Al-Shaery, A., Lim, S., & Rizos, C. (2011). Investigation of different interpolation methods used in network-RTK for virtual reference station technique. Journal of Global Positioning Systems, 10(2), 136–148. https://doi.org/10.5081/jgps.10.2.136
Article
Google Scholar
Altti, J., Shaojun, F., Wolfgang, S., Washington, O., Chris, H., Terry, M., & Chris, H. (2013). Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions. Geo-Spatial Information Science, 16(3), 141–148. https://doi.org/10.1080/10095020.2013.817111
Article
Google Scholar
Angelino V., Baraniello R., & Cicala L. (2012). UAV position and attitude estimation using IMU, GNSS and camera. In 2012 15th International Conference on Information Fusion. Singapore (pp. 735–742).
Banville, S., Geng, J., Loyer, S., Schaer, S., Springer, T., & Strasser, S. (2020). On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy, 94(1), 10. https://doi.org/10.1007/s00190-019-01335-w
Article
Google Scholar
Bevis, M., Businger, S., Herring, A., Rocken, C., Anthes, A., & Ware, H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14), 15787–15801.
Article
Google Scholar
Brown, G., & Hwang, P. (1986). GPS failure detection by autonomous means within the cockpit. Navigation - Journal of the Institute of Navigation, 33, 335–353.
Article
Google Scholar
Cabinet Office. (2020). Quasi-Zenith Satellite System performance standard (PS-QZSS-002). https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/ps-qzss-002.pdf?t=1618040032826
Cao, S., Lu, X., & Shen, S. (2021). GVINS: Tightly coupled GNSS-visual-inertial for smooth and consistent state estimation. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3133730
Article
Google Scholar
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., & Radicella, M. (2007). Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81, 111–120. https://doi.org/10.1007/s00190-006-0093-1
Article
Google Scholar
Collins, P. (2008). Isolating and estimating undifferenced GPS integer ambiguities. In Proceedings of the 2008 national technical meeting of the institute of navigation, San Diego, CA, USA (pp. 720–732).
Dai, L., Han, S., Wang, J., & Rizos, C. (2003). Comparison of interpolation algorithms in network-based GPS techniques. Navigation - Journal of the Institute of Navigation, 50(4), 277–293. https://doi.org/10.1002/j.2161-4296.2003.tb00335.x
Article
Google Scholar
Deng, Y., Guo, F., Ren, X., Ma, F., & Zhang, X. (2021). Estimation and analysis of multi-GNSS observable-specific code biases. GPS Solutions, 25(3), 1–13. https://doi.org/10.1007/s10291-021-01139-6
Article
Google Scholar
Dong, D., & Bock, Y. (1989). Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research, 94(B4), 3949–3966.
Article
Google Scholar
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., & King, W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology and Climatology, 35(6), 830–838.
Article
Google Scholar
Feng, S., Washington, O., Terry, M., Chris, H., & Chris, H. (2009). Carrier phase-based integrity monitoring for high-accuracy positioning. GPS Solutions, 13, 13–22. https://doi.org/10.1007/s10291-008-0093-0
Article
Google Scholar
Feng, S., Ochieng, W., Samson, J., Tossaint, M., Hernandez-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., Ramos-Bosch, P., & Jofre, M. (2012). Integrity monitoring for carrier phase ambiguities. Journal of Navigation, 65(1), 41–58. https://doi.org/10.1017/S037346331100052X
Article
Google Scholar
Fotopoulos, G. (2000) Parameterization of carrier phase corrections based on a regional network of reference stations. In Proceedings of the 13th international technical meeting of the satellite division of the institute of navigation (ION GPS 2000). Salt Lake City, UT, USA (pp. 1093–1102).
Gao Y., Li Z., & McLellan J. F. (1997). Carrier phase based regional area differential GPS for decimeter-level positioning and navigation. In Proceedings of the 10th international technical meeting of the satellite division of the institute of navigation (ION GPS 1997). Kansas City, MO, USA (pp. 1305–1313).
Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., & Schuh, H. (2017). Tightly coupled integration of multi-GNSS PPP and MEMS inertial measurement unit data. GPS Solutions, 21(2), 377–391.
Article
Google Scholar
Gao, Z., Ge, M., Li, Y., Chen, Q., Zhang, Q., Niu, X., Zhang, H., Shen, W., & Harald, S. (2018). Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination. GPS Solutions, 22(3), 1–16.
