Banville, S., & Langley, R. B. (2012). Cycle-slip correction for single-frequency PPP. In Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2012), Nashville TN, 17–21 September (pp. 3753–3761).
Banville, S., Langley, R. B., Saito, S., & Yoshihara, T. (2010). Handling cycle slips in GPS data during ionospheric plasma bubble events. Radio Science, 45(6), 1–14.
Article
Google Scholar
Becker, M., Zeimetz, P., & Schönemann, E. (2010). Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing. In Proceedings of the IGS workshop 2010, Newcastle upon Tyne, England, 28 June–2 July (pp. 1–44).
Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., et al. (2010). Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5), 327–337.
Article
Google Scholar
Bhatti, U. I., & Ochieng, W. Y. (2007). Failure modes and models for integrated GPS/INS systems. Journal of Navigation, 60(2), 327–348.
Article
Google Scholar
Bilich, A., & Mader, G. L. (2010). GNSS absolute antenna calibration at the national geodetic survey. In Proceedings of the 23rd international technical meeting of the satellite division of the institute of navigation (ION GNSS 2010), Portland, OR, 21–24 September (pp. 1369–1377).
Binjammaz, T., Al-Bayatti, A., & Al-Hargan, A. (2013). GPS integrity monitoring for an intelligent transport system. In 10th Workshop on positioning, navigation and communication (WPNC 2013), Dresden, Germany, 20–21 March (pp. 1–6).
Bisnath, S., Aggrey, J., Seepersad, G., & Gill, M. (2018). Examining precise point positioning now and in the future. GPS World, 29(3), 41–48.
Google Scholar
Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and future prospects and limitations. In M. G. Sideris (Ed.), Observing our changing earth. proceedings of the international association of geodesy symposia (Vol. 133, pp. 615–623). Springer, Berlin.
Blanch, J., Gunning, K., Walter, T., De Groot, L., & Norman, L. (2019). Reducing computational load in solution separation for Kalman filters and an application to PPP integrity. In Proceedings of the 2019 international technical meeting of the institute of navigation, Reston, Virginia, 28–31 January (pp. 720–729).
Blanch, J., Walker, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., et al. (2015). Baseline Advanced RAIM user algorithm and possible improvements. IEEE Transactions on Aerospace and Electronic Systems, 51(1), 713–732.
Article
Google Scholar
Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., & Spletter, A. (2012). Advanced RAIM user algorithm description: integrity support message processing, fault detection, exclusion, and protection level calculation. In Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2012), Nashville TN, 17–21 September (pp. 2828–2849).
Blanch, J., Walter, T., Norman, L., Gunning, K., & de Groot, L. (2020). Solution separation-based FD to mitigate the effects of local threats on PPP integrity. In 2020 IEEE/ION position, location and navigation symposium (PLANS), Portland, Oregon, 20–23 April (pp. 1085–1092).
Braasch, M. S. (1992). On the characterization of multipath errors in satellite-based precision approach and landing systems. PhD thesis, Department of Electrical and Computer Engineering, Ohio University, Athens, Ohio, June, 1992.
Brenner, M. (1996). Integrated GPS/inertial fault detection availability. Navigation, 43(2), 111–130.
Article
Google Scholar
Brown, R. G. (1996). Receiver autonomous integrity monitoring. In B. W. Parkinson & J. J. Spilker Jr. (Eds.), Global positioning system: Theory and applications (Vol. II, pp. 143–165). TX: American Institute of Aeronautics and Astronautics.
Google Scholar
Bryant, R. (2016). Positioning challenges in automation. Presentation at international global navigation satellite systems association IGNSS symposium 2016, Sydney, Australia, 6–8 December.
Bryant, R. (2019). Q&A with rod bryant. Position, 99, 38–40.
Google Scholar
Cai, C., Liu, Z., Xia, P., & Dai, W. (2012). Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solutions, 17(2), 247–260.
Article
Google Scholar
Caissy, M., Agrotis, L., Weber, G., Hernandez-Pajares, M., & Hugentobler, U. (2012). Coming soon: The International GNSS Real-Time Service. GPS World, 23(6), 52–58.
Google Scholar
Carcanague, S. (2012). Real-time geometry-based cycle slip resolution technique for single-frequency PPP and RTK. In Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2012), Nashville TN, 17–21 September (pp. 1136–1148).
Chen, K., & Gao, Y. (2005). Real-time precise point positioning using single frequency data. In Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2005), Long Beach, CA, 13–16 September (pp. 1514–1523).
Cheng, S., Wang, J., & Peng, W. (2017). Statistical analysis and quality control for GPS fractional cycle bias and integer recovery clock estimation with raw and combined observation models. Advances in Space Research, 60(12), 2648–2659.
Article
Google Scholar
Cheng, C., Zhao, Y., Li, L., Cheng, J., & Sun, X. (2018). Preliminary analysis of URA characterization for GPS real-time precise orbit and clock products. In 2018 IEEE/ION position, location and navigation symposium (PLANS), Monterey, CA, 23–26 April (pp. 615–621).
