Black, H. D. (1978). An easily implemented algorithm for the tropospheric range correction. Journal of Geophysical Research, 83(B4), 1825–1828.
Article
Google Scholar
Böhm, J., Werl, B., Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(B2).
Böhm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81, 679–683.
Article
MATH
Google Scholar
Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved blind model for slant delays in the troposphere (GPT2w). GPS Solutions, 19, 433.
Article
Google Scholar
Chen, P., Ma, Y., Liu, H., Zheng, N. (2020). A new global tropospheric delay model considering the spatiotemporal variation characteristics of ZTD with altitude coefficient. Earth and Space Science. 7, e2019EA000888.
Ding, J., & Chen, J. (2020). Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. Sensors., 20(13), 3631.
Article
Google Scholar
Ding, M. (2020). Reducing ZHD-ZWD mutual absorption errors for blind ZTD model users. Acta Geodaetica Et Geophysica., 55(1), 51–62.
Article
Google Scholar
Gui, K., Che, H., Chen, Q., Zeng, Z., Liu, H., Wang, Y., Zheng, Y., Sun, T., Liao, T., Wang, H., & Zhang, X. (2017). Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmospheric Research., 197, 461–473.
Article
Google Scholar
Hopfield, H. S. (1969). Two-Quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18), 4487–4499.
Article
Google Scholar
Huang, L., Chen, H., Liu, L., & Jiang, W. (2021a). A new high-precision global model for calculating zenith tropospheric delay. Chinese Journal of Geophysics, 64(3), 782–795.
Google Scholar
Huang, L., Jiang, W., Liu, L., Chen, H., & Ye, S. (2019). A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. Journal of Geodesy, 93, 159–176.
Article
Google Scholar
Huang, L., Liu, L., & Yao, C. (2012). A zenith tropospheric delay correction model based on the regional CORS network. Geodesy and Geodynamics, 3(4), 53–62.
Article
Google Scholar
Huang, L., Mo, Z., Xie, S., Liu, L., Chen, J., Kang, C., & Wang, S. (2021b). Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin. China, Satellite Navigation, 2, 13.
Article
Google Scholar
Huang, L. K., Zhu, G., Liu, L. L., Chen, H., & Jiang, W. P. (2021c). A global grid model for the correction of the vertical zenith total delay based on a sliding window algorithm. GPS Solutions, 25, 98.
Article
Google Scholar
Jin, S., & Su, K. (2020). PPP models and performances from single- to quad-frequency BDS observations. Satellite Navigation, 1, 16.
Article
Google Scholar
Krueger, E., Schüler, T., Hein, G. W., Martellucci, A., Blarzino, G. (2004). Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of ENC-GNSS 2004, (pp. 16–19) May, Rotterdam.
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: empirical slant delay modelfor radio space geodetic techniques. Geophysical Research Letters., 40, 1069–1073.
Article
Google Scholar
Landskron, D., & Böhm, J. (2018). VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92, 349–360.
Article
Google Scholar
Leandro, R., Santos, M., Langley, R. (2006). UNB neutral atmosphere models: development and performance. In Proceedings of the ION NTM 2006 Monterey, (pp. 564–573) January 18–20, California USA.
Leandro, R., Langley, R., & Santos, M. (2008). UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solutions, 12, 65–70.
Article
Google Scholar
Li, H., Li, B., Lou, L., Yang, L., & Wang, J. (2017). Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation. GPS Solutions, 21(3), 897–903.
Article
Google Scholar
Li, H., Li, B., Xiao, G., Wang, J., & Xu, T. (2016). Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS. GPS Solutions, 20(4), 751–760.
Article
Google Scholar
Li, W., & He, Y. (2021). Determination of tropospheric parameters from ERA surface data for space geodetic techniques. Remote Sensing, 13(19), 3813.
Article
MathSciNet
Google Scholar
Li, W., Yuan, Y., Ou, J., Chai, Y., Li, Z., Liou, Y., & Wang, N. (2015). New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop. Journal of Geodesy, 89(1), 73–80.
Article
Google Scholar
Li, W., Yuan, Y., Ou, J., & He, Y. (2018). IGGtrop_SH and IGGtrop_rH: two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Transactions on Geoscience and Remote Sensing, 6(9), 5276–5288.
Article
Google Scholar
Li, W., Yuan, Y., Ou, J., Li, H., & Li, Z. (2012). A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chinese Science Bulletin, 57(17), 2132–2139.
Article
Google Scholar
Li, X., Huang, J., Li, X., Lyu, H., Wang, B., Xiong, Y., & Xie, W. (2021). Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. GPS Solutions, 25, 107.
Article
Google Scholar
Ma, Y., Liu, H., Xu, G., & Lu, Z. (2021). Empirical orthogonal function analysis and modeling of global tropospheric delay spherical harmonic coefficients. Remote Sensing., 13, 4385.