Article
Google Scholar
Gao, R., Xu, L., Zhang, B., & Liu, T. (2021). Raw GNSS observations from Android smartphones: Characteristics and short-baseline RTK positioning performance. Measurement Science and Technology, 32, 8. https://doi.org/10.1088/1361-6501/abe56e
Article
Google Scholar
Garrett S., & Sunil B. (2013). Integrity monitoring in Precise Point Positioning. York University, Toronto, Canada. In Proceedings of the 26th international technical meeting of the ION satellite division, ION GNSS+2013. Nashville, TN, USA (pp. 1164–1175)
Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0187-4
Article
Google Scholar
Ge, H., Li, B., Ge, M., Zang, N., Nie, L., Shen, Y., & Schuh, H. (2018). Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS). Remote Sensing, 10(7), 984.
Article
Google Scholar
Ge, H., Li, B., Jia, S., Nie, L., Wu, T., Yang, Z., Shang, J., Zheng, Y., & Ge, M. (2022). LEO enhanced global navigation satellite system (LeGNSS): Progress, opportunities, and challenges. Geo-Spatial Information Science, 25(1), 1–13.
Article
Google Scholar
Geng, J., & Bock, Y. (2013). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 87(5), 449–460.
Article
Google Scholar
Geng, J., & Bock, Y. (2016). GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. Journal of Geodesy, 90, 379–396. https://doi.org/10.1007/s00190-015-0879-0
Article
Google Scholar
Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. (2010). Integer ambiguity resolution in precise point positioning: Method comparison. Journal of Geodesy, 84, 569–581. https://doi.org/10.1007/s00190-010-0399-x
Article
Google Scholar
Geng, J., Teferle, F. N., Meng, X., & Dodson, A. H. (2011). Towards PPP–RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664–1673.
Article
Google Scholar
Geng, J., Guo, J., Meng, X., & Gao, K. (2020). Speeding up PPP ambiguity resolution using triple-frequency GPS/BDS/Galileo/QZSS data. Journal of Geodesy, 94, 1–15. https://doi.org/10.1007/s00190-019-01330-1
Article
Google Scholar
Gianluca G., Mauro L., Matteo Z., & Giancarlo V. (2010). GNSS integrity and protection level computation for vehicular applications. In Proceedings of 16th Ka and broadband communications–navigation and earth observation conference. Milan, Italy (pp. 569–574).
Gu, S., Lou, Y., Shi, C., & Liu, J. (2015). BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable. Journal of Geodesy, 89(10), 979–992.
Article
Google Scholar
Gu, S., Dai, C., Fang, W., Zheng, F., Wang, Y., Zhang, Q., Lou, Y., & Niu, X. (2021). Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation. Journal of Geodesy, 95, 1–15. https://doi.org/10.1007/s00190-021-01514-8
Article
Google Scholar
Gu, S., Dai, C., Mao, F., & Fang, W. (2022). Integration of multi-GNSS PPP–RTK /INS/Vision with a cascading Kalman filter for vehicle navigation in urban areas. Remote Sensing, 14, 4337. https://doi.org/10.3390/rs14174337
Article
Google Scholar
Han, S. (1997). Carrier phase-based long-range GPS kinematic positioning. Ph.D. Dissertation, School of Geomatic Engineering, The University of New South Wales, Sydney, Australia.
Han S., & Rizos C. (1997). Multipath effects on GPS in mine environments. In 10th international congress of the International Society for Mine Surveying Fremantle, Australia.
Hernández-Pajares, M., Juan, J. M., & Sanz, J. (2006). Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. Journal of Geophysical Research Atmospheres, 111 (A7), A07S11. https://doi.org/10.1029/2005JA011474.
Hernández-Pajares, M., Juan, J. M., Sanz, J., & Aragón-Àngel, A. (2012). Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Science, 47, 1–22. https://doi.org/10.1029/2011RS004951
Article
Google Scholar
Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global positioning system: Theory and practice. Springer.
Book
Google Scholar
Hopfield, H. S. (1972). Tropospheric range error parameters: Further studies 46. https://doi.org/NASA-CR-127559, APL/JHU-CP-015
Hou, P., Zhang, B., Yasyukevich, Y. V., Liu, T., & Zha, J. (2022). Multi-frequency phase-only PPP–RTK model applied to BeiDou data. GPS Solutions, 26, 76. https://doi.org/10.1007/s10291-022-01263-x
Article
Google Scholar
Hsu, L. T. (2017). GNSS multipath detection using a machine learning approach. In IEEE international conference on intelligent transportation systems. Yokohama, Japan (pp. 1–6). https://doi.org/10.1109/ITSC.2017.8317700
Hu, J., Zhang, X., Li, P., Ma, F., & Pan, L. (2020). Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solutions, 24(1), 15.