Choy, S., Bisnath, S., & Rizos, C. (2017). Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solutions, 21, 13–22.
Article
Google Scholar
Collins, P. (2008). Isolating and estimating undifferenced GPS integer ambiguities. In Proceedings of the 2008 national technical meeting of the institute of navigation, San Diego, CA, 28–30 January (pp. 720–732).
Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation, 57, 123–135.
Article
Google Scholar
Collins, P., & Langley, R. (1998). The residual tropospheric propagation delay: How bad can it get? In: Proceedings of the 11th international technical meeting of the satellite division of the Institute of Navigation (ION GPS 1998), Nashville, TN, 15–18 September (pp. 729–738).
Conker, R. S., El-Arini, M. B., Hegarty, C. J., & Hsiao, T. (2003). Modeling the effects of ionospheric scintillation on gps/satellite-based augmentation system availability. Radio Science, 38, 1.
Article
Google Scholar
Dach, R., Schär, S., Hugentobler, U., Schildknecht, T., & Gäde, A. (2006). Combined multi-system GNSS analysis for time and frequency transfer. In Proceedings of the 20th European frequency and time forum, Braunschweig, Germany, 27–30 March (pp. 530–537).
Dai, Z., Knedlik, S., & Loffeld, O. (2009). Instantaneous triple-frequency GPS cycle-slip detection and repair. International Journal of Navigation and Observation, 2009, 1–15.
Article
Google Scholar
Datta-Barua, S., Doherty, P., Delay, S., Dehel, T., & Klobuchar, J. A. (2003). Ionospheric scintillation effects on single and dual frequency GPS positioning. In Proceedings of the 16th international technical meeting of the satellite division of the institute of navigation (ION GPS/GNSS 2003), Portland, OR, 9–12 September (pp. 336–346).
de Groot, L., Infante, E., Jokinen, A., Kruger, B., & Norman, L. (2018). Precise positioning for automotive with mass market GNSS chipsets. In Proceedings of the 31st international technical meeting of the satellite division of the institute of navigation (ION GNSS + 2018), Miami, Florida, September 24–28, 2018 (pp. 596–610).
Dıaz, S. P., Joerger, M., Pervan, B., Rippl, M., & Martini, I. (2014). Analysis of ARAIM against EOP GPS-Galileo faults on LPV-200 precision approach. In Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation. The Institute of Navigation, Tampa, Florida, September 8–12, 2014 (pp. 3575–3586).
Ding, W., Tan, B., Chen, Y., Teferle, F. N., & Yuan, Y. (2018). Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia. Advances in Space Research, 61(3), 951–961. https://doi.org/10.1016/j.asr.2017.11.009.
Article
Google Scholar
Dovis, F., Ruotsalainen, L., Toledo-Moreo, R., Kassas, Z. Z. M., & Gikas, V. (2020). Recent advancement on the use of global navigation satellite system-based positioning for intelligent transport systems [guest editorial]. IEEE Intelligent Transportation Systems Magazine, 12(3), 6–9.
Article
Google Scholar
Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The international GNSS service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83, 191–198.
Article
Google Scholar
El-Mowafy, A. (2018). Real-time precise point positioning using orbit and clock corrections as quasi-observations for improved detection of faults. Journal of Navigation, 71(4), 769–787.
Article
Google Scholar
El-Mowafy, A. (2019). On detection of observation faults in the observation and position domains for positioning of intelligent transport systems. Journal of Geodesy, 93(10), 2109–2122.
Article
Google Scholar
El-Mowafy, A., & Deo, M. (2015). Cycle slip and clock jump repair with multi-frequency multi-constellation GNSS data for Precise Point Positioning. In Proceedings of the international global navigation satellite systems society IGNSS symposium 2015, Queensland, Australia, 14–16 July (pp. 1–15).
El-Mowafy, A., Deo, M., & Kubo, N. (2017). Maintaining real-time precise point positioning during outages of orbit and clock corrections. GPS Solutions, 21(3), 937–947.
Article
Google Scholar
El-Mowafy, A., Deo, M., & Rizos, C. (2016). On biases in Precise Point Positioning with multi-constellation and multi-frequency GNSS data. Measurement Science & Technology, 27(3), 035102.
Article
Google Scholar
Euler, H. J., & Schaffrin, B. (1991). On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In IAG symposia no 107, kinematic systems in geodesy, surveying, and remote sensing (pp. 285–295). Berlin: Springer.
European GNSS Agency. (2015). Report on the performance and level of integrity for safety and liability critical multi-applications. Retrieved July 4, 202, from https://www.gsa.europa.eu/sites/default/files/calls_for_proposals/Annex%202.pdf.
European GNSS Agency. (2018). Report on road user needs and requirements. Retrieved December, 20, 2018, from https://www.gsc-europa.eu/sites/default/files/sites/all/files/Report_on_User_Needs_and_Requirements_Road.pdf.
