ASTRA: CASES Receiver Documentation. http://cases.astraspace.net/documentation/. Accessed 16 August 2020.
ASTRA: CASES Receiver Software. http://cases.astraspace.net/software.html. Accessed 16 August 2020.
ASTRA: Official Website of ASTRA, LLC. http://www.astraspace.net/. Accessed 16 August 2020.
Burns, R., McLaughlin, C. A., Leitner, J., & Martin, M. (2000). Techsat 21: Formation design, control, and simulation. In Proceedings of 2000 IEEE Aerospace Conference (Cat. No. 00TH8484) (vol. 7, pp. 19–25). IEEE.
Burns, R., Naasz, B., Gaylor, D., & Higinbotham, J. (2004). An environment for hardware-in-the-loop formation navigation and control. In AIAA/AAS astrodynamics specialist conference and exhibit (p. 4735).
CANX4&5: CANX-4 & CANX-5: Mission (xxxx). http://www.utias-sfl.net/?page_id=410. Accessed 24 November 2020.
Clauer, C., Kim, H., Deshpande, K., Xu, Z., Weimer, D., Musko, S., et al. (2014). An autonomous adaptive low-power instrument platform (aal-pip) for remote high-latitude geospace data collection. Geoscientific Instrumentation, Methods and Data Systems, 3(2), 211–227.
Article
Google Scholar
Coster, A., & Komjathy, A. (2008). Space weather and the global positioning system. Space Weather, 6(6), 11.
Article
Google Scholar
de Larquier, S., Eltrass, A., Mahmoudian, A., Ruohoniemi, J., Baker, J., Scales, W., et al. (2014). Investigation of the temperature gradient instability as the source of midlatitude quiet time decameter-scale ionospheric irregularities: Part 1. Observations. Journal of Geophysical Research Space Physics, 119(6), 4872–4881.
Article
Google Scholar
Deshpande, K., Bust, G. S., Clauer, C. R., Rino, C. L., & Carrano, C. S. (2014). Satellitebeacon ionospheric-scintillation global model of the upper atmosphere (sigma) i: High latitude sensitivity study of the model parameters. Journal of Geophysical Research: Space Physics, 119, 4026–4043. https://doi.org/10.1002/2013JA019699.
Article
Google Scholar
Deshpande, K. B. (2014). Investigation of high latitude ionospheric irregularities utilizing modeling and gps observations. Ph.D. thesis, Virginia Polytechnic Institute and State University.
Eltrass, A., & Scales, W. (2014). Nonlinear evolution of the temperature gradient instability in the midlatitude ionosphere. Journal of Geophysical Research: Space Physics, 119(9), 7889–7901. https://doi.org/10.1002/2014JA020314.
Article
Google Scholar
Eltrass, A., Mahmoudian, A., Scales, W., de Larquier, S., Ruohoniemi, J., Baker, J., et al. (2014). Investigation of the temperature gradient instability as the source of midlatitude quiet time decameter-scale ionospheric irregularities: Part 2. Linear analysis. Journal of Geophysical Research Space Physics, 119(6), 4882–4893.
Article
Google Scholar
Eltrass, A., Scales, W., Erickson, P., Ruohoniemi, J., & Baker, J. (2016). Investigation of the role of plasma wave cascading processes in the formation of midlatitude irregularities utilizing gps and radar observations. Radio Science, 51(6), 836–851.
Article
Google Scholar
Escoubet, C., Fehringer, M., & Goldstein, M. (2001). The cluster mission-introduction. In Annales Geophysicae (vol. 19, pp. 1197–1200).
Eyer, J. (2009). A dynamics and control algorithm for low earth orbit precision formation flying satellites. Ph.D. thesis, University of Toronto.
Fejer, B. G., & Kelley, M. (1980). Ionospheric irregularities. Reviews of Geophysics, 18(2), 401–454.
Article
Google Scholar
Fuselier, S., Lewis, W., Schiff, C., Ergun, R., Burch, J., Petrinec, S., & Trattner, K. (2016). Magnetospheric multiscale science mission profile and operations. Space Science Reviews, 199(1–4), 77–103.
Article
Google Scholar
Gaposchkin, E., & Coster, A. J. (1993). Gps l1–l2 bias determination. Massachusetts Institute of Technology Lincoln Laboratory: Technical report.
Gill, E., Naasz, B., & Ebinuma, T. (2003). First results from a hardware-in-the-loop demonstration of closed-loop autonomous formation flying. In 26th Annual AAS guidance, navigation and control conference, Breckenridge, Colorado, USA.
Giralo, V., & D’Amico, S. (2018). Distributed multi-gnss timing and localization for nanosatellites. In ION GNSS+, Miami, Florida, USA (pp. 2518–2534).