Article
Google Scholar
Juan, B., Todd, W., & Per, E. (2012). Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation. In Proceedings of the 25th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2012). Nashville, TN, USA (pp. 2828–2849).
Juan, B., Todd, W., Laura, N., Kazuma, G., & Lance, G. (2020). Solution separation-based FD to mitigate the Effects of Local Threats on PPP Integrity. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). Portland, OR, USA (pp. 1085–1092).
Kazuma, G., Juan, B., & Todd, W. (2019). SBAS corrections for PPP integrity with solution separation. In Proceedings of the 2019 international technical meeting of the Institute of Navigation. Reston, Virginia, USA (pp. 707–719). https://doi.org/10.33012/2019.16739
Khodabandeh, A., & Teunissen, P. J. G. (2016). PPP–RTK and inter-system biases: The ISB look-up table as a means to support multi-system PPP–RTK. Journal of Geodesy, 90, 837–851.
Article
Google Scholar
Khodabandeh, A., & Teunissen, P. J. G. (2018). On the impact of GNSS ambiguity resolution: Geometry, ionosphere, time and biases. Journal of Geodesy, 92(6), 637–658.
Article
Google Scholar
Laura, N., Eduardo, I., & de Groot, L. (2019). Integrity performance for precise positioning in automotive. In 32nd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS+ 2019)Miami, Florida, USA (pp. 1653–1663).
Laurichesse, D., & Mercier, F. (2007). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In 20th international technical meeting of the satellite division of the Institute of Navigation (2007 ION GNSS). Fort Worth, TX, USA (pp. 839–848).
Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., & Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation - Journal of the Institute of Navigation, 56(2), 135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x
Article
Google Scholar
Lee, Y. (1986). Analysis of range and position comparison methods as a means to provide GPS integrity in the user receiver. In Institute of navigation 42nd annual meeting. Seattle, Washington, USA (pp. 1–4).
Li, M., & Mourikis, A. I. (2012). Improving the accuracy of EKF-based visual-inertial odometry. In Proceedings of the IEEE international conference on robotics and automation. Saint Paul, MN, USA (pp. 828–835).
Li, X., & Zhang, X. (2012). Improving the estimation of uncalibrated fractional phase of sets for PPP ambiguity resolution. Navigation - Journal of the Institute of Navigation, 65(3), 513–529.
Article
Google Scholar
Li, G., & Geng, J. (2019). Characteristics of raw multi-GNSS measurement error from Google Android smart devices. GPS Solutions, 23, 1–16.
Article
Google Scholar
Li, X., Zhang, X., & Ge, M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. Journal of Geodesy, 85(3), 151–158. https://doi.org/10.1007/s00190-010-0424-0
Article
Google Scholar
Li, X., Ge, M., Zhang, H., & Wickert, J. (2013). A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. Journal of Geodesy, 87, 405–416. https://doi.org/10.1007/s00190-013-0611-x
Article
Google Scholar
Li, X., Dick, G., Ge, M., Helse, S., Wickert, J., & Bender, M. (2014). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letters, 41, 3615–3621. https://doi.org/10.1002/2013GL058721
Article
Google Scholar
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89, 607–635. https://doi.org/10.1007/s00190-015-0802-8
Article
Google Scholar
Li, P., Zhang, X., & Guo, F. (2017a). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91(1), 25–40.
Article
Google Scholar
Li, T., Zhang, H., Niu, X., & Gao, Z. (2017b). Tightly-coupled integration of multi-GNSS single-frequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462–2484. https://doi.org/10.3390/s17112462
Article
Google Scholar
Li, W., Nadarajah, N., Teunissen, P. J. G., & Khodabandeh, A. (2017c). Array-aided single-frequency state-space RTK with combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations. Journal of Surveying Engineering, 143(4), 04017006.
Article
Google Scholar
Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, B4, 1–30. https://doi.org/10.1007/s00190-017-1081-3
Article
Google Scholar
Li, X., Liu, G., Feng, G., Yuan, Y., Zhang, K., & Ren, X. (2019a). Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo. Journal of Geodesy, 93(8), 1105–1122.