EU-U.S. Cooperation on Satellite Navigation. (2016). Milestone 3 report of Working Group C—ARAIM Technical Subgroup, final version. Retrieved December, 22, 2019, from http://www.gps.gov/policy/cooperation/europe/2016/working-group-c/.
Fan, L., Tu, R., Zhang, R., Zheng, Z., Liu, J., Hong, J., et al. (2019). Real-time BDS signal-in-space anomaly detection method considering receiver anomalies. IET Radar, Sonar and Navigation, 13(12), 2220–2229.
Article
Google Scholar
Federal Aviation Administration. (2010). Phase II of the GNSS Evolutionary Architecture Study. Federal Aviation Administration (FAA), Washington, DC, February 2010. Retrieved February, 16, 2019, from https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/documents/media/geasphaseii_final.pdf.
Feng, S., Ochieng, W., Moore, T., Hill, C., & Hide, C. (2009). Carrier phase-based integrity monitoring for high-accuracy positioning. GPS Solutions, 13, 13–22.
Article
Google Scholar
Fernandez-Hernandez, I., Vecchione, G., Díaz-Pulido, F., Jeannot, M., Valentaite, G., Blasi, R., et al. (2018). Galileo high accuracy: A program and policy perspective. In Proceedings of the 69th international astronautical congress, Bremen, Germany, 1–5 October (pp. 1–9).
Firmin, P. E. (2006). Satellite navigation technology applications for intelligent transport systems: A European perspective.
Frei, E., & Beutler, G. (1990). Rapid static positioning based on the fast ambiguity resolution approach FARA: Theory and first results. Manuscripta Geodaetica, 15(4), 325–356.
Google Scholar
Fu, W., Huang, G., Zhang, Q., Gu, S., Ge, M., & Schuh, H. (2019). Multi-GNSS real-time clock estimation using sequential least square adjustment with online quality control. Journal of Geodesy, 93(7), 963–976.
Article
Google Scholar
Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., et al. (2017). Tightly coupled integration of multi-GNSS PPP and MEMS inertial measurement unit data. GPS Solutions, 21(2), 377–391.
Article
Google Scholar
Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82, 389–399.
Article
Google Scholar
Ge, Y., Wang, Z., & Zhu, Y. (2017). Reduced ARAIM monitoring subset method based on satellites in different orbital planes. GPS Solutions, 21(4), 1443–1456. https://doi.org/10.1007/s10291-017-0658-x.
Article
Google Scholar
Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., et al. (2012). Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. Journal of Geodesy, 86, 579–589.
Article
Google Scholar
Geng, J., Teferle, F. N., Meng, X., & Dodson, A. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47, 1664–1673.
Article
Google Scholar
Georgiadou, Y., & Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica, 13, 172–179.
Google Scholar
Green, D., Gaffney, J., Bennett, P., Feng, Y., Higgins, M., & Millner, J. (2013). Vehicle positioning for C-ITS in Australia (background document), Austroads Research Report, AP-R431-13. Retrieved January 23, 2019, from https://www.onlinepublications.austroads.com.au/items/AP-R431-13.
Griffiths, J., & Ray, J. R. (2013). Sub-daily alias and draconitic errors in the IGS orbits. GPS Solutions, 17, 413–422.
Article
Google Scholar
Groves, P. D., Jiang, Z., Rudi, M., & Strode, P. (2013). A portfolio approach to NLOS and multipath mitigation in dense urban areas. In Proceedings of the 26th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2013), Nashville, TN, 16–20 September (pp. 3231–3247).
Gunning, K., Blanch, J., & Walter, T. (2019a). SBAS corrections for PPP integrity with solution separation. In Proceedings of the 2019 international technical meeting of the Institute of Navigation, Reston, Virginia, 28–31 January (pp. 707–719).
Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2018). Design and evaluation of integrity algorithms for PPP in kinematic applications. In Proceedings of the 31st international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2018), Miami, Florida, 24–28 September (pp. 1910–1939).
Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2019b). Integrity for tightly coupled PPP and IMU. In Proceedings of the 32nd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2019), Miami, Florida, 16–20 September (pp. 3066–3078).
Guo, F., Li, X., Zhang, X., & Wang, J. (2016). Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). GPS Solutions, 21, 279–290.
Article
Google Scholar
Guo, K., Zhao, Y., Liu, Y., Wang, J., Zhang, C., & Zhu, Y. (2017). Study of ionospheric scintillation characteristics in australia with GNSS during 2011–2015. Advances in Space Research, 59, 2909–2922.
Article
Google Scholar
Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93–105.
Article
Google Scholar
Hadas, T., Kaplon, J., Bosy, J., Sierny, J., & Wilgan, K. (2013). Near-real-time regional troposphere models for the GNSS precise point positioning technique. Measurement ScienceTechnology, 24(5), 055003.
Article
Google Scholar
Han, S. (1997). Quality-control issues relating to instantaneous ambiguity resolution for realtime GPS kinematic positioning. Journal of Geodesy, 71(6), 351–361.