Greenwald, R., Baker, K., Dudeney, J., Pinnock, M., Jones, T., Thomas, E., et al. (1995). Darn/superdarn. Space Science Reviews, 71(1–4), 761–796.
Article
Google Scholar
Greenwald, R. A., Oksavik, K., Erickson, P. J., Lind, F. D., Ruohoniemi, J. M., Baker, J. B., & Gjerloev, J. W. (2006). Identification of the temperature gradient instability as the source of decameter-scale ionospheric irregularities on plasmapause field lines. Geophysical Research Letters, 33(18), 129.
Article
Google Scholar
Gurevich, A. V. (2007). Nonlinear effects in the ionosphere. Physics-Uspekhi, 50(11), 1091.
Article
Google Scholar
Gurevich, A., & Zybin, K. (2006). Strong field aligned scattering of uhf radio waves in ionospheric modification. Physics Letters A, 358(2), 159–165.
Article
MATH
Google Scholar
Hall, C., Davis, N., DeLaRee, J., Scales, W., & Stutzman, W. (1999). Virginia tech ionospheric scintillation measurement mission. In AIAA/Utah State University Conference on Small Satellites, Logan, UT, USA.
Harris Jr, F. B. (2016). Gnss hardware-in-the-loop formation and tracking control. MSc thesis, Virginia Tech.
Hartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D. R., Kim, H., et al. (2017). Associating ground magnetometer observations with current or voltage generators. Journal of Geophysical Research (Space Physics), 122(7), 7130–7141. https://doi.org/10.1002/2017JA024140.
Article
Google Scholar
HAWkEye360: Hawkeye 360 awards contract to build next-generation satellite constellation to achieve rapid revisit for global spectrum awareness. https://www.he360.com/hawkeye-360-awards-contract-to-build-next-generation-constellation/. Accessed 19 March 2020.
Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. Journal of Atmospheric and Terrestrial Physics, 30(5), 795–823.
Article
Google Scholar
Huang, J., & Kuo, S. (1994). A theoretical model for the broad upshifted maximum in the stimulated electromagnetic emission spectrum. Journal of Geophysical Research Space Physics, 99(A10), 19569–19576.
Article
Google Scholar
Hudson, M. K., & Kelley, M. C. (1976). The temperature gradient drift instability at the equatorward edge of the ionospheric plasma trough. Journal of Geophysical Research, 81(22), 3913–3918.
Article
Google Scholar
Jacobs, J., Kato, Y., Matsushita, S., & Troitskaya, V. (1964). Classification of geomagnetic micropulsations. Journal of Geophysical Research, 69(1), 180–181.
Article
Google Scholar
Kelley, M. C. (2009). The earth’s ionosphere: Plasma physics and electrodynamics. New York: Academic press.
Google Scholar
Kim, H., Cai, X., Clauer, C. R., Kunduri, R. B. S., Matzka, J., Stolle, C., & Weimer, D. R. (2013). Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points. Journal of Geophysical Research (Space Physics), 118(10), 6055–6071.
Article
Google Scholar
Kim, H., Clauer, C. R., Deshpande, K., Lessard, M. R., Weatherwax, A. T., Bust, G. S., et al. (2014). Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations. Journal of Atmospheric and Solar-Terrestrial Physics, 114, 1–8.
Article
Google Scholar
Kintner, P. M., Ledvina, B. M., & De Paula, E. (2007). Gps and ionospheric scintillations. Space Weather, 5(9), 176.
Article
Google Scholar
Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency gps users. IEEE Transactions on Aerospace and Electronic systems, 3, 325–331.
Article
Google Scholar
Kowalchuk, S. A. (2007). Investigation of nonlinear control strategies using gps simulator and spacecraft attitude control simulator. Ph.D. thesis, Virginia Tech.
Leitner, J. (2001). A hardware-in-the-loop testbed for spacecraft formation flying applications. In 2001 IEEE aerospace conference proceedings (Cat. No. 01TH8542), (vol. 2, pp. 2–615). IEEE.
Leung, S., & Montenbruck, O. (2005). Real-time navigation of formation-flying spacecraft using global-positioning-system measurements. Journal of Guidance, Control, and Dynamics, 28(2), 226–235.
Article
Google Scholar
Leyser, T. (2001). Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Science Reviews, 98(3–4), 223–328.
Article
Google Scholar
Liu, C., Guan, Y., Zheng, X., Zhang, A., Piero, D., & Sun, Y. (2019). The technology of space plasma in-situ measurement on the china seismo-electromagnetic satellite. Science China Technological Sciences, 62(5), 829–838.