Article
Google Scholar
Li, X., Ma, F., Li, X., Lv, H., Bian, L., Jiang, Z., & Zhang, X. (2019b). LEO Constellation-augmented multi-GNSS for Rapid PPP Convergence. Journal of Geodesy, 93(5), 749–764. https://doi.org/10.1007/s00190-018-1195-2
Article
Google Scholar
Li, B., Ge, H., Ge, M., Nie, L., Shen, Y., & Schuh, H. (2019c). LEO enhanced global navigation satellite system (Legnss) for real-time precise positioning services. Advances in Space Research, 63(1), 73–93. https://doi.org/10.1016/j.asr.2018.08.017
Article
Google Scholar
Li, T., Zhang, H., Gao, Z., Niu, X., & El-Sheimy, N. (2019d). Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-Challenged environments. Remote Sensing, 11(6), 610.
Article
Google Scholar
Li, Z., Chen, W., Ruan, R., & Liu, X. (2020a). Evaluation of PPP–RTK based on BDS-3/BDS-2/GPS observations: A case study in Europe. GPS Solutions, 24(2), 1–12.
Article
Google Scholar
Li, X., Liu, G., Li, X., Zhou, F., Feng, G., Yuan, Y., & Zhang, K. (2020b). Galileo PPP rapid ambiguity resolution with five-frequency observations. GPS Solutions, 24(1), 1–13. https://doi.org/10.1007/s10291-019-0930-3
Article
Google Scholar
Li, X., Li, X., Liu, G., Yuan, Y., Freeshah, M., Zhang, K., & Zhou, F. (2020c). BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a + b signals and legacy B1I/B3I signals. Journal of Geodesy, 94(100), 1–15. https://doi.org/10.1007/s00190-020-01439-8
Article
Google Scholar
Li, X., Huang, J., Li, X., Lyu, H., Wang, B., Xiong, Y., & Xie, W. (2021a). Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. GPS Solutions, 25(3), 1–13.
Article
Google Scholar
Li, X., Han, X., Li, X., Liu, G., Feng, G., Wang, B., & Zheng, H. (2021b). GREAT-UPD: An open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations. GPS Solutions, 25(2), 1–9. https://doi.org/10.1007/s10291-020-01070-2
Article
Google Scholar
Li, X., Wang, X., Liao, J., Li, X., & Lyu, H. (2021c). Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments. Satellite Navigation, 2(1), 1–14.
Article
Google Scholar
Li, X., Li, X., Huang, J., Shen, Z., Wang, B., Yuan, Y., & Zhang, K. (2021d). Improving PPP–RTK in urban environment by tightly coupled integration of GNSS and INS. Journal of Geodesy, 95(12), 1–18.
Article
Google Scholar
Li, B., Ge, H., Bu, Y., Zhang, Y., & Yuan, L. (2022a). Comprehensive assessment of real-time precise products from IGS analysis centers. Satellite Navigation, 3, 1–17. https://doi.org/10.1186/s43020-022-00074-2
Article
Google Scholar
Li, X., Li, X., Jiang, Z., Xia, C., Shen, Z., & Wu, J. (2022b). A unified model of GNSS phase/code bias calibration for PPP ambiguity resolution with GPS, BDS, Galileo and GLONASS multi-frequency observations. GPS Solutions, 26, 1–16. https://doi.org/10.1007/s10291-022-01269-5
Article
Google Scholar
Li, P., Cui, B., Hu, J., Liu, X., Zhang, X., Ge, M., & Schuh, H. (2022c). PPP–RTK considering the ionosphere uncertainty with cross-validation. Satellite Navigation, 3(1), 1–13. https://doi.org/10.1186/s43020-022-00071-5
Article
Google Scholar
Li, X., Wang, B., Li, X., Huang, J., Lyu, H., & Han, X. (2022d). Principle and performance of multi-frequency and multi-GNSS PPP–RTK. Satellite Navigation, 3(1), 1–11. https://doi.org/10.1186/s43020-022-00068-0
Article
Google Scholar
Li, X., Li, X., Li, S., Zhou, Y., Sun, M., Xu, Q., & Xu, Z. (2022e). Centimeter-accurate vehicle navigation in urban environments with a tightly integrated PPP–RTK /MEMS/vision system. GPS Solutions, 26, 124. https://doi.org/10.1007/s10291-022-01306-3
Article
Google Scholar
Li, X., Wang, H., Li, X., Li, L., Lv, H., Shen, Z., Xia, C., & Gou, H. (2022f). PPP rapid ambiguity resolution using Android GNSS raw measurements with a low-cost helical antenna. Journal of Geodesy, 96, 1–14. https://doi.org/10.1007/s00190-022-01661-6
Article
Google Scholar
Liu, S., Sun, F., Zhang, L., Li, W., & Zhu, X. (2016). Tight integration of ambiguity-fixed PPP and INS: Model description and initial results. GPS Solutions, 20(1), 39–49.