Article
MATH
Google Scholar
Hatanaka, Y., Sawada, M., Horita, A., & Kusaka, M. (2001). Calibration of antenna-radome and monument-multipath effect of GEONET-Part 1: Measurement of phase characteristics. Earth, Planets and Space, 53, 13–21.
Article
Google Scholar
Henkel, P., Iafrancesco, M., & Sperl, A. (2016). Precise Point Positioning with multipath estimation. In Proceedings of the 2016 IEEE/ION position, location and navigation symposium (PLANS), Savannah, Georgia, 11–14 April (pp. 144–149).
Heßelbarth, A., & Wanninger, L. (2013). SBAS orbit and satellite clock corrections for precise point positioning. GPS Solutions, 17(4), 465–473.
Article
Google Scholar
Hexagon Positioning Intelligence. (2019). Quantifying integrity. Velocity, 2019, 16–22. Retrieved July 4, 2020, from https://en.calameo.com/read/001915796d0c25e242b9f?authid=CARc2zXXAg5Q&page=16.
Hirokawa, R., Sato, Y., Fujita, S., & Miya, M. (2016). Compact SSR messages with integrity information for satellite based PPP-RTK service. In Proceedings of the 29th international technical meeting of the ion satellite division of the Institute of Navigation (ION GNSS + 2016), Portland, Oregon, 12–16 September (pp. 3372–3376).
Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global positioning system: Theory and practice. Berlin: Springer.
Book
Google Scholar
Huang, G., Qin, Z., Zhang, Q., Wang, L., Yan, X., & Wang, X. (2018). An optimized method to detect BDS satellites’ orbit maneuvering and anomalies in real-time. Sensors, 18(3), 726.
Article
Google Scholar
ICAO. (2006). International standards and recommended practices, Annex 10 to the convention on international civil aviation, aeronautical telecommunications, volume I—radio navigation aids, 6th Edition. Montréal: International Civil Aviation Organization.
IGS. (2014). IGS real time service. Retrieved March 27, 2020, from https://kb.igs.org/hc/en-us/articles/201087803-IGS-Real-Time-Service-Fact-Sheet.
IGS. (2019). IGS RTS products. Retrieved May 6, 2019, from http://www.igs.org/rts/products.
Imparato, D., El-Mowafy, A., & Rizos, C. (2018a). Integrity monitoring: From airborne to land applications. In R. B. Rustamov, & A. M. Hashimov (Eds.), Multifunctional operation and application of GPS (pp. 23–43). IntechOpen.
Imparato, D., El-Mowafy, A., Rizos, C., & Wang, J. (2018b). Vulnerabilities in SBAS and RTK positioning in intelligent transport systems: An overview. In Proceedings of the international global navigation satellite systems association IGNSS symposium 2018, Sydney, Australia, 7–9 February (pp. 1–12).
Ioannides, R. T., Pany, T., & Gibbons, G. (2016). Known vulnerabilities of Global Navigation Satellite Systems, status, and potential mitigation techniques. Proceedings of the IEEE, 104(6), 1174–1194.
Article
Google Scholar
ISO. (2018). Road vehicles—functional safety, ISO 26262:2018. Retrieved September, 20, 2020, from https://www.iso.org/standard/68391.html.
ISO. (2019). Road vehicles—safety of the intended function, ISO/PAS 21448:2019. Retrieved September, 20, 2020, fromhttps://www.iso.org/standard/70939.html.
Jacobsen, K. S., & Dähnn, M. (2014). Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. Journal of Space Weather and Space Climate, 4, A27. https://doi.org/10.1051/swsc/2014024.
Article
Google Scholar
Jokinen, A., Ellum, C., Webster, I., Shanmugam, S., & Sheridan, K. (2018). NovAtel CORRECT with Precise Point Positioning (PPP): recent developments. In Proceedings of the 31st international technical meeting of the satellite division of the institute of navigation (ION GNSS + 2018), Miami, Florida, 24–28 September (pp. 1866–1882).
Jokinen, A., Feng, S., Milner, C., Schuster, W., Ochieng, W., Hide, C., et al. (2011). Precise Point Positioning and integrity monitoring with GPS and GLONASS. In The European navigation conference, London, UK, 29 November–1 December.
Jokinen, A., Feng, S., Schuster, W., Ochieng, W., Hide, C., Moore, T., et al. (2013). Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions. Geospatial Information Science, 16, 141–148.
Google Scholar
Julien, O. (2005). Design of Galileo L1F receiver tracking loops. PhD thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta.
Kafka, P. (2012). The automotive standard ISO 26262, the innovative driver for enhanced safety assessment & technology for motor cars. Procedia Engineering, 45, 2–10.
Article
Google Scholar
Kazmierski, K., Sośnica, K., & Hadas, T. (2018). Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solutions, 22(1), 11.
Article
Google Scholar
Kealy, A. (2011). Beyond accuracy—the integrity era. Retrieved August 8, 2019, from https://www.thalesgroup.com/sites/default/files/database/d7/asset/document/day_2_-_12.25_thales_integrity_umelb.pdf.