Article
Google Scholar
Mohammed, J. (2022). Adaptive neuro fuzzy inference system for predicting sub-daily Zenith Wet Delay. Geodesy and Geodynamics. https://doi.org/10.1016/j.geog.2021.10.005
Article
Google Scholar
Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 1339–1356.
Article
Google Scholar
Nafisi, V., Urquhart, L., Santos, M. C., Nievinski, F. G., Bohm, J., Wijaya, D. D., Schuh, H., Ardalan, A. A., Hobiger, T., Ichikawa, R., & Zus, F. (2012). Comparison of ray-tracing packages for troposphere delays. IEEE Transactions on Geoscience and Remote Sensing., 50(2), 469–480.
Article
Google Scholar
Penna, N., Dodson, A., & Chen, W. (2001). Assessment of EGNOS tropospheric correction model. Journal of Navigation, 54, 37–55.
Article
Google Scholar
Randles, C. A., Da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., & Shinozuka, Y. (2017). The MERRA-2 aerosol reanalysis, 1980 Onward. Part I: System description and data assimilation evaluation. Journal of Climate., 30, 6823–6850.
Article
Google Scholar
Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105(1), 279–298.
Article
Google Scholar
Schüler, T. (2014). The TropGrid2 standard tropospheric correction model. GPS Solutions, 18, 123–131.
Article
Google Scholar
Song, S., Zhu, W., Chen, Q. M., & Liou, Y. (2011). Establishment of a new tropospheric delay correction model over China area. Science China (physics, Mechanics & Astronomy)., 54(12), 2271–2283.
Article
Google Scholar
Sun, J., Wu, Z., & Yin, Z. (2017). A simplified GNSS tropospheric delay model based on the nonlinear hypothesis. GPS Solutions, 21(4), 1735–1745.
Article
Google Scholar
Sun, Z., Zhang, B., & Yao, Y. (2019). An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. Earth and Space Science, 6(10), 1926–1941.
Article
Google Scholar
Tang, Y., Liu, L., & Yao, C. (2013). Empirical model for mean temperature and assessment of precipitable water vapor derived from GPS. Geodesy and Geodynamics, 4(4), 51–56.
Article
Google Scholar
Thayer, G. D. (1974). An improved equation for the radio refractive index of air. Radio Science, 9(10), 803–807.
Article
Google Scholar
Xia, P., Xia, J., Ye, S., & Xu, C. (2020). A new method for estimating tropospheric zenith wet-component delay of GNSS signals from surface meteorology data. Remote Sensing, 12(21), 3497.
Article
Google Scholar
Xia, P., Ye, S., Guo, M., Jiang, W., & Xu, C. (2019). Retrieval of tropospheric refractivity profiles using slant tropospheric delays derived from a single ground-based global navigation satellite system station. Earth and Space Science, 6(7), 1081–1097.
Article
Google Scholar
Yang, F., Meng, X., Guo, J., Yuan, D., & Chen, M. (2021). Development and evaluation of the refined zenith tropospheric delay (ZTD) models. Satellite Navigation, 2, 21.
Article
Google Scholar
Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. Satellite Navigation, 1, 1.
Article
Google Scholar
Yao, Y., He, C., Zhang, B., & Xu, C. (2013). A new global zenith tropospheric delay model GZTD. Chinese Journal of Geophysics, 56(7), 2218–2227.
Google Scholar
Yao, Y., Hu, Y., Yu, C., Zhang, B., & Guo, J. (2016). An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear Processes in Geophysics, 23(3), 1–22.
Article
Google Scholar
Zhang, H., Yuan, Y., Wei, L., Zhang, B., & Ou, J. (2018). A grid-based tropospheric product for China using a GNSS network. Journal of Geodesy, 92(7), 765–777.
Article
Google Scholar
Zhang, W., Lou, Y., Liu, W., Huang, J., & Zhang, H. (2020). Rapid troposphere tomography using adaptive simultaneous iterative reconstruction technique. Journal of Geodesy, 94, 76.
Article
Google Scholar
Zhao, J., Song, S., Chen, Q., Zhou, W., & Zhu, W. (2014). Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. Chinese Journal of Geophysics, 57(10), 3140–3153.
Google Scholar
Zhou, F., Cao, X., Ge, Y., & Li, W. (2020). Assessment of the positioning performance and tropospheric delay retrieval with precise point positioning using products from different analysis centers. GPS Solutions, 24, 12.
Article
Google Scholar
Zhou, Y., Lou, Y., Zhang, W., Bai, J., & Zhang, Z. (2021). An improved tropospheric mapping function modeling method for space geodetic techniques. Journal of Geodesy, 95, 98.
Article
Google Scholar
Zhu, G., Huang, L., Liu, L., Li, C., Li, J., Huang, L., Zhou, L., & He, H. (2021). A new approach for the development of grid models calculating tropospheric key parameters over China. Remote Sensing., 13(17), 3546.
Article
Google Scholar
Zus, F., Dick, G., Douša, J., Heise, S., & Wickert, J. (2014). The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Science, 49(3), 207–216.
Article
Google Scholar