Article
Google Scholar
Liu, Y., Ye, S., Song, W., Lou, Y., & Chen, D. (2017a). Integrating GPS and BDS to shorten the initialization time for ambiguity-fixed PPP. GPS Solutions, 21(2), 333–343.
Article
Google Scholar
Liu, Y., Song, W., Lou, Y., Ye, S., & Zhang, R. (2017b). GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers. GPS Solutions, 21(2), 427–437.
Article
Google Scholar
Liu, Y., Ye, S., Song, W., Lou, Y., & Gu, S. (2017c). Rapid PPP ambiguity resolution using GPS+GLONASS observations. Journal of Geodesy, 91(4), 441–455.
Article
Google Scholar
Lu, C., Li, X., Zus, F., Heinkelmann, R., Dick, G., Ge, M., Wickert, J., & Schuh, H. (2017). Improving BeiDou real-time precise point positioning with numerical weather models. Journal of Geodesy, 91(9), 1019–1029. https://doi.org/10.1007/s00190-017-1005-2
Article
Google Scholar
Luo, X., Lou, Y., Xiao, Q., Gu, S., Chen, B., & Liu, Z. (2018). Investigation of ionospheric scintillation effects on BDS precise point positioning at low-latitude regions. GPS Solutions, 22(63), 1–12. https://doi.org/10.1007/s10291-018-0728-8
Article
Google Scholar
Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation. In IEEE/RSJ international conference on intelligent robots and systems. Tokyo, Japan (pp. 3923–3929).
Ma, H., Zhao, Q., Verhagen, S., Psychas, D., & Liu, X. (2020). Assessing the performance of multi-GNSS PPP–RTK in the local area. Remote Sensing, 12, 3343. https://doi.org/10.3390/rs12203343
Article
Google Scholar
Ma, H., Psychas, D., Xing, X., Zhao, Q., & Liu, X. (2021). Influence of the inhomogenous troposphere on gnss positioning and integer ambiguity resolution. Advances in Space Research, 67(2), 1914–1928.
Article
Google Scholar
Martell, H. (2009). Tightly coupled processing of precise point position (PPP) and ins data. In Proceedings of the 22nd international technical meeting of the satellite division of the institute of navigation (ION GNSS 2009). Savannah, GA, USA (pp. 1898–1905).
Mascaro, R., Teixeira, L., Hinzmann, T., Siegwart, R, & Chli, M. (2018). GOMSF: Graph-optimization based multi-sensor fusion for robust UAV pose estimation. In IEEE international conference on robotics and automation (ICRA). Brisbane, QLD, Australia (pp. 1421–1428).
Mc Graw, G., & Murphy, T. (2001). Safety of life considerations for GPS modernization architectures. In Proceedings of the 14th international technical meeting of the satellite division of the Institute of Navigation (ION GPS 2001). Salt Lake City, UT, USA (pp. 632–640).
Merino, M. M. R., Laínez, M. D. (2012). Integrity for advanced precise positioning applications. In proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012). Nashville, TN, USA. (pp. 2742–2758).
Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R. B., Mervart, L., & Hugentobler, U. (2014). IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS, 9(1), 42–49.
Google Scholar
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., Macleod, K., & Schaer, S. (2017). The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—Achievements, prospects and challenges. Advances in Space Research, 59, 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011
Article
Google Scholar
Nadarajah, N., Khodabandeh, A., Wang, K., Choudhury, M., & Teunissen, P. J. G. (2018). Multi-GNSS PPP–RTK: From large- to small-scale networks. Sensors, 18(4), 1078. https://doi.org/10.3390/s18041078
Article
Google Scholar
Navarro Madrid, P. F., Laínez Samper, M. D., & Romay Merino, M. M. (2015). New approach for integrity bounds computation applied to advanced precise positioning applications. In Proceedings of the 28th International technical meeting of the satellite division of the Institute of Navigation (ION GNSS+ 2015). Tampa, Florida, USA (pp. 2821–2834).