Khodabandeh, A., Wang, J., Rizos, C., & El-Mowafy, A. (2019). On the detectability of mis-modeled biases in the network-derived positioning corrections and their user impact. GPS Solutions. https://doi.org/10.1007/s10291-019-0863-x.
Article
Google Scholar
Kim, D., & Langley, R. B. (2001). Instantaneous real-time cycle-slip correction of dual frequency GPS data. In Proceedings of the international symposium on kinematic systems in geodesy, geomatics, and navigation, Banff, Alberta, 5–8 June (pp. 255–264).
Kintner, P., Humphreys, T., & Hinks, J. (2009). GNSS and ionospheric scintillation. Inside GNSS, 4, 22–30.
Google Scholar
Kjørsvik, N., Gjevestad, J., & Øvstedal, O. (2006). Handling of the tropospheric delay in kinematic precise point positioning. In: Proceedings of the 19th international technical meeting
of the satellite division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 26–29, September (pp. 2279–2281).
Koopman, P., Ferrell, U., Fratrik, F., & Wagner, M. (2019). A safety standard approach for fully autonomous vehicles. In Second international workshop on artificial intelligence safety engineering (WAISE 2019), Turku, Finland, 10 September (pp. 326–332).
Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12–28.
Article
Google Scholar
Kouba, J., Lahaye, F., & Tétreault, P. (2017). Precise point positioning. In P. J. G. Teunissen, & O. Montenbruck (Eds.), Springer handbook of global navigation satellite systems (pp. 723–751). Springer, Berlin.
Kovach, K., Dobyne, J., Crews, M., & Miles, C. (2008). GPS III integrity concept. In Proceedings of the 21st international technical meeting of the satellite division of the institute of navigation (ION GNSS 2008), Savannah, GA, 16–19 September (pp. 2250–2257).
Langley, R. B. (1999). The integrity of GPS. GPS World, 10, 60–63.
Google Scholar
Laurichesse, D., & Mercier, F. (2007). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In Proceedings of ION GNSS 20th international technical meeting of the satellite division, Fort Worth, TX, 25–28 September (pp. 839–848).
Laurichesse, D,. & Privat, A. (2015). An open-source PPP client implementation for the CNES PPP-WIZARD demonstrator. In Proceedings of the 28th international technical meeting of the satellite division of the institute of navigation (ION GNSS + 2015), Tampa, Florida, 14–18 September (pp. 2780–2789).
Leandro, R., Landau, H., Nitschke, M., Glocker, M., Seeger, S., Chen, X., et al. (2011). RTX positioning: The next generation of cm-accurate real-time GNSS positioning. In Proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2011), Portland, Oregon, 20–23 September (pp. 1460–1475).
Li, W., Cheng, P., Bei, J., Wen, H., & Wang, H. (2012). Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment. Journal of Earth System Science, 121, 989–999.
Article
Google Scholar
Li, T., Wang, J., & Laurichesse, D. (2013). Modeling and quality control for reliable Precise Point Positioning integer ambiguity resolution with GNSS modernization. GPS Solutions, 18, 429–442.
Article
Google Scholar
Li, X., Zhang, X., & Ge, M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. Journal of Geodesy, 85(3), 151–158.
Article
Google Scholar
Liu, X. (2018). Recent Fugro developments on real-time high-accuracy PPP service. Presented at the 9th CSNC, Harbin, 23–25 May.
Liu, Y., Fu, L., Wang, J., & Zhang, C. (2017). Study of GNSS loss of lock characteristics under ionosphere scintillation with GNSS data at Weipa (Australia) during solar maximum phase. Sensors (Basel), 17, 2205.
Article
Google Scholar
Lovas, T., Wieczynski, A., Baczynska, M., Perski, A., Kertesz, I., Berenyi, A., et al. (2011). Positioning for next generation intelligent transport systems services in SafeTRIP. In Proceedings of ASPRS 2011 annual conference, Milwaukee, Wisconsin, 1–5 May.
Martins, B. M. R. (2014). GNSS vulnerabilities & robustness. https://repositorio-aberto.up.pt. Accessed 20 Nov 2019.
Milner, C. D., & Ochieng, W. Y. (2008). Failure modes and effects analysis (FMEA) of GNSS aviation applications. Department of Civil and Environmental Engineering, Imperial College London, London. Retrieved July, 2, 2020, from https://www.loran.org/proceedings/Meeting2008/Papers/Milner_2A3r.pdf.
Montenbruck, O. (2003). Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerospace Science Technology, 7(5), 396–405.
Article
Google Scholar
Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., Fatkulin, R., et al. (2015). GNSS satellite geometry and attitude models. Advances in Space Research, 56(6), 1015–1029.
Article
Google Scholar
Murrian, M. J., Gonzalez, C. W., Humphreys, T. E., Pesyna, K. M. J., Shepard, D., & Kerns, A. J. (2016). Low-cost precise positioning for automated vehicles. GPS World, 27, 32–39.
