Black, H. D. (1978). An easily implemented algorithm for the tropospheric range correction. *Journal of Geophysical Research,* *83*(B4), 1825–1828.

Article
Google Scholar

Böhm, J., Werl, B., Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. *Journal of Geophysical Research: Solid Earth*, *111*(B2).

Böhm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: A global model of pressure and temperature for geodetic applications. *Journal of Geodesy,* *81*, 679–683.

Article
MATH
Google Scholar

Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved blind model for slant delays in the troposphere (GPT2w). *GPS Solutions,* *19*, 433.

Article
Google Scholar

Chen, P., Ma, Y., Liu, H., Zheng, N. (2020). A new global tropospheric delay model considering the spatiotemporal variation characteristics of ZTD with altitude coefficient. *Earth and Space Science*. *7*, e2019EA000888.

Ding, J., & Chen, J. (2020). Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. *Sensors.,* *20*(13), 3631.

Article
Google Scholar

Ding, M. (2020). Reducing ZHD-ZWD mutual absorption errors for blind ZTD model users. *Acta Geodaetica Et Geophysica.,* *55*(1), 51–62.

Article
Google Scholar

Gui, K., Che, H., Chen, Q., Zeng, Z., Liu, H., Wang, Y., Zheng, Y., Sun, T., Liao, T., Wang, H., & Zhang, X. (2017). Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. *Atmospheric Research.,* *197*, 461–473.

Article
Google Scholar

Hopfield, H. S. (1969). Two-Quartic tropospheric refractivity profile for correcting satellite data. *Journal of Geophysical Research,* *74*(18), 4487–4499.

Article
Google Scholar

Huang, L., Chen, H., Liu, L., & Jiang, W. (2021a). A new high-precision global model for calculating zenith tropospheric delay. *Chinese Journal of Geophysics,* *64*(3), 782–795.

Google Scholar

Huang, L., Jiang, W., Liu, L., Chen, H., & Ye, S. (2019). A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. *Journal of Geodesy,* *93*, 159–176.

Article
Google Scholar

Huang, L., Liu, L., & Yao, C. (2012). A zenith tropospheric delay correction model based on the regional CORS network. *Geodesy and Geodynamics,* *3*(4), 53–62.

Article
Google Scholar

Huang, L., Mo, Z., Xie, S., Liu, L., Chen, J., Kang, C., & Wang, S. (2021b). Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin. *China, Satellite Navigation,* *2*, 13.

Article
Google Scholar

Huang, L. K., Zhu, G., Liu, L. L., Chen, H., & Jiang, W. P. (2021c). A global grid model for the correction of the vertical zenith total delay based on a sliding window algorithm. *GPS Solutions,* *25*, 98.

Article
Google Scholar

Jin, S., & Su, K. (2020). PPP models and performances from single- to quad-frequency BDS observations. *Satellite Navigation,* *1*, 16.

Article
Google Scholar

Krueger, E., Schüler, T., Hein, G. W., Martellucci, A., Blarzino, G. (2004). Galileo tropospheric correction approaches developed within GSTB-V1. In *Proceedings of ENC-GNSS 2004*, (pp. 16–19) May, Rotterdam.

Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: empirical slant delay modelfor radio space geodetic techniques. *Geophysical Research Letters.,* *40*, 1069–1073.

Article
Google Scholar

Landskron, D., & Böhm, J. (2018). VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. *Journal of Geodesy,* *92*, 349–360.

Article
Google Scholar

Leandro, R., Santos, M., Langley, R. (2006). UNB neutral atmosphere models: development and performance. In *Proceedings of the ION NTM 2006 Monterey*, (pp. 564–573) January 18–20, California USA.

Leandro, R., Langley, R., & Santos, M. (2008). UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. *GPS Solutions,* *12*, 65–70.

Article
Google Scholar

Li, H., Li, B., Lou, L., Yang, L., & Wang, J. (2017). Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation. *GPS Solutions,* *21*(3), 897–903.

Article
Google Scholar

Li, H., Li, B., Xiao, G., Wang, J., & Xu, T. (2016). Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS. *GPS Solutions,* *20*(4), 751–760.

Article
Google Scholar

Li, W., & He, Y. (2021). Determination of tropospheric parameters from ERA surface data for space geodetic techniques. *Remote Sensing,* *13*(19), 3813.

Article
MathSciNet
Google Scholar

Li, W., Yuan, Y., Ou, J., Chai, Y., Li, Z., Liou, Y., & Wang, N. (2015). New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop. *Journal of Geodesy,* *89*(1), 73–80.

Article
Google Scholar

Li, W., Yuan, Y., Ou, J., & He, Y. (2018). IGGtrop_SH and IGGtrop_rH: two improved empirical tropospheric delay models based on vertical reduction functions. *IEEE Transactions on Geoscience and Remote Sensing,* *6*(9), 5276–5288.

Article
Google Scholar

Li, W., Yuan, Y., Ou, J., Li, H., & Li, Z. (2012). A new global zenith tropospheric delay model IGGtrop for GNSS applications. *Chinese Science Bulletin,* *57*(17), 2132–2139.

Article
Google Scholar

Li, X., Huang, J., Li, X., Lyu, H., Wang, B., Xiong, Y., & Xie, W. (2021). Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. *GPS Solutions,* *25*, 107.

Article
Google Scholar

Ma, Y., Liu, H., Xu, G., & Lu, Z. (2021). Empirical orthogonal function analysis and modeling of global tropospheric delay spherical harmonic coefficients. *Remote Sensing.,* *13*, 4385.