Odijk, D., Teunissen, P. J. G., & Zhang, B. (2012). Single-frequency integer ambiguity resolution enabled GPS precise point positioning. Journal of Surveying Engineering, 138(4), 193–202.
Article
Google Scholar
Odijk, D., Teunissen, P. J. G., & Khodabandeh, A. (2014). Single-frequency PPP–RTK: Theory and experimental results. Earth on the edge: Science for a sustainable planet (pp. 571–578). Berlin: Springer.
Chapter
Google Scholar
Odijk, D., Zhang, B., Khodabandeh, A., Odolinski, R., & Teunissen, P. J. G. (2016). On the estimability of parameters in undifferenced, uncombined GNSS network and PPP–RTK user models by means of S-system theory. Journal of Geodesy, 90, 15–44. https://doi.org/10.1007/s00190-015-0854-9
Article
Google Scholar
Odolinski, R., & Teunissen, P. J. G. (2017). On the performance of a low-cost single-frequency GPS+BDS RTK positioning model. In Proceedings of the 2017 international technical meeting of the institute of navigation. Monterey, California, USA (pp. 745–753).
Oliveira, P. S., Morel, L., Fund, F., Legros, R., Monico, J. F. G., Durand, S., & Durand, F. (2017). Modeling tropospheric wet delays with dense and sparse network configurations for PPP–RTK. GPS Solutions, 21, 237–250. https://doi.org/10.1007/s10291-016-0518-0
Article
Google Scholar
Parkinson, B., & Axelrad, P. (1988). Autonomous GPS integrity monitoring using the pseudorange residual. Navigation - Journal of the Institute of Navigation 35, 255–274.
Article
Google Scholar
Pervan, B., Pullen, S., & Christie, J. (1998). A multiple hypothesis approach to satellite navigation integrity. Journal of Navigation., 45(1), 61–71.
Article
Google Scholar
Phelts, R. E., Gunning, K., Blanch, J., & Walter, T. (2020). Evaluating the application of PPP techniques to ARAIM using flight data. In Proceedings of the 2020 international technical meeting of the Institute of Navigation. San Diego, California, USA (pp. 379–385). https://doi.org/10.33012/2020.17151
Psychas, D., & Verhagen, S. (2020). Real-time PPP-RTK performance analysis using ionospheric corrections from multi-scale network configurations. Sensors, 20(11), 3012. https://doi.org/10.3390/s20113012
Article
Google Scholar
Psychas, D., Bruno, J., Massarweh, L., & Darugna, F. (2019). Towards sub-meter positioning using android raw GNSS measurements. In Proceedings of the 32nd international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2019). Miami, Florida, USA (pp. 3917–3931).
Psychas, D., Teunissen, P. J. G., & Verhagen, S. (2021). A multi-frequency Galileo PPP–RTK convergence analysis with an emphasis on the role of frequency spacing. Remote Sensing, 13, 3077. https://doi.org/10.3390/rs13163077
Article
Google Scholar
Raquet, J. F. (1997). Multiple user network carrier-phase ambiguity resolution. In International symposium on kinematic systems in geodesy, geomatics & navigation (KIS1997) (pp. 45–55).
Ren, X., Chen, J., Li, X., & Zhang, X. (2020). Ionospheric total electron content estimation using GNSS carrier phase observations based on zero-difference integer ambiguity: Methodology and assessment. IEEE Transactions on Geoscience and Remote Sensing, 99, 1–14. https://doi.org/10.1109/TGRS.2020.2989131
Article
Google Scholar
Reuper, B., Becker, M., & Leinen, S. (2018). Benefits of multi-constellation/multi-frequency GNSS in a tightly coupled GNSS/IMU/odometry integration algorithm. Sensors, 18(9), 3052.
Article
Google Scholar
Rizos, C. (2002). Network RTK research and implementation—A geodetic perspective. Journal of Global Positioning Systems, 1(2), 144–150. https://doi.org/10.5081/jgps.1.2.144
Rizos, C., Montenbruck, O., Weber, R., Neilan, R., & Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In Proceedings of the ION 2013 pacific PNT meeting (ION PNT 2013). Honolulu, Hawaii, USA (pp. 289–295).