Google Scholar
Navarro, P. F., Lainez, M. D., & Romay, M. M. (2015). New approach for integrity bounds computation applied to advanced precise positioning applications. In Proceedings of the 28th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2015), Tampa, Florida, 14–18 September (pp. 2821–2834).
Navarro, P. F., Martínez, L., Alonso, M., Laínez, M. D., & Romay, M. M. (2016). PPP integrity for advanced applications, including field trials with Galileo, geodetic and low-cost receivers and a preliminary safety analysis. In Proceedings of the 29th international technical meeting of the ION satellite division (ION GNSS + 2016), Portland, Oregon, 12–16 September (pp. 3332–3354).
Navipedia. (2011a). Integrity. Retrieved July, 22, 2019, from https://gssc.esa.int/navipedia/index.php/Integrity.
Navipedia. (2011b). RAIM fundamentals. Retrieved July, 7, 2019, from https://gssc.esa.int/navipedia/index.php/RAIM_Fundamentals.
Norman, L., Infante, E., & de Groot, L. (2019). Integrity performance for precise positioning in automotive. In Proceedings of the 32nd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2019), Miami, Florida, 16–20 September (pp. 1653–1663).
Ochieng, W. Y., Sauer, K., Walsh, D., Brodin, G., Griffin, S., & Denney, M. (2003). GPS integrity and potential impact on aviation safety. Journal of Navigation, 56, 51–65.
Article
Google Scholar
Ouyang, C., Shi, J., Shen, Y., & Li, L. (2019). Six-year BDS-2 broadcast navigation message analysis from 2013 to 2018: Availability, anomaly, and SIS UREs assessment. Sensors, 19(12), 2767.
Article
Google Scholar
Øvstedal, O. (2002). Absolute positioning with single-frequency GPS receivers. GPS Solutions, 5, 33–44.
Article
Google Scholar
Parkinson, B. W., & Axelrad, P. (1988). Autonomous GPS integrity monitoring using the pseudorange residual. Navigation, 35, 255–274.
Article
Google Scholar
Pasnikowski, M. (2015). Challenges for integrity in navigation of high precision. In Proceedings of the 28th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2015), Tampa, Florida, 14–18 September (pp. 2983–2994).
Pesyna, K. M. J., Heath, R. W., & Humphreys, T. E. (2014). Centimeter positioning with a smartphone-quality GNSS antenna. In Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2014), Tampa, Florida, 8–12, September (pp. 1568–1577).
Phelts, R. E., Gunning, K., Blanch, J., & Walter, T. (2020). Evaluating the application of PPP techniques to ARAIM using flight data. In Proceedings of the 2020 international technical meeting of the Institute of Navigation, San Diego, California, 21–24 January (pp. 379–385).
Reid, T. G., Houts, S. E., Cammarata, R., Mills, G., Agarwal, S., Vora, A., et al. (2019). Localization requirements for autonomous vehicles. arXiv:1906.01061v1.
Rodriguez-Solano, C., Brandl, M., Chen, X., Herwig, M., Kipka, A., Kreikenbohm, P., et al. (2019). Integrity real-time performance of the trimble RTX correction service. In Proceedings of the 32nd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2019), Miami, Florida, 16–20 September (pp. 485–507).
Romay, M. M., & Lainez, M. D. (2012). Integrity for advanced precise positioning applications. In Proceedings of the 25th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2012), Nashville TN, 17–21 September (pp. 2742–2758).
RTCA. (2006). Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment, RTCA DO-229D. Washington, D.C.: RTCA Inc.
Google Scholar
Salós, D., Macabiau, C., Martineau, A., Bonhoure, B., & Kubrak, D. (2010). Analysis of GNSS integrity requirements for road user charging applications. In 5th ESA workshop on satellite navigation technologies and European workshop on GNSS signals (NAVITEC 2010), 8–10 December, Noordwijk (pp. 1–8).
SBAS Ionospheric Working Group. (2010). Effect of ionospheric scintillations on GNSS—a white paper. Retrieved January, 7, 2019, from http://web.stanford.edu/group/scpnt/gpslab/website_files/sbas-ion_wg/sbas_iono_scintillations_white_paper.pdf.
Schmid, R., Rothacher, M., Thaller, D., & Steigenberger, P. (2005). Absolute phase center corrections of satellite and receiver antennas. GPS Solutions, 9, 283–293.
Article
Google Scholar
Schmid, R., Steigenberger, P., Gendt, G., Ge, M., & Rothacher, M. (2007). Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. Journal of Geodesy, 81, 781–798.
Article
Google Scholar
Schubert, F. M., Wendel, J., Soualle, F., Mink, M., Carcanague, S., Ioannides, R., et al. (2014). Integrity of navigation for land users: Study concept and simulator architecture. In The 7th ESA workshop on satellite navigation technologies, NAVITEC 2014, Noordwijk, 3–5 December 2014.
Seepersad, G. (2018). Improving reliability and assessing performance of global navigation satellite system precise point positioning ambiguity resolution. PhD thesis, Graduate Programme in Earth and Space Science, York University, Toronto, ON.