Article
Google Scholar
Luo, X., Lou, Y., Xiao, Q., Gu, S., Chen, B., & Liu, Z. (2018). Investigation of ionospheric scintillation effects on bds precise point positioning at low-latitude regions. GPS Solutions, 22(63), 1–12.
Google Scholar
Luo, X., Gu, S., Lou, Y., Chen, B., & Song, W. (2020). Better thresholds and weights to improve gnss ppp under ionospheric scintillation activity at low latitudes. GPS Solutions, 24(17), 1–12.
Google Scholar
Mahmoudian, A., Scales, W., Taylor, S., Morton, Y., Bernhardt, P., Briczinski, S., & Ghader, S. (2018). Artificial ionospheric gps phase scintillation excited during high-power radiowave modulation of the ionosphere. Radio Science, 53(6), 775–789.
Article
Google Scholar
Marji, Q. (2008). Precise relative navigation for satellite formation flying using gps. MSc thesis, The University of Calgary.
Mikhailovskii, A. B. (1974). Theory of plasma instabilities: Instabilities of a homogeneous plasma. Instabilities of an inhomogeneous plasma (2nd ed.). New York: Consultants Bureau.
Book
Google Scholar
Milikh, G., Gurevich, A., Zybin, K., & Secan, J. (2008). Perturbations of gps signals by the ionospheric irregularities generated due to hf-heating at triple of electron gyrofrequency. Geophysical Research Letters, 35(22), 1068.
Article
Google Scholar
Mishin, E., & Blaunstein, N. (2008). Irregularities within subauroral polarization stream-related troughs and gps radio interference at midlatitudes. Midlatitude Ionospheric Dynamics and Disturbances. Geophysical Monograph Series, 181, 291–295.
Google Scholar
MIT: Madrigal CEDAR Database (xxxx). http://cedar.openmadrigal.org. Accessed 26 September 2020.
Najmi, A., Milikh, G., Secan, J., Chiang, K., Psiaki, M., Bernhardt, P., et al. (2014). Generation and detection of super small striations by f region hf heating. Journal of Geophysical Research Space Physics, 119(7), 6000–6011.
Article
Google Scholar
Najmi, A., Milikh, G., Yampolski, Y., Koloskov, A., Sopin, A., Zalizovski, A., et al. (2015). Studies of the ionospheric turbulence excited by the fourth gyroharmonic at haarp. Journal of Geophysical Research Space Physics, 120(8), 6646–6660.
Article
Google Scholar
NASA: CDDIS (xxxx). ftp://cddis.nasa.gov/gnss/data/daily. Accessed 16 August 2020.
Park, J.-I., Park, H.-E., Park, S.-Y., & Choi, K.-H. (2010). Hardware-in-the-loop simulations of gps-based navigation and control for satellite formation flying. Advances in Space Research, 46(11), 1451–1465.
Article
Google Scholar
Parkinson, B. W., Enge, P., Axelrad, P., & Spilker Jr, J. J. (1996). Global positioning system: Theory and applications (Vol. II, pp. 510–511). American Institute of Aeronautics and Astronautics, Stanford, California.
Peng, Y. (2020). GNSS-based hardware-in-the-loop simulation of spacecraft formation flight: An incubator for future multi-scale ionospheric space weather studies. Ph.D. thesis, Virginia Tech.
Peng, Y., & Scales, W. (2020). GNSS-based simulation of spacecraft formation flight: A case study of ionospheric plasma remote sensing. Radiation Effects and Defects in Solids, 175(11–12), 998–1001. https://doi.org/10.1080/10420150.2020.1845689.
Article
Google Scholar
Peng, Y., & Scales, W. A. (2019). Satellite formation flight simulation using multi-constellation GNSS and applications to ionospheric remote sensing. Remote Sensing, 11(23), 2851. https://doi.org/10.3390/rs11232851.
Article
Google Scholar
Peng, Y., Scales, W. A., & Edwards, T. R. (2020). GPS-based satellite formation flight simulation and applications to ionospheric remote sensing. Navigation, 67(1), 3–21. https://doi.org/10.1002/navi.354.
Article
Google Scholar
Peng, Y., Scales, W. A., & Lin, D. (2021). GNSS-based hardware-in-the-loop simulations of spacecraft formation flying with the global ionospheric model TIEGCM. GPS Solutions, 25, 65. https://doi.org/10.1007/s10291-021-01099-x.
Article
Google Scholar
Peng, Y., Scales, W. A., Esswein, M. C., & Hartinger, M. D. (2019). Small satellite formation flying simulation with multi-constellation GNSS and applications to future multi-scale space weather observations. In Proceedings of the ION GNSS+, Miami, FL, USA (pp. 2035–22047). https://doi.org/10.33012/2019.16883
Pi, X., Mannucci, A., Lindqwister, U., & Ho, C. (1997). Monitoring of global ionospheric irregularities using the worldwide gps network. Geophysical Research Letters, 24(18), 2283–2286.