Rovira-Garcia, A., Timoté, C. C., Juan, J. M., Sanz, J., González-Casado, G., Fernández-Hernández, I., Orus-Perez, R., & Blonski, D. (2021). Ionospheric corrections tailored to the Galileo High Accuracy Service. Journal of Geodesy, 95, 130. https://doi.org/10.1007/s00190-021-01581-x
Article
Google Scholar
Sánchez, J. S., Gerhmann, A., Thevenon, P., Brocard, P., Afia, A. B., & Julien, O. (2016). Use of a FishEye camera for GNSS NLOS exclusion and characterization in urban environments. In Proceedings of the 2016 international technical meeting of the institute of navigation. Monterey, California, USA (pp. 283–292).
Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Local troposphere augmentation for real-time precise point positioning. Earth, Planets and Space, 66(1), 1–13. https://doi.org/10.1186/1880-5981-66-30
Article
Google Scholar
Sturza, M. (1988). Navigation system integrity monitoring using redundant measurements. Journal of the Institute of Navigation, 35(4), 483–501.
Article
Google Scholar
Su, M., Zheng, J., Yang, Y., & Wu, Q. (2018). A new multipath mitigation method based on adaptive thresholding wavelet denoising and double reference shift strategy. GPS Solutions, 22(2), 1–12. https://doi.org/10.1007/s10291-018-0708-z
Article
Google Scholar
Susmita, B. (2016). Kalman filter-based GNSS integrity monitoring. In 9th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2016). Portland, Oregon, USA (pp. 1736–1749).
Suzuki, T., & Amano, Y. (2021). NLOS multipath classification of GNSS signal correlation output using machine learning. Sensors, 21(7), 2503. https://doi.org/10.3390/s21072503
Article
Google Scholar
Teunissen, P. J. G. (1995). The least squares ambiguity decorrelation adjustment: A method for fast GPS integer estimation. Journal of Geodesy, 70, 65–82.
Article
Google Scholar
Teunissen, P. J. G. (1998). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72(10), 606–612.
Article
MATH
Google Scholar
Teunissen, P. J. G. (1999). An optimality property of the integer leastsquares estimator. Journal of Geodesy, 73, 587–593.
Article
MATH
Google Scholar
Teunissen, P. J. G. (2019). A new GLONASS FDMA model. GPS Solutions, 23(4), 1–19. https://doi.org/10.1007/s10291-019-0889-0
Article
Google Scholar
Teunissen, P. J. G., & Khodabandeh, A. (2015). Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3), 217–240.
Article
Google Scholar
Teunissen, P. J. G., Odijk, D., & Zhang, B. (2010). PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution. Journal of Aeronautics, Astronautics and Aviation, Series A, 42(4), 223–230.
Google Scholar
Ulrich, W., Markus, B., Chen, X., Landau, H., Pastor, F., Reussner, N., & Rodriguez-Solano, C. (2018). Integrity of the Trimble CenterPoint RTX Correction Service. In 31st international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2018). Miami, Florida, USA (pp. 1902-1909).
Verhagen, S., Odijk, D., Teunissen, P., & Huisman, L. (2010). Performance improvement with low-cost multi-GNSS receivers. In 2010 5th ESA workshop on satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC). Noordwijk, Netherlands (pp. 1–8).
Viearsson, L., Pullen, S., Green, G., & Enge, P. (2001). Satellite autonomous integrity monitoring and its role in enhancing GPS user performance. In Proceedings of the 14th international technical meeting of the satellite division of the institute of navigation (ION GPS 2001). Salt Lake City, Utah, USA (pp. 11–14).
Vilà-Valls, J., Linty, N., Closas, P., Dovis, F., & Curran, J. T. (2020). Survey on signal processing for GNSS under ionospheric scintillation: Detection, monitoring, and mitigation. Navigation - Journal of the Institute of Navigation, 67(3), 511–536.
Article
Google Scholar
Villiger, A., Schaer, S., Dach, R., Prange, L., Sušnik, A., & Jäggi, A. (2019). Determination of GNSS pseudo-absolute code biases and their long-term combination. Journal of Geodesy, 93(9), 1487–1500.
Article
Google Scholar
Wang, Y., & Shen, J. (2020). Real-time integrity monitoring for a wide area precise positioning system. Satellite Navigation, 1(1), 1–10. https://doi.org/10.1186/s43020-020-00018-8
Article
Google Scholar
Wang, Y., Li, R., & Zhao, R. (2015). Research of signal-in-space integrity monitoring based on inter-satellite links. Chinese Journal of Electronics, 24(2), 439.
Article
Google Scholar
Wang, N., Li, Z., Duan, B., Hugentobler, U., & Wang, L. (2020a). GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. Journal of Geodesy, 94(8), 1–15.