Seepersad, G. & Bisnath, S. (2013). Integrity monitoring in precise point positioning. In Proceedings of the 26th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2013), Nashville, Tennessee, 16–20 September (pp. 1164–1175).
Seepersad, G., & Bisnath, S. (2015). Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solutions, 19, 369–379.
Article
Google Scholar
Seepersad, G., & Bisnath, S. (2016). Examining the interoperability of precise point positioning products. GPS World, 27(3), 50–56.
Google Scholar
Shi, C., Gu, S., Lou, Y., & Ge, M. (2012). An improved approach to model ionospheric delays for single-frequency precise point positioning. Advances in Space Research, 49, 1698–1708.
Article
Google Scholar
Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Local troposphere augmentation for real-time precise point positioning. Earth, Planets and Space, 66, 30.
Article
Google Scholar
Speidel, J., Tossaint, M., Wallner, S., & Ávila-Rodríguez, J. Á. (2013). Integrity for aviation: Comparing future concepts. Inside GNSS, 4, 54–64.
Google Scholar
Stephenson, S., Meng, X., Moore, T., Baxendale, A., & Ford, T. (2011). Accuracy requirements and benchmarking position solutions for intelligent transportation location based services. In Proceedings of the 8th international symposium on location-based services, Vienna, Austria, 21–23 November (pp. 21–23).
Teunissen, P. J. G. (1990). An integrity and quality control procedure for use in multi sensor integration. In Proceedings of the 3rd international technical meeting of the satellite division of the Institute of Navigation (ION GPS 1990), Colorado Spring, CO, 19–21 September (pp. 513–522).
Teunissen, P. J. G. (2003). Integer aperture GNSS ambiguity resolution. Artificial Satellites, 38(3), 79–88.
Google Scholar
Teunissen, P. J. G. (2005a). Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate. Journal of Geodesy, 79(6–7), 389–397.
Article
MATH
Google Scholar
Teunissen, P. J. G. (2005b). Integer aperture least-squares estimation. Artificial Satellites, 40(3), 149–160.
Google Scholar
Teunissen, P. J. G., Odijk, D., & Zhang, B. (2010). PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution. Journal of Aeronautics, Astronautics and Aviation, Series A, 42(4), 223–230.
Google Scholar
Thomas, M., Norton, J., Jones, A., Hopper, A., Ward, N., Cannon, P., et al. (2011). Global navigation space systems: Reliance and vulnerabilities. The Royal Academy of Engineering, London, March 2011. Retrieved January, 7, 2019, from https://www.raeng.org.uk/publications/reports/global-navigation-space-systems.
Thombre, S., Bhuiyan, M. Z. H., Eliardsson, P., Gabrielsson, B., Pattinson, M., Dumville, M., et al. (2017). GNSS threat monitoring and reporting: Past, present, and a proposed future. Journal of Navigation, 71, 513–529.
Article
Google Scholar
Tiberius, C. & De Jonge, P. (1995). Fast positioning using the LAMBDA method. In Proceedings DSNS-95, Bergen, Norway, 24–28 April, paper 30.
Tobías, G., Calle, J. D., Navarro, P., Rodríguez, I., & Rodríguez, D. (2014). magicGNSS’ real-time POD and PPP multi-GNSS service. In Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2014), Tampa, Florida, 8–12 September (pp. 1046–1055).
U.S. Department of Defense. (2020). Global positioning system standard positioning service performance standard (5th edition). Retrieved May 11, 2020, from https://www.navcen.uscg.gov/pdf/gps/geninfo/2020SPSPerformanceStandardFINAL.pdf.
U.S. Department of Defense, U.S. Department of Homeland Security, & U.S. Department of Transportation. (2008). 2008 Federal radionavigation plan. Retrieved May 12, 2019, from https://www.navcen.uscg.gov/pdf/2008_Federal_Radionavigation_Plan.pdf.
van Dyke, K., Kovach, K., Lavrakas, J., Fernow, J. P., Carroll, J, Kraemer, J., et al. (2003). GPS integrity failure modes and effects analysis. In Proceedings of the 2003 national technical meeting of the Institute of Navigation, Anaheim, CA, 22–24 January (pp. 689–703).
van Nee DJR. (1995). Multipath and multi-transmitter interference in spread-spectrum communication and navigation systems. PhD thesis, Faculty of Electrical Engineering, Delft University of Technology, Delft, The Netherlands, 1995.
Verhagen, S. (2004). Integer ambiguity validation: An open problem? GPS Solutions, 8(1), 36–43.
Article
MathSciNet
Google Scholar
Verhagen, S. (2005). The GNSS integer ambiguities: Estimation and validation. PhD thesis, Delft Institute of Earth Observation and Space Systems, Delft University of Technology.
Verhagen, S., & Teunissen, P. J. G. (2013). The ratio test for future GNSS ambiguity resolution. GPS Solutions, 17, 535–548.
