Liu, J. (2020). Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations. Journal of Geodesy, 94(7), 64. https://doi.org/10.1007/s00190-020-01394-4.
Article
Google Scholar
Xie, X. (2019). Precise orbit and clock determination for BDS-3 satellites using inter-satellite link observations. PhD Dissertation, GNSS Research Center, Wuhan University
Xu, T., Yu, S., & Li, J. (2014). Earth rotation parameters determination using BDS and GPS data based on MGEX network. In J. Sun, W. Jiao, H. Wu, & M. Lu (Eds.), China satellite navigation conference (CSNC) 2014 proceedings: Volume III. Lecture Notes in Electrical Engineering (Vol. 305). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-54740-9_26.
Yan, X., Huang, G., Zhang, Q., Wang, L., Qin, Z., & Xie, S. (2019a). Estimation of the antenna phase center correction model for the BeiDou-3 MEO satellites. Remote Sensing, 11, 2850. https://doi.org/10.3390/rs11232850.
Article
Google Scholar
Yan, X., Liu, C., Huang, G., Zhang, Q., Wang, L., Qin, Z., & Xie, S. (2019b). A priori solar radiation pressure model for BeiDou-3 MEO satellites. Remote Sensing, 11, 1605. https://doi.org/10.3390/rs11131605.
Article
Google Scholar
Yang, Y., Tang, J., & Montenbruck, O. (2017a). Chinese Navigation Satellite Systems. In P. J. Teunissen, & O. Montenbruck (Eds.), Springer handbook of global navigation satellite systems. Springer handbooks. Cham: Springer. https://doi.org/10.1007/978-3-319-42928-1_10.
Chapter
Google Scholar
Yang, D., Yang, J., Li, G., Zhou, Y., & Tang, C. (2017b). Globalization highlight: orbit determination using BeiDou inter-satellite ranging measurements. GPS Solutions, 21, 1395–1404. https://doi.org/10.1007/s10291-017-0626-5.
Article
Google Scholar
Yang, Y., Yang, Y., Hu, X., Chen, J., Guo, R., Tang, C., et al. (2019). Inter-Satellite Link enhanced orbit determination for BeiDou-3. The Journal of Navigation, 73, 115–130. https://doi.org/10.1017/S0373463319000523.
Article
Google Scholar
Yang, C., Guo, J., & Zhao, Q. (2021). Yaw attitudes for BDS-3 IGSO and MEO satellites: Estimation, validation and modeling with inter-satellite link observations. Submitted to Journal of Geodesy.
Zajdel, R., Sosnica, K., & Bury, G. (2021). Geocenter coordinates derived from multi-GNSS: a look into the role of solar radiation pressure modeling. GPS Solutions, 25, 1. https://doi.org/10.1007/s10291-020-01037-3
Article
Google Scholar
Zajdel, R., Sosnica, K., Bury, G., Dach, R., & Prange, L. (2020). Systemspecifc systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solutions, 24, 74. https://doi.org/10.1007/s10291-020-00989-w.
Article
Google Scholar
Zhang, X., Wu, M., Liu, W., Li, X., Yu, S., Lu, C., & Wichert, J. (2017). Initial assessment of the COMPASS/BeiDou-3: New generation navigation signals. Journal of Geodesy, 91, 1225–1240. https://doi.org/10.1007/s00190-017-1020-3.
Article
Google Scholar
Zhang, X., Zhou, Y., Cong, F., Ji, J., & Sun, G. (2020). Research of the dedicated platform for BeiDou-3 satellite directly into orbit. Astronautical Systems Engineering Technology, 4(6), 1–8
Google Scholar
Zhao, Q., Guo, J., Li, M., Qu, L., Hu, Z., Shi, C., & Liu, J. (2013). Initial results of precise orbit and clock determination for COMPASS navigation satellite system. Journal of Geodesy, 87, 475–486. https://doi.org/10.1007/s00190-013-0622-7
Article
Google Scholar
Zhao, Q., Wang, C., Guo, J., Bin, W., & Liu, J. (2018). Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solutions, 22, 4. https://doi.org/10.1007/s10291-017-0673-y
Article
Google Scholar
Zhao, Q., Wang, C., Guo, J., Yang, G., Liao, M., Ma, H., & Liu, J. (2017). Enhanced orbit determination for BeiDou satellites with FengYun-3 C onboard GNSS data. GPS Solutions, 21, 1179–1190. https://doi.org/10.1007/s10291-017-0604-y
Article
Google Scholar
Zhao, X., Zhou, S., Ci, Y., Hu, X., Cao, J., Chang, Z., et al. (2020). High-precision orbit determination for a LEO nanosatellite using BDS-3. GPS Solutions, 24, 102. https://doi.org/10.1007/s10291-020-01015-9
Article
Google Scholar
Zheng, J. (2020). Inter-satellite link and autonomous navigation of BDS. Presented at China Satellite Navigation Conference (CSNC) 2020, Chengdu, 23 November 2020.
Zhou, S., Hu, X., Liu, L., He, F., Tang, C., & Pang, J. (2020). Status of satellite orbit determination and time synchronization technology for global navigation satellite system. Chinese Astronomy and Astrophysics, 44(1), 105–118. https://doi.org/10.1016/j.chinastron.2020.04.007
Article
Google Scholar
Zhou, S., Hu, X., Wu, B., Liu, L., Qu, W., Guo, R., et al. (2011). Orbit determination and time synchronization for a GEO/IGSO satellite navigation constellation with regional tracking network. Science China Physics, Mechanics and Astronomy, 54, 1089–1097. https://doi.org/10.1007/s11433-011-4342-9.
Article
Google Scholar
Zhou, R., Hu, Z., Zhao, Q., Li, P., Wang, W., He, C., et al. (2018). Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system. GPS Solutions, 22, 60. https://doi.org/10.1007/s10291-018-0726-x.
Article
Google Scholar
Ziebart, M., & Dare, P. (2001). Analytical solar radiation pressure modelling for GLONASS using a pixel array. Journal of Geodesy, 75, 587–599. https://doi.org/10.1007/s001900000136
Article
Google Scholar