Article
Google Scholar
Wang, S., Li, B., Gao, Y., Gao, Y., & Guo, H. (2020b). A comprehensive assessment of interpolation methods for regional augmented PPP using reference networks with different scales and terrains. Measurement, 150, 107067. https://doi.org/10.1016/j.measurement.2019.107067
Article
Google Scholar
Wanninger, L. (1995). Improved AR by regional differential modeling of the ionosphere. In Proceedings of the 8th international technical meeting of the satellite division of the institute of navigation (ION GPS 1995), Palm Springs (pp 55–62).
Weiss, S., Achtelik, M., Lynen, S., Chli, M., & Siegwart, R. (2012). Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. In Proceedings of the IEEE international conference on robotics and automation. Saint Paul, MN, USA (pp. 957–964).
Wen, W., Bai, X., Kan, Y. C., & Hsu, L. T. (2019). Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera. IEEE Transactions on Vehicular Technology, 68(11), 10651–10662.
Article
Google Scholar
Wu, Q., Sun, M., Zhou, C., & Zhang, P. (2019). Precise point positioning using dual-frequency GNSS observations on smartphone. Sensors, 19(9), 2189. https://doi.org/10.3390/s19092189
Article
Google Scholar
Wübbena, G., Schmitz, M., & Bagg, A. (2005). PPP-RTK: Precise point positioning using state-space representation in RTK networks. In Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2005). Long Beach, California, USA (pp. 2584–2594).
Yang, Y., Gao, W., Guo, S., Mao, Y., & Yang, Y. (2019). Introduction to Beidou-3 navigation satellite system. Navigation - Journal of the Institute of Navigation, 66(1), 7–18. https://doi.org/10.1002/navi.291
Article
Google Scholar
Zha, J., Zhang, B., Liu, T., & Hou, P. (2021). Ionosphere-weighted undifferenced and uncombined PPP-RTK: Theoretical models and experimental results. GPS Solutions, 25(4), 1–12. https://doi.org/10.1007/s10291-021-01169-0
Article
Google Scholar
Zhang, X., & Li, X. (2012). Instantaneous re-initialization in real-time kinematic PPP with cycle slip fixing. GPS Solutions, 16, 315–327. https://doi.org/10.1007/s10291-011-0233-9
Article
Google Scholar
Zhang, B., Teunissen, P. J. G., & Odijk, D. (2011). A novel undifferenced PPP-RTK concept. The Journal of Navigation, 64(S1), S180–S191. https://doi.org/10.1017/S0373463311000361
Article
Google Scholar
Zhang, B., Chen, Y., & Yuan, Y. (2018a). PPP-RTK based on undifferenced and uncombined observations: Theoretical and practical aspects. Journal of Geodesy, 93(7), 1–14. https://doi.org/10.1007/s00190-018-1220-5
Article
Google Scholar
Zhang, X., Tao, X., Zhu, F., Shi, X., & Wang, F. (2018b). Quality assessment of GNSS observations from an android n smartphone and positioning performance analysis using time-differenced filtering approach. GPS Solutions, 22(3), 1–11. https://doi.org/10.1007/s10291-018-0736-8
Article
Google Scholar
Zhang, X., Zhu, F., Zhang, Y., Mohamed, F., & Zhou, W. (2019). The improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning. Journal of Geodesy, 93(3), 993–1010. https://doi.org/10.1007/s00190-018-1222-3
Article
Google Scholar
Zhang, B., Hou, P., Zha, J., & Liu, T. (2021). Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK. Journal of Geodesy, 95(8), 1–21. https://doi.org/10.1007/s00190-021-01546-0
Article
Google Scholar
Zhang, X., Ren, X., Chen, J., Zuo, X., Mei, D., & Liu, W. (2022). Investigating GNSS PPP–RTK with external ionospheric constraints. Satellite Navigation, 3(1), 1–13. https://doi.org/10.1186/s43020-022-00067-1
Article
Google Scholar
Zheng, K., Zhang, X., Li, P., et al. (2019). Multipath extraction and mitigation for high-rate multi-GNSS precise point positioning. Journal of Geodesy, 93, 2037–2051. https://doi.org/10.1007/s00190-019-01300-7
Article
Google Scholar
Zhong, P., Ding, X., Zheng, D., & Chen, W. (2008). Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation. GPS Solutions, 12(2), 109–117. https://doi.org/10.1007/s10291-007-0071-y
Article
Google Scholar
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research Atmospheres, 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860
Article
Google Scholar