Article
Google Scholar
Pilipenko, V., Belakhovsky, V., Murr, D., Fedorov, E., & Engebretson, M. (2014). Modulation of total electron content by ulf pc5 waves. Journal of Geophysical Research Space Physics, 119(6), 4358–4369.
Article
Google Scholar
Pinto Jayawardena, T. S., Chartier, A. T., Spencer, P., & Mitchell, C. N. (2016). Imaging the topside ionosphere and plasmasphere with ionospheric tomography using cosmic gps tec. Journal of Geophysical Research Space Physics, 121(1), 817–831.
Article
Google Scholar
Ribeiro, A., Ruohoniemi, J., Baker, J., Clausen, L., Greenwald, R., & Lester, M. (2012). A survey of plasma irregularities as seen by the midlatitude blackstone superdarn radar. Journal of Geophysical Research Space Physics, 117(A2), 1397. https://doi.org/10.1029/2011JA017207.
Article
Google Scholar
Rideout, W., & Coster, A. (2006). Automated GPS processing for global total electron content data. GPS Solutions, 10(3), 219–228. https://doi.org/10.1007/s10291-006-0029-5.
Article
Google Scholar
Scales, W., Peng, Y., Sorenson, C., Hartinger, M., Coyle, S., Shi, X., Zou, S., Coppeans, T., Clauer, C. R., & Xu, Z. (2019). Multi-station GPS TEC and magnetometer observations of ULF waves in antarctica. In AGU fall meeting 2019, San Francisco, CA, USA.
StartRocket: The Orbital Display by StartRocket. https://startrocket.me/. Accessed 19 March 2020.
Stewart, B. (1861). XXII on the great magnetic disturbance which extended from august 28 to september 7, 1859, as recorded by photography at the kew observatory. Philosophical Transactions of the Royal Society of London, 151, 423–430.
Article
Google Scholar
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). Grace measurements of mass variability in the earth system. Science, 305(5683), 503–505.
Article
Google Scholar
Tripathi, V., & Liu, C. (1993). O mode decay and upshifted electromagnetic emissions near cyclotron harmonics in the ionosphere. Journal of Geophysical Research Space Physics, 98(A2), 1719–1723.
Article
Google Scholar
Vierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J., & Norberg, J. (2016). Statistical framework for estimating gnss bias. Atmospheric Measurement Techniques, 9(3), 1303–1312. https://doi.org/10.5194/amt-9-1303-2016.
Article
Google Scholar
Watson, C., Jayachandran, P., Singer, H. J., Redmon, R. J., & Danskin, D. (2015). Large-amplitude gps tec variations associated with pc5-6 magnetic field variations observed on the ground and at geosynchronous orbit. Journal of Geophysical Research Space Physics, 120(9), 7798–7821.
Article
Google Scholar
Xi, H., & Scales, W. (2001). Numerical simulation studies on the broad upshifted maximum of ionospheric stimulated electromagnetic emission. Journal of Geophysical Research Space Physics, 106(A7), 12787–12801.
Article
Google Scholar
Xiong, C., Stolle, C., & Lühr, H. (2016). The swarm satellite loss of gps signal and its relation to ionospheric plasma irregularities. Space Weather, 14(8), 563–577.
Article
Google Scholar
Xu, Z., Hartinger, M., Clauer, C., Peek, T., & Behlke, R. (2017). A comparison of the ground magnetic responses during the 2013 and 2015st patrick’s day geomagnetic storms. Journal of Geophysical Research Space Physics, 122(4), 4023–4036.
Article
Google Scholar
Xu, Z., Hartinger, M. D., Clauer, R., Weimer, D., Deshpande, K., Kim, H., et al. (2019). Newly established autonomous adaptive low-power instrument platform (AAL-PIP) chain on East Antarctic Plateau and operation. Advances in Polar Science, 3, 362–374. https://doi.org/10.13679/j.advps.2019.0028.
Article
Google Scholar
Xu, Z., Hartinger, M., Oliveira, D. M., Coyle, S., Clauer, C., Weimer, D., & Edwards, T. (2020). Interhemispheric asymmetries in the ground magnetic response to interplanetary shocks: The role of shock impact angle. Space Weather, 18(3), 2019–002427.
Article
Google Scholar
Yamamoto, T., & D’Amico, S. (2008). Hardware-in-the-loop demonstration of gps-based autonomous formation flying. In Workshop on satellite navigation technologies (NAVITEC), ESTEC, Noordwijk, Netherlands.