Article
Google Scholar

Mohammed, J. (2022). Adaptive neuro fuzzy inference system for predicting sub-daily Zenith Wet Delay. *Geodesy and Geodynamics*. https://doi.org/10.1016/j.geog.2021.10.005

Article
Google Scholar

Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. *Geosci. Model Dev.,* *8*, 1339–1356.

Article
Google Scholar

Nafisi, V., Urquhart, L., Santos, M. C., Nievinski, F. G., Bohm, J., Wijaya, D. D., Schuh, H., Ardalan, A. A., Hobiger, T., Ichikawa, R., & Zus, F. (2012). Comparison of ray-tracing packages for troposphere delays. *IEEE Transactions on Geoscience and Remote Sensing.,* *50*(2), 469–480.

Article
Google Scholar

Penna, N., Dodson, A., & Chen, W. (2001). Assessment of EGNOS tropospheric correction model. *Journal of Navigation,* *54*, 37–55.

Article
Google Scholar

Randles, C. A., Da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., & Shinozuka, Y. (2017). The MERRA-2 aerosol reanalysis, 1980 Onward. Part I: System description and data assimilation evaluation. *Journal of Climate.,* *30*, 6823–6850.

Article
Google Scholar

Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. *Bulletin Géodésique,* *105*(1), 279–298.

Article
Google Scholar

Schüler, T. (2014). The TropGrid2 standard tropospheric correction model. *GPS Solutions,* *18*, 123–131.

Article
Google Scholar

Song, S., Zhu, W., Chen, Q. M., & Liou, Y. (2011). Establishment of a new tropospheric delay correction model over China area. *Science China (physics, Mechanics & Astronomy).,* *54*(12), 2271–2283.

Article
Google Scholar

Sun, J., Wu, Z., & Yin, Z. (2017). A simplified GNSS tropospheric delay model based on the nonlinear hypothesis. *GPS Solutions,* *21*(4), 1735–1745.

Article
Google Scholar

Sun, Z., Zhang, B., & Yao, Y. (2019). An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. *Earth and Space Science,* *6*(10), 1926–1941.

Article
Google Scholar

Tang, Y., Liu, L., & Yao, C. (2013). Empirical model for mean temperature and assessment of precipitable water vapor derived from GPS. *Geodesy and Geodynamics,* *4*(4), 51–56.

Article
Google Scholar

Thayer, G. D. (1974). An improved equation for the radio refractive index of air. *Radio Science,* *9*(10), 803–807.

Article
Google Scholar

Xia, P., Xia, J., Ye, S., & Xu, C. (2020). A new method for estimating tropospheric zenith wet-component delay of GNSS signals from surface meteorology data. *Remote Sensing,* *12*(21), 3497.

Article
Google Scholar

Xia, P., Ye, S., Guo, M., Jiang, W., & Xu, C. (2019). Retrieval of tropospheric refractivity profiles using slant tropospheric delays derived from a single ground-based global navigation satellite system station. *Earth and Space Science,* *6*(7), 1081–1097.

Article
Google Scholar

Yang, F., Meng, X., Guo, J., Yuan, D., & Chen, M. (2021). Development and evaluation of the refined zenith tropospheric delay (ZTD) models. *Satellite Navigation,* *2*, 21.

Article
Google Scholar

Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. *Satellite Navigation,* *1*, 1.

Article
Google Scholar

Yao, Y., He, C., Zhang, B., & Xu, C. (2013). A new global zenith tropospheric delay model GZTD. *Chinese Journal of Geophysics,* *56*(7), 2218–2227.

Google Scholar

Yao, Y., Hu, Y., Yu, C., Zhang, B., & Guo, J. (2016). An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. *Nonlinear Processes in Geophysics,* *23*(3), 1–22.

Article
Google Scholar

Zhang, H., Yuan, Y., Wei, L., Zhang, B., & Ou, J. (2018). A grid-based tropospheric product for China using a GNSS network. *Journal of Geodesy,* *92*(7), 765–777.

Article
Google Scholar

Zhang, W., Lou, Y., Liu, W., Huang, J., & Zhang, H. (2020). Rapid troposphere tomography using adaptive simultaneous iterative reconstruction technique. *Journal of Geodesy,* *94*, 76.

Article
Google Scholar

Zhao, J., Song, S., Chen, Q., Zhou, W., & Zhu, W. (2014). Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. *Chinese Journal of Geophysics,* *57*(10), 3140–3153.

Google Scholar

Zhou, F., Cao, X., Ge, Y., & Li, W. (2020). Assessment of the positioning performance and tropospheric delay retrieval with precise point positioning using products from different analysis centers. *GPS Solutions,* *24*, 12.

Article
Google Scholar

Zhou, Y., Lou, Y., Zhang, W., Bai, J., & Zhang, Z. (2021). An improved tropospheric mapping function modeling method for space geodetic techniques. *Journal of Geodesy,* *95*, 98.

Article
Google Scholar

Zhu, G., Huang, L., Liu, L., Li, C., Li, J., Huang, L., Zhou, L., & He, H. (2021). A new approach for the development of grid models calculating tropospheric key parameters over China. *Remote Sensing.,* *13*(17), 3546.

Article
Google Scholar

Zus, F., Dick, G., Douša, J., Heise, S., & Wickert, J. (2014). The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. *Radio Science,* *49*(3), 207–216.

Article
Google Scholar