Article
Google Scholar
Viðarsson, L., Pullen, S., Green, G., & Enge, P. (2001). Satellite autonomous integrity monitoring and its role in enhancing GPS user performance. In Proceedings of the 14th international technical meeting of the satellite division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, 11–14 September (pp. 11–14).
Villiger, A., Schaer, S., Dach, R., Prange, L., & Jaeggi, A. (2016). Handling and estimation of GNSS code biases-latest developments at CODE. In International GNSS service workshop 2016, Sydney, Australia, 8–12 February.
Walter, T. & Enge, P. (1995). Weighted RAIM for precision approach. In Proceedings of the 8th international technical meeting of the satellite division of the institute of navigation (ION GPS 1995), Palm Springs, CA, 12–15 September (pp. 1995–2004).
Wang, J., Stewart, M., & Tsakiri, M. (1998). A discrimination test procedure for ambiguity resolution on-the-fly. Journal of Geodesy, 72(11), 644–653.
Article
MATH
Google Scholar
Weber, G., Mervart, L., Lukes, Z., Rocken, C., & Dousa, J. (2007). Real-time clock and orbit corrections for improved point positioning via NTRIP. In Proceedings of the 20th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 25–28 September (pp. 1992–1998).
Weinbach, U., Brandl, M., Chen, X., Landau, H., Pastor, F., Reussner, N., et al. (2018). Integrity of the Trimble® CenterPoint® RTX correction service. In Proceedings of the 31st international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2018), Miami, Florida, 24–28 September (pp. 1902–1909).
Weiss, M., Shome, P., & Beard, R. (2010). On-board Signal Integrity for GPS. In Proceedings of the 23rd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2010), Portland, OR, 21–24 September (pp. 3199–3212).
Weiss, J. P., Steigenberger, P., & Springer, T. (2017). Orbit and clock product generation. In P. J. G. Teunissen, & O. Montenbruck (Eds.), Springer handbook of global navigation satellite systems (pp. 983–1010). Berlin: Springer.
Wieser, A. (2004). Failure scenarios to be considered with kinematic high precision relative GNSS positioning. In Proceedings of the 17th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, 21–24 September (pp. 1448–1459).
Witchayangkoon, B. (2000). Elements of GPS precise point positioning. PhD thesis, Graduate school (Spatial Information Science and Engineering), University of Maine, Orono, ME, December, 2000.
Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. (1993). Effects of antenna orientation on GPS carrier phase. Manuscripta Geodetica, 18(2), 91–98.
Google Scholar
Wübbena, G., Schmitz, M., & Bagge, A. (2005). PPP-RTK: Precise Point Positioning using state-space representation in RTK networks. In Proceedings of the 18th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, 13–16 September (pp. 2584–2594).
xAUTO technology. (2017). High-definition locator. Retrieved Feburary, 1, 2019, from https://www.mitsubishielectric.co.jp/automotive/tms2017/english/xauto/pdf/high-definition_locator.pdf.
Ye, F., Yuan, Y., Tan, B., & Ou, J. (2017). A robust method to detect Beidou Navigation Satellite System orbit maneuvering/anomalies and its applications to precise orbit determination. Sensors, 17(5), 1129.
Article
Google Scholar
Yu, X., Wang, J., & Gao, W. (2017). An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution. Journal of Geodesy, 91, 295–305.
Article
Google Scholar
Yunck, T. P. (1992). Coping with the Atmosphere and Ionosphere in Precise Satellite and Ground Positioning. Geophysical Monograph Series, 73, 1–16.
Google Scholar
Zhang, Y., & Gao, Y. (2008). Integration of INS and un-differenced GPS measurements for precise position and attitude determination. The Journal of Navigation, 61(1), 87–97.
Article
Google Scholar
Zhang, X., Guo, F., & Zhou, P. (2013). Improved Precise Point Positioning in the presence of ionospheric scintillation. GPS Solutions, 18, 51–60.
Article
Google Scholar
Zhang, X., & Li, X. (2012). Instantaneous re-initialization in real-time kinematic PPP with cycle slip fixing. GPS Solutions, 16, 315–327.
Article
Google Scholar
Zhang, X., & Li, P. (2016). Benefits of the third frequency signal on cycle slip correction. GPS Solutions, 20, 451–460.
Article
Google Scholar
Zhang, B., Teunissen, P. J. G., & Yuan, Y. (2017). On the short-term temporal variations of GNSS receiver differential phase biases. Journal of Geodesy, 91, 563–572.
Article
Google Scholar
Zhang, L., Yang, H., Gao, Y., Yao, Y., & Xu, C. (2018). Evaluation and analysis of real-time precise orbits and clocks products from different IGS analysis centers. Advances in Space Research, 61(12), 2942–2954.
Article
Google Scholar
Zhu, N., Marais, J., Bétaille, D., & Berbineau, M. (2018). GNSS position integrity in urban environments: A review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778.
Article
Google Scholar
Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., & Webb, F. H. (1997). Precise Point Positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102, 5005–5017.
Article
Google Scholar